An Update on Mitral Valve Aging
Abstract
:1. Introduction
2. Normal Structure of the Mitral Valve
2.1. Mitral Annulus
2.2. Mitral Leaflets
2.3. Chordae Tendineae
2.4. Papillary Muscles and the Ventricular Myocardium
3. Age-Induced Histological Modifications of the Mitral Valve
4. Physiopathology of the Mitral Valve: Age-Induced Modifications
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oosthoek, P.W.; Wenink, A.C.; Wisse, L.J.; Gittenberger-de Groot, A.C. Development of the papillary muscles of the mitral valve: Morphogenetic background of parachute-like asymmetric mitral valves and other mitral valve anomalies. J. Thorac. Cardiovasc. Surg. 1998, 116, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Vaca, F.; Bordoni, B. Anatomy, Thorax, Mitral Valve 2023. In StatPearls; StatPearls Publishing: Treasure Island FL, USA, 2024. [Google Scholar] [PubMed]
- Hinton, R.B.; Yutzey, K.E. Heart valve structure and function in development and disease. Annu. Rev. Physiol. 2011, 73, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Perloff, J.K.; Roberts, W.C. The mitral apparatus. Functional anatomy of mitral regurgitation. Circulation 1972, 46, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Angelini, A.; Ho, S.Y.; Anderson, R.H.; Davies, M.J.; Becker, A.E. A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. Br. Heart J. 1988, 59, 712–716. [Google Scholar] [CrossRef]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [PubMed]
- Hollenberg, S.M. Valvular Heart Disease in Adults: Etiologies, Classification, and Diagnosis. FP Essent. 2017, 457, 11–16. [Google Scholar] [PubMed]
- Choong, C.Y.; Abascal, V.M.; Weyman, J.; Levine, R.A.; Gentile, F.; Thomas, J.D.; Weyman, A.E. Prevalence of valvular regurgitation by Doppler echocardiography in patients with structurally normal hearts by two-dimensional echocardiography. Am. Heart J. 1989, 117, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Mills, S.E. (Ed.) Section VI, Thorax and serous membranes. In Histology for Pathologists, 4th ed.; Wolkers Kluwer-Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 572–574. [Google Scholar]
- Fishbein, G.A.; Fishbein, M.C. Mitral valve pathology. Curr. Cardiol. Rep. 2019, 21, 61. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y. Anatomy of the mitral valve. Heart 2002, 88 (Suppl. S4), iv5–iv10. [Google Scholar] [CrossRef]
- Hagège, A.A.; Carpentier, A.; Levine, R.A. Dynamic changes of the mitral valve annulus: New look at mitral valve diseases. Circ. Cardiovasc. Imaging 2015, 8, 10. [Google Scholar] [CrossRef]
- Harken, D.E.; Ellis, L.B.; Dexter, L.; Farrand, R.E.; Dickson, J.F. The Responsibility of the Physician in the Selection of Patients with Mitral Stenosis for Surgical Treatment. Circulation 1952, 5, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Omran, A.S.; Arifi, A.A.; Mohamed, A.A. Echocardiography of the mitral valve. J. Saudi Heart Assoc. 2010, 22, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, A. Cardiac valve surgery—The French correction. J. Thoracic Cardiovasc. Surg. 2001, 122, 8–15. [Google Scholar] [CrossRef]
- Riggs, T.W.; Lapin, G.D.; Paul, M.H.; Muster, A.J.; Berry, T.E. Measurement of Mitral Valve Orifice Area in Infants and Children by Two-Dimensional Echocardiography. J. Am. Coll. Cardiol. 1983, 3, 873–878. [Google Scholar] [CrossRef]
- Ranganathan, N.; Lam, J.H.; Wigle, E.D.; Silver, M.D. Morphology of the human mitral valve. II. The value leaflets. Circulation 1970, 41, 459–467. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, K.P.; Liam Ring Bushra, S. Rana. Anatomy of the mitral valve: Understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr. 2010, 11, i3–i9. [Google Scholar] [CrossRef] [PubMed]
- DuPlessis, L.A.; Marchand, P. The anatomy of the mitral valve and its associated structures. Thorax 1964, 19, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Gunnal, S.A.; Wabale, R.N.; Farooqui, M.S. Morphological study of chordae tendinae in human cadaveric hearts. Heart Views 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Chiechi, M.A.; Less, W.M.; Thompson, R. Functional anatomy of the normal mitral valve. J. Thorac. Surg. 1956, 32, 378. [Google Scholar] [CrossRef]
