New Perspectives about Relevant Natural Compounds for Current Dentistry Research
Abstract
:1. Introduction
2. Natural Compounds Used in Dentistry
2.1. Curcumin (CUR)
2.1.1. History
2.1.2. Chemical Structure
2.1.3. Antimicrobial Spectrum and Mechanism of Action
2.1.4. Formulations and Current Use of Curcumin in Dentistry
2.1.5. Adverse Effects
2.1.6. Experimental Methods Used to Evaluate the Efficacy and Safety of CUR in Dental Applications
2.2. Quercetin (QRC)
2.2.1. History
2.2.2. Chemical Structure
2.2.3. Antimicrobial Spectrum and Mechanism of Action
2.2.4. Formulations and Current Use of Quercetin in Dentistry
2.2.5. Adverse Effects
2.2.6. Experimental Methods Used to Evaluate the Efficacy and Safety of QRC in Dental Applications
2.3. Allicin
2.3.1. History
2.3.2. Chemical Structure
2.3.3. Antimicrobial Spectrum and Mechanism of Action
2.3.4. Formulations and Current Use of Allicin in Dentistry
2.3.5. Adverse Effects
2.3.6. Experimental Methods Used to Evaluate the Efficacy and Safety of Allicin in Dental Applications
2.4. Rosmarinic Acid (RA)
2.4.1. History
2.4.2. Chemical Structure
2.4.3. Antimicrobial Spectrum and Mechanism of Action
2.4.4. Formulations and Current Use of Rosmarinic Acid in Dentistry
2.4.5. Adverse Effects
2.4.6. Experimental Methods Used to Evaluate the Efficacy and Safety of RA in Dental Applications
2.5. Eugenol (EUG)
2.5.1. History
2.5.2. Chemical Structure
2.5.3. Antimicrobial Spectrum and Mechanism of Action
2.5.4. Formulations and Current Use of Eugenol in Dentistry
2.5.5. Adverse Effects
2.5.6. Experimental Methods Used to Evaluate the Efficacy and Safety of EUG in Dental Applications
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fiorillo, L. Oral Health: The First Step to Well-Being. Medicina 2019, 5, 676. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, E.T.; Yazdanian, M.; Tahmasebi, E.; Tebyanian, H.; Ranjbar, R.; Yazdanian, A.; Seifalian, A.; Tafazoli, A. Current Herbal Medicine as an Alternative Treatment in Dentistry: In Vitro, In Vivo and Clinical Studies. Eur. J. Pharmacol. 2020, 889, 173665. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T.; Chai, C.P. History of Dentistry. Chosen Ibo 1962, 7, 517–526. [Google Scholar] [PubMed]
- Khanagar, S.B.; Al-ehaideb, A.; Maganur, P.C.; Vishwanathaiah, S.; Patil, S.; Baeshen, H.A.; Sarode, S.C.; Bhandi, S. Developments, Application, and Performance of Artificial Intelligence in Dentistry—A Systematic Review. J. Dent. Sci. 2021, 16, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.H.; Chen, X.; Daliri, E.B.M.; Kim, N.; Kim, J.R.; Yoo, D. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens 2020, 9, 569. [Google Scholar] [CrossRef] [PubMed]
- Budala, D.G.; Martu, M.A.; Maftei, G.A.; Diaconu-Popa, D.A.; Danila, V.; Luchian, I. The Role of Natural Compounds in Optimizing Contemporary Dental Treatment—Current Status and Future Trends. J. Funct. Biomater. 2023, 14, 273. [Google Scholar] [CrossRef] [PubMed]
- Milutinovici, R.A.; Chioran, D.; Buzatu, R.; Macasoi, I.; Razvan, S.; Chioibas, R.; Corlan, I.V.; Tanase, A.; Horia, C.; Popovici, R.A.; et al. Vegetal Compounds as Sources of Prophylactic and Therapeutic Agents in Dentistry. Plants 2021, 10, 2148. [Google Scholar] [CrossRef] [PubMed]
- Kocaadam, B.; Şanlier, N. Curcumin, an Active Component of Turmeric (Curcuma longa), and Its Effects on Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. [Google Scholar] [CrossRef]
- Zeeshan, A.; Akram, H.; Shahzeb Nasir, A.; Manzoor, S. Historical Significance and Modern Applications of Turmeric (Curcuma longa) in Traditional Medicine and Beyond. Int. Res. J. Educ. Technol. 2023, 5, 113–123. [Google Scholar]
- Dutta, R.N. Curcuma longa: A review of turmeric’s therapeutic potential. Aesthet. Int. 2023, 1, 6–9. [Google Scholar] [CrossRef]