- Kalyanasundaram, A.; Qureshi, A.; Nassef, L.A.; Shirani, J. Functional anatomy of normal mitral valve-left ventricular complex by real-time, three-dimensional echocardiography. J. Heart Valve Dis. 2010, 19, 28–34. [Google Scholar]
- Van der Bel-Kahn, J.; Becker, A.E. The surgical pathology of rheumatic and floppy mitral valves: Distinctive morphologic features upon gross examination. Am. J. Surg. Pathol. 1986, 10, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.C. Morphologic features of the normal and abnormal mitral valve. Am. J. Cardiol. 1983, 51, 1005–1028. [Google Scholar] [CrossRef] [PubMed]
- Harb, S.C.; Griffin, B.P. Mitral valve disease: A comprehensive review. Curr. CArdiol Rep. 2017, 19, 73. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Roy, S. Papillary muscles of left ventricle—Morphological variations and it’s clinical relevance. Indian Heart J. 2018, 70, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Kassem, S.; Al-Faraidy, K.; Elkady, Y.; Takriti, A. Face-to-face single patch: A new technique to repair the commissures of the mitral valve. J. Thorac. Cardiovasc. Surg. 2012, 144, 1523–1527. [Google Scholar] [CrossRef]
- Kanzaki, H.; Bazaz, R.; Schwartzman, D.; Dohi, K.; Sade, L.E.; Gorcsan, J. A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: Insights from mechanical activation strain mapping. J. Am. Coll. Cardiol. 2004, 44, 1619–1625. [Google Scholar] [CrossRef]
- Sacks, M.S.; He, Z.; Baijens, L.; Wanant, S.; Shah, P.; Sugimoto, H.; Yoganathan, A.P. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 2002, 30, 1281–1290. [Google Scholar] [CrossRef]
- Parvin Nejad, S.; Blaser, M.C.; Santerre, J.P.; Caldarone, C.A.; Simmons, C.A. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing? Adv. Drug Deliv. Rev. 2016, 96, 161. [Google Scholar] [CrossRef]
- Gupta, V.; Grande-Allen, K.J. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc. Res. 2006, 72, 375–383. [Google Scholar] [CrossRef]
- Ju, H.; Dixon, I.M. Extracellular matrix and cardiovascular diseases. Can. J. Cardiol. 1996, 12, 1259–1267. [Google Scholar]
- Spadaccio, C.; Mozetic, P.; Nappi, F.; Nenna, A.; Sutherland, F.; Trombetta, M.; Chello, M.; Rainer, A. Cells and extracellular matrix interplay in cardiac valve disease: Because age matters. Basic Res. Cardiol. 2016, 111, 16. [Google Scholar] [CrossRef]
- Rabkin, E.; Aikawa, M.; Stone, J.R.; Fukumoto, Y.; Libby, P.; Schoen, F.J. Activated interstitial myofifibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 2001, 104, 2525–2532. [Google Scholar] [CrossRef]
- Fung, Y.C.; Liu, S.Q. Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 1991, 70, 2455–2470. [Google Scholar] [CrossRef]
- Tao, G.; Kotick, J.F.; Lincoln, J.; Lincoln, J. Heart valve development, maintenance, and disease: The role of endothelial cells. Curr. Top. Dev. Biol. 2012, 100, 203–232. [Google Scholar] [CrossRef] [PubMed]
- Gumpangseth, T.; Lekawanvijit, S.; Mahakkanukrauh, P. Histological assessment of the human heart valves and its relationship with age. Anat. Cell Biol. 2020, 53, 261–271. [Google Scholar] [CrossRef]
- Kohn, J.C.; Lampi, M.C.; Reinhart-King, C.A. Age-related vascular stiffening: Causes and consequences. Front. Genet. 2015, 6, 112. [Google Scholar] [CrossRef]
- Lin, S.L.; Liu, C.P.; Young, S.T.; Lin, M.; Chiou, C.W. Agerelated changes in aortic valve with emphasis on the relation between pressure loading and thickened leaflflets of the aortic valves. Int. J. Cardiol. 2005, 103, 272–279. [Google Scholar] [CrossRef]
- Yip, C.Y.; Chen, J.H.; Zhao, R.; Simmons, C.A. Calcifification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 936–942. [Google Scholar] [CrossRef]
- Balaoing, L.R.; Post, A.D.; Liu, H.; Minn, K.T.; Grande-Allen, K.J. Age-related changes in aortic valve hemostatic protein regulation. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 72–80. [Google Scholar] [CrossRef]