- Farooqui, T.; Farooqui, A.A. Curcumin: Historical Background, Chemistry, Pharmacological Action, and Potential Therapeutic Value. In Curcumin for Neurological and Psychiatric Disorders: Neurochemical and Pharmacological Properties; Academic Press: Cambridge, MA, USA, 2019; pp. 23–44. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharifi-Rad, M.; Anil Kumar, N.V.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Curcumin: A Review of Clinical Trials. Eur. J. Med. Chem. 2019, 163, 527–545. [Google Scholar] [CrossRef]
- Priyadarsini, K.I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef]
- Indira Priyadarsini, K. Chemical and Structural Features Influencing the Biological Activity of Curcumin. Curr. Pharm. Des. 2013, 19, 2093–2100. [Google Scholar] [CrossRef]
- Nagpal, M.; Sood, S. Role of Curcumin in Systemic and Oral Health: An Overview. J. Nat. Sci. Biol. Med. 2013, 4, 3–7. [Google Scholar] [CrossRef]
- Ardebili, A.; Pouriayevali, M.H.; Aleshikh, S.; Zahani, M.; Ajorloo, M.; Izanloo, A.; Siyadatpanah, A.; Nikoo, H.R.; Wilairatana, P.; Coutinho, H.D.M. Antiviral Therapeutic Potential of Curcumin: An Update. Molecules 2021, 26, 6994. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. [Google Scholar] [CrossRef]
- Rajendiran, M.; Trivedi, H.M.; Chen, D.; Gajendrareddy, P.; Chen, L. Recent Development of Active Ingredients in Mouthwashes and Toothpastes for Periodontal Diseases. Molecules 2021, 26, 2001. [Google Scholar] [CrossRef]
- Bakhshi, M.; Mahboubi, A.; Jaafari, M.R.; Ebrahimi, F.; Tofangchiha, M.; Alizadeh, A. Comparative Efficacy of 1% Curcumin Nanomicelle Gel and 2% Curcumin Gel for Treatment of Recurrent Aphthous Stomatitis: A Double-Blind Randomized Clinical trial. J. Evid. Based Dent. Pract. 2022, 22, 101708. [Google Scholar] [CrossRef]
- Al Hagbani, T.; Kamal, M.M.; Nazzal, S. A Full Factorial Experimental Design to Study the Effect of Flavoring Agents on the Mechanical Properties of Curcumin Chewing Gum Tablets with High Solids Content. Drug Dev. Ind. Pharm. 2020, 46, 539–546. [Google Scholar] [CrossRef]
- Srivastava, R.; Kundu, A.; Pradhan, D.; Jyoti, B.; Chokotiya, H.; Parashar, P. A Comparative Study to Evaluate the Efficacy of Curcumin Lozenges (TurmNova®) and Intralesional Corticosteroids with Hyaluronidase in Management of Oral Submucous Fibrosis. J. Contemp. Dent. Pract. 2021, 22, 751–755. [Google Scholar] [CrossRef]
- Nittayananta, W.; Lerdsamran, H.; Chutiwitoonchai, N.; Promsong, A.; Srichana, T.; Netsomboon, K.; Prasertsopon, J.; Kerdto, J. A Novel Film Spray Containing Curcumin Inhibits SARS-CoV-2 and Influenza Virus Infection and Enhances Mucosal Immunity. Virol. J. 2024, 21, 26. [Google Scholar] [CrossRef]
- Hegde, M.; Girisa, S.; BharathwajChetty, B.; Vishwa, R.; Kunnumakkara, A.B. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega 2023, 8, 10713–10746. [Google Scholar] [CrossRef]
- Boven, L.; Holmes, S.P.; Latimer, B.; McMartin, K.; Ma, X.; Moore-Medlin, T.; Khandelwal, A.R.; McLarty, J.; Nathan, C.A.O. Curcumin Gum Formulation for Prevention of Oral Cavity Head and Neck Squamous Cell Carcinoma. Laryngoscope 2019, 129, 1597–1603. [Google Scholar] [CrossRef]
- Taneja, S.; Kumar, M.; Agarwal, P.M.; Bhalla, A. Effect of Potential Remineralizing Agent and Antioxidants on Color Stability of Bleached Tooth Exposed to Different Staining Solutions. J. Conserv. Dent. 2018, 21, 378. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.D.; Latini, G.; Trilli, I.; Ferrante, L.; Nardelli, P.; Malcangi, G.; Inchingolo, A.M.; Mancini, A.; Palermo, A.; et al. The Role of Curcumin in Oral Health and Diseases: A Systematic Review. Antioxidants 2024, 13, 660. [Google Scholar] [CrossRef]
- Mustafa, M.W.; Ungphaiboon, S.; Phadoongsombut, N.; Pangsomboon, K.; Chelae, S.; Mahattanadul, S. Effectiveness of an Alcohol-Free Chitosan-Curcuminoid Mouthwash Compared with Chlorhexidine Mouthwash in Denture Stomatitis Treatment: A Randomized Trial. J. Altern. Complement. Med. 2019, 25, 552–558. [Google Scholar] [CrossRef]
- Malekzadeh, M.; Kia, S.J.; Mashaei, L.; Moosavi, M.S. Oral Nano-Curcumin on Gingival Inflammation in Patients with Gingivitis and Mild Periodontitis. Clin. Exp. Dent. Res. 2021, 7, 78–84. [Google Scholar] [CrossRef]
- Behal, R.; Gilda, S.S.; Mali, A.M. Comparative Evaluation of 0.1% Turmeric Mouthwash with 0.2% Chlorhexidine Gluconate in Prevention of Plaque and Gingivitis: A Clinical and Microbiological Study. J. Indian Soc. Periodontol. 2012, 16, 386. [Google Scholar] [CrossRef]
- Kandwal, A.; Mamgain, R.K.; Mamgain, P. Comparative Evaluation of Turmeric Gel with 2% Chlorhexidine Gluconate Gel for Treatment of Plaque Induced Gingivitis: A Randomized Controlled Clinical Trial. AYU 2015, 36, 145. [Google Scholar] [CrossRef]
- Chatterjee, A.; Debnath, K.; Rao, N.K.H. A Comparative Evaluation of the Efficacy of Curcumin and Chlorhexidine Mouthrinses on Clinical Inflammatory Parameters of Gingivitis: A Double-Blinded Randomized Controlled Clinical Study. J. Indian Soc. Periodontol. 2017, 21, 132–137. [Google Scholar] [CrossRef]
- Paschoal, M.A.; Moura, C.M.Z.; Jeremias, F.; Souza, J.F.; Bagnato, V.S.; Giusti, J.S.M.; Santos-Pinto, L. Longitudinal Effect of Curcumin-Photodynamic Antimicrobial Chemotherapy in Adolescents during Fixed Orthodontic Treatment: A Single-Blind Randomized Clinical Trial Study. Lasers Med. Sci. 2015, 30, 2059–2065. [Google Scholar] [CrossRef]
- Shirban, F.; Gharibpour, F.; Ehteshami, A.; Bagherniya, M.; Sathyapalan, T.; Sahebkar, A. The Effects of Curcumin in the Treatment of Gingivitis: A Systematic Review of Clinical Trials. Adv. Exp. Med. Biol. 2021, 1291, 179–211. [Google Scholar] [CrossRef]
- Mhapuskar, A.; Vidyapeeth, B. Curcumin—A Novel Ayurvedic Treatment for Oral Lichen Planus. Int. J. Curr. Med. Pharm. Res. 2017, 3, 1507–1511. [Google Scholar] [CrossRef]
- Hashemipour, M.A.; Sheikhhoseini, S.; Afshari, Z.; Gandjalikhan Nassab, A.R. The Relationship between Clinical Symptoms of Oral Lichen Planus and Quality of Life Related to Oral Health. BMC Oral Health 2024, 24, 556. [Google Scholar] [CrossRef]
- Al-Maweri, S.A.; Alhajj, M.N.; Deshisha, E.A.; Alshafei, A.K.; Ahmed, A.I.; Almudayfi, N.O.; Alshammari, S.A.; Alsharif, A.; Kassim, S. Curcumin Mouthwashes versus Chlorhexidine in Controlling Plaque and Gingivitis: A Systematic Review and Meta-Analysis. Int. J. Dent. Hyg. 2022, 20, 53–61. [Google Scholar] [CrossRef]
- Ravishankar, P.; Rajula, M.P.B.; Rao, S.; Vaidya, J.; Visithiriyan, G.; Guruprasath, P. Clinical Assessment of Curcumin Containing Herbal Toothpaste in Patients with Chronic Gingivitis: A Randomized Controlled Trial. J. Posit. Sch. Psychol. 2022, 6, 1840–1846. [Google Scholar]
- Hu, P.; Huang, P.; Chen, M.W. Curcumin Reduces Streptococcus Mutans Biofilm Formation by Inhibiting Sortase A Activity. Arch. Oral Biol. 2013, 58, 1343–1348. [Google Scholar] [CrossRef]
- Mohammad, C.A. Efficacy of Curcumin Gel on Zinc, Magnesium, Copper, IL-1β, and TNF-α in Chronic Periodontitis Patients. BioMed Res. Int. 2020, 2020, 8850926. [Google Scholar] [CrossRef] [PubMed]
- Kamal Anwar, S.K.; Elmonaem, S.N.A.; Moussa, E.; Aboulela, A.G.; Essawy, M.M. Curcumin nanoparticles: The topical antimycotic suspension treating oral candidiasis. Odontology 2023, 111, 350–359. [Google Scholar] [CrossRef]
- Charantimath, S. Use of Curcumin in Radiochemotherapy Induced Oral Mucositis Patients: A Control Trial Study. Int. J. Med. Health Sci. 2016, 10, 147–152. [Google Scholar] [CrossRef]
- Nabil, N.; Elemam, H. Evaluation of the Effect of Tartrazine versus Curcumin as Food Coloring Agent on Tongue Papillae of Albino Rats Evaluation of the Effect of Tartrazine versus Curcumin as Food Coloring Agent on Tongue Papillae of Albino Rats. Egypt. Dent. J. 2019, 64, 541. [Google Scholar]
- Kępińska-Pacelik, J.; Biel, W. Turmeric and Curcumin—Health-Promoting Properties in Humans versus Dogs. Int. J. Mol. Sci. 2023, 24, 14561. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.; Jnaneshwar, P.R.; Kannan, R. Effects of Curcumin, Curcumin–Rosemary, and Chlorhexidine Mouthwashes on Streptococcus Mutans in Patients Undergoing Orthodontic Treatment: An In Vivo Study. World J. Dent. 2023, 14, 541–546. [Google Scholar] [CrossRef]