- Pomerance, A. Ageing changes in human heart valves. Br. Heart J. 1967, 29, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Kitzman, D.W.; Scholz, D.G.; Hagen, P.T.; Ilstrup, D.M.; Edwards, W.D. Age-related changes in normal human hearts during the first 10 decades of life. Part II (Maturity): A quantitative anatomic study of 765 specimens from subjects 20 to 99 years old. Mayo Clin. Proc. 1988, 63, 137–146. [Google Scholar] [CrossRef]
- Ayoub, S.; Lee, C.H.; Driesbaugh, K.H.; Anselmo, W.; Hughes, C.T.; Ferrari, G.; Gorman, R.C.; Gorman, J.H.; Sacks, M.S. Regulation of valve interstitial cell homeostasis by mechanical deformation: Implications for heart valve disease and surgical repair. J. R. Soc. Interface 2017, 14, 20170580. [Google Scholar] [CrossRef]
- Abramowitz, Y.; Jilaihawi, H.; Chakravarty, T.; Mack, M.J.; Makkar, R.R. Mitral Annulus Calcification. J. Am. Coll Cardiol. 2015, 66, 1934–1941. [Google Scholar] [CrossRef]
- Massera, D.; Trivieri, M.G.; Andrews, J.P.M.; Sartori, S.; Abgral, R.; Chapman, A.R.; Jenkins, W.S.A.; Vesey, A.; Doris, M.; Rawade, T.A.; et al. Disease Activity in Mitral Annular Calcification. Circ. Cardiovasc. Imaging 2019, 12, e008513. [Google Scholar] [CrossRef]
- Aronow, W.S.; Ahn, C.; Kronzon, I. Prevalence of echocardiographic findings in 554 men and in 1,243 women aged > 60 years in a long-term health care facility. Am. J. Cardiol. 1997, 79, 379–380. [Google Scholar] [CrossRef]
- Roberts, W.C.; McIntosh, C.L.; Wallace, R.B. Mechanisms of severe mitral regurgitation in mitral valve prolapse determined from analysis of operatively excised valves. Am. Heart J. 1987, 113, 1316–1323. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Plehn, J.F.; D’Agostino, R.B.; Belanger, A.J.; Comai, K.; Fuller, D.L.; Wolf, P.A.; Levy, D. Mitral annular calcification and the risk of stroke in an elderly cohort. N. Engl. J. Med. 1992, 327, 374–379. [Google Scholar] [CrossRef]
- Hishimura, R.A.; Housmans, P.R.; Hatle, L.K.; Tajik, J. Assessment of Diastolic Function of the Heart: Background and Current Applications of Doppler Echocardiography. Part I. Physiologic and Pathophysiologic Features. Mayo Clin. Proc. 1989, 64, 71–81. [Google Scholar] [CrossRef]
- Silbiger, J.J. Pathophysiology and Echocardiographic Diagnosis of Left Ventricular Diastolic Dysfunction. J. Am. Soc. Echocardiogr. 2019, 32, 216–232.e2. [Google Scholar] [CrossRef]
- Merryman, W.D.; Youn, I.; Lukoff, H.D.; Krueger, P.M.; Guilak, F.; Hopkins, R.A.; Sacks, M.S. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: Implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 2006, 90, H224–H231. [Google Scholar] [CrossRef]
- O’Donnell, A.; Yutzey, K.E. Mechanisms of heart valve development and disease. Development 2020, 147, dev183020. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, J.C. Hemodynamic Instability in Heart Failure Intensifies Age-Dependent Cognitive Decline. J. Alzheimers Dis. 2020, 76, 63–84. [Google Scholar] [CrossRef] [PubMed]
- Mills, W.R.; Barber, J.E.; Ratliff, N.B.; Cosgrove, D.M., 3rd; Vesely, I.; Griffin, B.P. Biomechanical and echocardiographic characterization of flail mitral leaflet due to myxomatous disease: Further evidence for early surgical intervention. Am. Heart J. 2004, 148, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Wight, T.N.; Potter-Perigo, S. The extracellular matrix: An active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G950–G955. [Google Scholar] [CrossRef] [PubMed]
- Van Hemelrijck, M.; Taramasso, M.; Gülmez, G.; Maisano, F.; Mestres, C.A. Mitral annular calcification: Challenges and future perspectives. Indian. J. Thorac. Cardiovasc. Surg. 2020, 36, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.A.; Hagége, A.A.; Judge, D.P.; Padala, M.; Dal-Bianco, J.P.; Aikawa, E.; Beaudoin, J.; Bischoff, J.; Bouatia-Naji, N.; Bruneval, P.; et al. Leducq Mitral Transatlantic Network. Mitral valve disease—Morphology and mechanisms. Nat. Rev. Cardiol. 2015, 12, 689–710. [Google Scholar] [CrossRef] [PubMed]