- Mandroli, P.S.; Prabhakar, A.R.; Bhat, K.; Krishnamurthy, S.; Bogar, C. An in Vitro Evaluation of Cytotoxicity of Curcumin against Human Periodontal Ligament Fibroblasts. AYU 2019, 40, 192. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, S.; Vadakkekuttical, R.; Kanakath, H. Comparative Evaluation of the Effect of Curcumin and Chlorhexidine on Human Fibroblast Viability and Migration: An in Vitro Study. J. Indian. Soc. Periodontol. 2020, 24, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Rujirachotiwat, A.; Suttamanatwong, S. Curcumin Upregulates Transforming Growth Factor-Β1, Its Receptors, and Vascular Endothelial Growth Factor Expressions in an in Vitro Human Gingival Fibroblast Wound Healing Model. BMC Oral Health 2021, 21, 535. [Google Scholar] [CrossRef] [PubMed]
- Samiei, M.; Abedi, A.; Sharifi, S.; Maleki Dizaj, S. Early Osteogenic Differentiation Stimulation of Dental Pulp Stem Cells by Calcitriol and Curcumin. Stem Cells Int. 2021, 2021, 9980137. [Google Scholar] [CrossRef] [PubMed]
- Perez-Pacheco, C.G.; Fernandes, N.A.R.; Camilli, A.C.; Ferrarezi, D.P.; Silva, A.F.; Zunareli, M.C.; Amantino, C.F.; Primo, F.L.; Guimarães-Stabilli, M.R.; Junior, C.R. Local Administration of Curcumin-Loaded Nanoparticles Enhances Periodontal Repair In Vivo. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 311–321. [Google Scholar] [CrossRef]
- Rasheed, H.; Naz, S.; Asim, S.; Parkash, O.; Yawar, W.; Naqvi, G. Analysis of curcumin extract with and without coconut oil in reducing the symptoms of Oral submucous fibrosis. Tob. Regul. Sci. 2023, 9, 1245–1252. [Google Scholar]
- Ramezani, V.; Ghadirian, S.; Shabani, M.; Boroumand, M.A.; Daneshvar, R.; Saghafi, F. Efficacy of Curcumin for Amelioration of Radiotherapy-Induced Oral Mucositis: A Preliminary Randomized Controlled Clinical Trial. BMC Cancer 2023, 23, 354. [Google Scholar] [CrossRef]
- Mohamed Eid, G.E.H. The Effect of Premedication with Curcumin on Post-Operative Pain in Single Visit Endodontic Treatment of Acute Pulpitis in Mandibular Molars: A Randomized Controlled Trial. J. Dent. Oral Epidemiol. 2021, 1, 1–8. [Google Scholar] [CrossRef]
- Kia, S.J.; Basirat, M.; Mortezaie, T.; Moosavi, M.S. Comparison of Oral Nano-Curcumin with Oral Prednisolone on Oral Lichen Planus: A Randomized Double-Blinded Clinical Trial. BMC Complement. Med. Ther. 2020, 20, 328. [Google Scholar] [CrossRef] [PubMed]
- Nosratzehi, T.; Arbabi-Kalati, F.; Hamishehkar, H.; Bagheri, S. Comparison of the Effects of Curcumin Mucoadhesive Paste and Local Corticosteroid on the Treatment of Erosive Oral Lichen Planus Lesions. J. Natl. Med. Assoc. 2018, 110, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Qi, W.; Xiong, D.; Long, M. Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules 2022, 27, 6545. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid. Med. Cell. Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef] [PubMed]
- Lenard, N.; Henagan, T.M.; Lan, T.; Nguyen, A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Al Aboody, M.S.; Mickymaray, S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics 2020, 9, 45. [Google Scholar] [CrossRef]
- Rajesh, R.U.; Dhanaraj, S. A Critical Review on Quercetin Bioflavonoid and Its Derivatives: Scope, Synthesis, and Biological Applications with Future Prospects. Arab. J. Chem. 2023, 16, 104881. [Google Scholar] [CrossRef]
- Aithal, G.C.; Nayak, U.Y.; Mehta, C.; Narayan, R.; Gopalkrishna, P.; Pandiyan, S.; Garg, S. Localized In Situ Nanoemulgel Drug Delivery System of Quercetin for Periodontitis: Development and Computational Simulations. Molecules 2018, 23, 1363. [Google Scholar] [CrossRef] [PubMed]
- Angellotti, G.; Presentato, A.; Murgia, D.; Di Prima, G.; D’Agostino, F.; Scarpaci, A.G.; D’Oca, M.C.; Alduina, R.; Campisi, G.; De Caro, V. Lipid Nanocarriers-Loaded Nanocomposite as a Suitable Platform to Release Antibacterial and Antioxidant Agents for Immediate Dental Implant Placement Restorative Treatment. Pharmaceutics 2021, 13, 2072. [Google Scholar] [CrossRef] [PubMed]
- Chaiwarit, T.; Chanabodeechalermrung, B.; Kantrong, N.; Chittasupho, C.; Jantrawut, P. Fabrication and Evaluation of Water Hyacinth Cellulose-Composited Hydrogel Containing Quercetin for Topical Antibacterial Applications. Gels 2022, 8, 767. [Google Scholar] [CrossRef] [PubMed]
- Akshayaa, L.; Kumar, J.K.; Shanmugam, R. Formulation of Quercetin Mouthwash and Anti-Microbial Potential against Critical Pathogens: An In-Vitro Evaluation. Cureus 2024, 16, e51688. [Google Scholar] [CrossRef]
- Pandya, M.; Kalappanavar, A.N.; Annigeri, R.G.; Rao, D.S. Relative Efficacy of Quercetin Compared with Benzydamine Hydrochloride in Minor Aphthae: A Prospective, Parallel, Double Blind, Active Control, Preliminary Study. Int. J. Dent. 2017, 2017, 7034390. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Meguid, A.; Hamdy, M.; Abd, M.; Ibrahem, E.-M. Topical Quercetin: A Randomized Clinical Trial. J. Contemp. Dent. Pract. 2010, 11, 1–8. [Google Scholar]
- Angellotti, G.; Murgia, D.; Campisi, G.; De Caro, V. Quercetin-Based Nanocomposites as a Tool to Improve Dental Disease Management. Biomedicines 2020, 8, 504. [Google Scholar] [CrossRef] [PubMed]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-Implantitis Update: Risk Indicators, Diagnosis, and Treatment. Eur. J. Dent. 2020, 14, 672. [Google Scholar] [CrossRef] [PubMed]
- Mooney, E.C.; Holden, S.E.; Xia, X.J.; Li, Y.; Jiang, M.; Banson, C.N.; Zhu, B.; Sahingur, S.E. Quercetin Preserves Oral Cavity Health by Mitigating Inflammation and Microbial Dysbiosis. Front. Immunol. 2021, 12, 774273. [Google Scholar] [CrossRef]
- Torre, E.; Iviglia, G.; Cassinelli, C.; Morra, M.; Torre, E.; Iviglia, G.; Cassinelli, C.; Morra, M. Potentials of Polyphenols in Bone-Implant Devices. In Polyphenols; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Nozaki, K.; Ebe, N.; Yamashita, K.; Nagai, A. Tartar and Plaque Control. In Mineral Scales and Deposits: Scientific and Technological Approaches; Elsevier: Amsterdam, The Netherlands, 2015; pp. 353–372. [Google Scholar] [CrossRef]
- Zeng, Y.; Nikitkova, A.; Abdelsalam, H.; Li, J.; Xiao, J. Activity of Quercetin and Kaemferol against Streptococcus Mutans Biofilm. Arch. Oral Biol. 2019, 98, 9–16. [Google Scholar] [CrossRef]
- Kooshyar, M.M.; Mozafari, P.M.; Amirchaghmaghi, M.; Pakfetrat, A.; Karoos, P.; Mohasel, M.R.; Orafai, H.; Azarian, A.A. A Randomized Placebo-Controlled Double Blind Clinical Trial of Quercetin in the Prevention and Treatment of Chemotherapy-Induced Oral Mucositis. J. Clin. Diagn. Res. 2017, 11, ZC46. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; Abd El-Hack, M.E.; Taha, A.E.; Algammal, A.M.; Ali Elewa, Y.H. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Derosa, G.; Maffioli, P.; Bertuccioli, A.; Togni, S.; Riva, A.; Allegrini, P.; Khan, A.; Khan, S.; Khan, B.A.; et al. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study. Int. J. Gen. Med. 2021, 14, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Amirchaghmaghi, M.; Delavarian, Z.; Iranshahi, M.; Shakeri, M.T.; Mosannen Mozafari, P.; Mohammadpour, A.H.; Farazi, F.; Iranshahy, M. A Randomized Placebo-Controlled Double Blind Clinical Trial of Quercetin for Treatment of Oral Lichen Planus. J. Dent. Res. Dent. Clin. Dent. Prospect. 2015, 9, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Rita, C.O.C.; Tamaki, N.; Mukai, R.; Fukui, M.; Miki, K.; Terao, J.; Ito, H.O. Biological Impacts of Resveratrol, Quercetin, and N-Acetylcysteine on Oxidative Stress in Human Gingival Fibroblasts. J. Clin. Biochem. Nutr. 2015, 56, 220. [Google Scholar] [CrossRef]