- Connell, P.S.; Han, R.I.; Grande-Allen, K.J. Differentiating the aging of the mitral valve from human and canine myxomatous degeneration. J. Vet. Cardiol. 2012, 14, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.L.; Burstow, D.J.; Tajik, A.J.; Zachariah, P.K.; Taliercio, C.P.; Taylor, C.L.; Bailey, K.R.; Seward, J.B. Age-related prevalence of valvular regurgitation in normal subjects: A comprehensive color flow examination of 118 volunteers. J. Am. Soc. Echocardiogr. 1990, 3, 54–63. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Basmadjian, A.J.; Rossi, A.; Bailey, K.R.; Seward, J.B.; Tajik, A.J. Progression of mitral regurgitation: A prospective Doppler echocardiographic study. J. Am. Coll. Cardiol. 1999, 34, 1137–1144. [Google Scholar] [CrossRef]
- Gerstenblith, G.; Frederiksen, J.; Yin, F.C.; Fortuin, N.J.; Lakatta, E.G.; Weisfeldt, M.L. Echocardiographic assessment of a normal adult aging population. Circulation 1977, 56, 273–278. [Google Scholar] [CrossRef]
- Kitzman, D.W.; Edwards, W.D. Age-related changes in the anatomy of the normal human heart. J. Gerontol. 1990, 45, M33–M39. [Google Scholar] [CrossRef] [PubMed]
- Fares, E.; Howlett, S.E. Effect of age on cardiac excitation-contraction coupling. Clin. Exp. Pharmacol. Physiol. 2010, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Opris, C.E.; Suciu, H.; Flamand, S.; Opris, C.I.; Al Hussein, H.; Gurzu, S. Update on the genetic profile of mitral valve development and prolapse. Pathol. Res. Pract. 2024, in press.
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Dhalla, N.S. The Role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease. Int. J. Mol. Sci. 2024, 25, 1082. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.L.; Miao, H.; Wang, Y.N.; Liu, F.; Li, P.; Zhao, Y.Y. TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. Aging Dis. 2023, 14, 1633–1650. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Opris, C.E.; Suciu, H.; Jung, I.; Flamand, S.; Harpa, M.M.; Opris, C.I.; Popa, C.; Kovacs, Z.; Gurzu, S. Significance of Fibrillin-1, Filamin A, MMP2 and SOX9 in mitral valve pathology. Int. J. Mol. Sci. 2024, in press.
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Ambari, A.M.; Setianto, B.; Santoso, A.; Radi, B.; Dwiputra, B.; Susilowati, E.; Tulrahmi, F.; Doevendans, P.A.; Cramer, M.J. Angiotensin Converting Enzyme Inhibitors (ACEIs) Decrease the Progression of Cardiac Fibrosis in Rheumatic Heart Disease Through the Inhibition of IL-33/sST2. Front. Cardiovasc. Med. 2020, 7, 115. [Google Scholar] [CrossRef]
- Antonini-Canterin, F.; Moura, L.M.; Enache, R.; Leiballi, E.; Pavan, D.; Piazza, R.; Popescu, B.A.; Ginghina, C.; Nicolosi, G.L.; Rajamannan, N.M. Effect of hydroxymethylglutaryl coenzyme-a reductase inhibitors on the long-term progression of rheumatic mitral valve disease. Circulation 2010, 121, 2130–2136. [Google Scholar] [CrossRef]
- Boroumand, S.; Haeri, A.; Nazeri, N.; Rabbani, S. Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds, and Pharmacological Agents. Iran. J. Pharm. Res. 2021, 20, 467–496. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, T.; Zhu, J. Gene Therapy Strategies Targeting Aging-Related Diseases. Aging Dis. 2023, 14, 398–417. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opris, C.E.; Suciu, H.; Opris, C.I.; Gurzu, S. An Update on Mitral Valve Aging. Life 2024, 14, 950. https://doi.org/10.3390/life14080950
Opris CE, Suciu H, Opris CI, Gurzu S. An Update on Mitral Valve Aging. Life. 2024; 14(8):950. https://doi.org/10.3390/life14080950
Chicago/Turabian StyleOpris, Carmen Elena, Horatiu Suciu, Cosmin Ioan Opris, and Simona Gurzu. 2024. "An Update on Mitral Valve Aging" Life 14, no. 8: 950. https://doi.org/10.3390/life14080950
APA StyleOpris, C. E., Suciu, H., Opris, C. I., & Gurzu, S. (2024). An Update on Mitral Valve Aging. Life, 14(8), 950. https://doi.org/10.3390/life14080950