- Jiang, N.; Huang, X.; Lin, X.; Cheng, H.; Yu, H. Effects of Quercetin on the Dentin Resistance to Erosion. Chin. J. Stomatol. 2020, 55, 20–25. [Google Scholar] [CrossRef]
- Huang, C.Y.; Ng, M.Y.; Lin, T.; Liao, Y.W.; Huang, W.S.; Hsieh, C.W.; Yu, C.C.; Chen, C.J. Quercetin Ameliorates Advanced Glycation End Product-Induced Wound Healing Impairment and Inflammaging in Human Gingival Fibroblasts. J. Dent. Sci. 2024, 19, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Sulastri, A.; Pribadi, I.M.S.; Amaliya, A.; Sukrasno, S.; Soemardji, A.A. Protective Effect of Quercetin Administration in Bacterial-Induced Periodontitis on Rats. Malays. J. Med. Health Sci. 2022, 18, 4–9. [Google Scholar] [CrossRef]
- Wei, Y.; Fu, J.; Wu, W.; Ma, P.; Ren, L.; Yi, Z.; Wu, J. Quercetin Prevents Oxidative Stress-Induced Injury of Periodontal Ligament Cells and Alveolar Bone Loss in Periodontitis. Drug Des. Dev. Ther. 2021, 15, 3509–3522. [Google Scholar] [CrossRef]
- Taskan, M.M.; Gevrek, F. Quercetin Decreased Alveolar Bone Loss and Apoptosis in Experimentally Induced Periodontitis Model in Wistar Rats. Antiinflamm Antiallergy Agents Med. Chem. 2020, 19, 436–448. [Google Scholar] [CrossRef]
- Marchese, A.; Barbieri, R.; Sanches-Silva, A.; Daglia, M.; Nabavi, S.F.; Jafari, N.J.; Izadi, M.; Ajami, M.; Nabavi, S.M. Antifungal and Antibacterial Activities of Allicin: A Review. Trends Food Sci. Technol. 2016, 52, 49–56. [Google Scholar] [CrossRef]
- Ekşi, G.; Gençler Özkan, A.M.; Koyuncu, M. Garlic and Onions: An Eastern Tale. J. Ethnopharmacol. 2020, 253, 112675. [Google Scholar] [CrossRef]
- Salehi, B.; Zucca, P.; Orhan, I.E.; Azzini, E.; Adetunji, C.O.; Mohammed, S.A.; Banerjee, S.K.; Sharopov, F.; Rigano, D.; Sharifi-Rad, J.; et al. Allicin and Health: A Comprehensive Review. Trends Food Sci. Technol. 2019, 86, 502–516. [Google Scholar] [CrossRef]
- Nakamoto, M.; Kunimura, K.; Suzuki, J.-I.; Kodera, Y. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides (Review). Exp. Ther. Med. 2019, 19, 1550–1553. [Google Scholar] [CrossRef]
- Reiter, J.; Hübbers, A.M.; Albrecht, F.; Leichert, L.I.O.; Slusarenko, A.J. Allicin, a Natural Antimicrobial Defence Substance from Garlic, Inhibits DNA Gyrase Activity in Bacteria. Int. J. Med. Microbiol. 2020, 310, 151359. [Google Scholar] [CrossRef]
- Hartl, J.; Kiefer, P.; Kaczmarczyk, A.; Mittelviefhaus, M.; Meyer, F.; Vonderach, T.; Hattendorf, B.; Jenal, U.; Vorholt, J.A. Untargeted Metabolomics Links Glutathione to Bacterial Cell Cycle Progression. Nat. Metab. 2020, 2, 153–166. [Google Scholar] [CrossRef]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral Potential of Garlic (Allium sativum) and Its Organosulfur Compounds: A Systematic Update of Pre-Clinical and Clinical Data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H. Viral Polymerases. Adv. Exp. Med. Biol. 2012, 726, 267–304. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lu, P.M.; Piao, J.H.; Xu, X.L.; Chen, J.; Zhu, L.; Jiang, J.G. Preparation and Physicochemical Characteristics of an Allicin Nanoliposome and Its Release Behavior. LWT—Food Sci. Technol. 2014, 57, 686–695. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, J.; Peng, H.; Guo, T.; Xiao, J.; Zhu, W.; Qian, W.; Zhang, J.; Wu, L. Allicin Inclusions with α-Cyclodextrin Effectively Masking Its Odor: Preparation, Characterization, and Olfactory and Gustatory Evaluation. J. Food Sci. 2021, 86, 4026–4036. [Google Scholar] [CrossRef]
- Lawson, L.D.; Hunsaker, S.M. Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods. Nutrients 2018, 10, 812. [Google Scholar] [CrossRef] [PubMed]
- Nakasiri, P.; Soottitantawat, A.; Sangsuwan, T. Investigating the Purchase Intention of Thai Consumers toward Garlic-Based Supplements with a Higher Allicin Content. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Farias, A.; Pollonio, M.A.R.; Meireles, M.A.A.; Farías-Campomanes, A.M.; Horita, C.N.; Angela, M.; Meireles, A. Allicin-Rich Extract Obtained from Garlic by Pressurized Liquid Extraction: Quantitative Determination of Allicin in Garlic Samples. Food Public. Health 2014, 4, 272–278. [Google Scholar] [CrossRef]
- Loghmanifar, S.; Nasiraie, L.R.; Nouri, H.; Jafarian, S. Effects of Different Extraction Methods on Antioxidant Properties and Allicin Content of Garlic. J. Food Sci. Hyg. 2020, 1, 16–25. [Google Scholar] [CrossRef]
- Bramanti, I.; Ngatidjan, S.P. The Acceleration of Garlic (Allium sativum L) Ethanolic Extract on Gingival Wound Healing Process in Wistar Rats. J. Med. Sci. 2013, 45, 51–60. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Y.; Li, F.; Zhu, Y.; Chen, Y.; Yang, S.; Sun, G. Allicin as a Possible Adjunctive Therapeutic Drug for Stage II Oral Submucous Fibrosis: A Preliminary Clinical Trial in a Chinese Cohort. Int. J. Oral Maxillofac. Surg. 2015, 44, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.K.; Dyasanoor, S. Clinical Efficacy of Allicin—A Novel Alternative Therapeutic Agent in the Management of Minor Recurrent Aphthous Stomatitis. J. Adv. Clin. Res. Insights 2015, 2, 231–236. [Google Scholar] [CrossRef]
- Jiang, X.W.; Zhang, Y.; Song, G.D.; Li, F.F.; Peng, H.Y.; Yang, S.K.; Sun, G.L. Clinical Evaluation of Allicin Oral Adhesive Tablets in the Treatment of Recurrent Aphthous Ulceration. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Xian, D.; Xiong, X.; Liu, J. Therapeutic Hotline. Oral Allicin in the Treatment of Behcet’s Disease through Attenuating Oxidative Stress: A Pilot Study in 20 Patients with Mucocutaneous Lesions. Dermatol. Ther. 2017, 30, e12429. [Google Scholar] [CrossRef]
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A Review of Potential Therapeutic Effects. Avicenna J. Phytomed. 2014, 4, 1. [Google Scholar]
- Álvarez-Vásquez, J.L.; Parra-Solano, N.F.; Saavedra-Cornejo, G.E.; Espinosa-Vásquez, X.E. Global Use of Ethnomedicinal Plants to Treat Toothache. Biomed. Pharmacol. J. 2022, 15, 847–881. [Google Scholar] [CrossRef]
- Kakad, A.V.; Laddha, U.D.; Kshirsagar, S.J.; Khairnar, S.J. Traditional Herbal Remedies for Periodontitis. Biosci. Biotechnol. Res. Asia 2022, 19, 1079–1091. [Google Scholar] [CrossRef]
- Chhabra, A.K.; Sune, R.; Reche, A. Oral Submucous Fibrosis: A Review of the Current Concepts in Management. Cureus 2023, 15, e47259. [Google Scholar] [CrossRef]
- Bachrach, G.; Jamil, A.; Naor, R.; Tal, G.; Ludmer, Z.; Steinberg, D. Garlic Allicin as a Potential Agent for Controlling Oral Pathogens. J. Med. Food 2011, 14, 1338–1343. [Google Scholar] [CrossRef]
- Vargo, R.J.; Warner, B.M.; Potluri, A.; Prasad, J.L. Garlic Burn of the Oral Mucosa: A Case Report and Review of Self-Treatment Chemical Burns. J. Am. Dent. Assoc. 2017, 148, 767–771. [Google Scholar] [CrossRef]
- Girish, K.; Syeda, A.A.; Farahath, M.; Taranum, F.; Bhagyashree, M.P. Alternative therapy in management of oral lesions- A review. World J. Pharm. Sci. 2017, 5, 145–149. [Google Scholar]
- Guan, X.; Zhou, Y.; Chen, H.; Wang, C.; Wang, H. Antibacterial, Anti-Inflammatory, and Anti-Osteoclastogenesis Roles of Allicin in Periodontitis. Int. J. Clin. Exp. Med. 2018, 11, 6721–6730. [Google Scholar]
- Patil, S.; Sayed, M.E.; Mugri, M.H.; Alsharif, K.F.; Salman, A.; Bhandi, S.; Baeshen, H.A.; Balaji, T.M.; Yadalam, P.K.; Varadarajan, S.; et al. Allicin May Promote Reversal of T-Cell Dysfunction in Periodontitis via the PD-1 Pathway. Int. J. Mol. Sci. 2021, 22, 9162. [Google Scholar] [CrossRef] [PubMed]
- Zainal, M.; Mohamad Zain, N.; Mohd Amin, I.; Ahmad, V.N. The Antimicrobial and Antibiofilm Properties of Allicin against Candida Albicans and Staphylococcus Aureus—A Therapeutic Potential for Denture Stomatitis. Saudi Dent. J. 2021, 33, 105–111. [Google Scholar] [CrossRef]
- Novianty, R.A.; Chrismawaty, B.E.; Subagyo, G. Effect of Allicin for Re-Epithelialization During Healing in Oral Ulcer Model. Indones. J. Dent. Res. 2015, 1, 87. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M.; Gondal, T.A.; Imran, A.; Shahbaz, M.; Amir, R.M.; Sajid, M.W.; Qaisrani, T.B.; Atif, M.; Hussain, G.; et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef]
- Ngo, Y.L.; Lau, C.H.; Chua, L.S. Review on Rosmarinic Acid Extraction, Fractionation and Its Anti-Diabetic Potential. Food Chem. Toxicol. 2018, 121, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cheng, C.; Sha, Z.; Chen, C.; Yu, C.; Lv, N.; Ji, P.; Wu, X.; Ma, T.; Cheng, H.; et al. Rosmarinic Acid Prevents Refractory Bacterial Pneumonia through Regulating Keap1/Nrf2-Mediated Autophagic Pathway and Mitochondrial Oxidative Stress. Free Radic. Biol. Med. 2021, 168, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.; Kostić, M.; Stojković, D.; Soković, M. Rosmarinic Acid–Modes of Antimicrobial and Antibiofilm Activities of a Common Plant Polyphenol. S. Afr. J. Bot. 2022, 146, 521–527. [Google Scholar] [CrossRef]
- Kernou, O.N.; Azzouz, Z.; Madani, K.; Rijo, P. Application of Rosmarinic Acid with Its Derivatives in the Treatment of Microbial Pathogens. Molecules 2023, 28, 4243. [Google Scholar] [CrossRef] [PubMed]
- Carter, N.S.; Stamper, B.D.; Elbarbry, F.; Nguyen, V.; Lopez, S.; Kawasaki, Y.; Poormohamadian, R.; Roberts, S.C. Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms 2021, 9, 267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liang, Z.; Cao, Y.; Hung, C.H.; Du, R.; Leung, A.S.L.; So, P.K.; Chan, P.H.; Wong, W.L.; Leung, Y.C.; et al. Discovery of a Novel Class of Rosmarinic Acid Derivatives as Antibacterial Agents: Synthesis, Structure-Activity Relationship and Mechanism of Action. Bioorg. Chem. 2024, 146, 107318. [Google Scholar] [CrossRef] [PubMed]
- Panchal, R.; Ghosh, S.; Mehla, R.; Ramalingam, J.; Gairola, S.; Mukherjee, S.; Chowdhary, A. Antiviral Activity of Rosmarinic Acid Against Four Serotypes of Dengue Virus. Curr. Microbiol. 2022, 79, 203. [Google Scholar] [CrossRef]
- Baranauskaite, J.; Kopustinskiene, D.M.; Masteikova, R.; Gajdziok, J.; Baranauskas, A.; Bernatoniene, J. Effect of Liquid Vehicles on the Enhancement of Rosmarinic Acid and Carvacrol Release from Oregano Extract Liquisolid Compacts. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 280–290. [Google Scholar] [CrossRef]
- Marafon, P.; Fachel, F.N.S.; Dal Prá, M.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Braganhol, E.; Teixeira, H.F. Development, Physico-Chemical Characterization and In-Vitro Studies of Hydrogels Containing Rosmarinic Acid-Loaded Nanoemulsion for Topical Application. J. Pharm. Pharmacol. 2019, 71, 1199–1208. [Google Scholar] [CrossRef]
- Casanova, F.; Estevinho, B.N.; Santos, L. Preliminary Studies of Rosmarinic Acid Microencapsulation with Chitosan and Modified Chitosan for Topical Delivery. Powder Technol. 2016, 297, 44–49. [Google Scholar] [CrossRef]
- Madureira, A.R.; Campos, D.A.; Fonte, P.; Nunes, S.; Reis, F.; Gomes, A.M.; Sarmento, B.; Pintado, M.M. Characterization of Solid Lipid Nanoparticles Produced with Carnauba Wax for Rosmarinic Acid Oral Delivery. RSC Adv. 2015, 5, 22665–22673. [Google Scholar] [CrossRef]
- Rathnayake, N.; Gieselmann, D.R.; Heikkinen, A.M.; Tervahartiala, T.; Sorsa, T. Salivary Diagnostics—Point-of-Care Diagnostics of MMP-8 in Dentistry and Medicine. Diagnostics 2017, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Taherkhani, A.; Orangi, A.; Moradkhani, S.; Jalalvand, A.; Khamverdi, Z. Identification of Potential Anti-Tooth-Decay Compounds from Organic Cinnamic Acid Derivatives by Inhibiting Matrix Metalloproteinase-8: An In Silico Study. Avicenna J. Dent. Res. 2022, 14, 25–32. [Google Scholar] [CrossRef]
- Rani, N.; Singla, R.K.; Narwal, S.; Tanushree; Kumar, N.; Mominur Rahman, M. Medicinal Plants Used as an Alternative to Treat Gingivitis and Periodontitis. Evid.-Based Complement. Altern. Med. 2022, 2022, 2327641. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, L.; Jin, D.; Xin, Y.; Tian, L.; Wang, T.; Zhao, D.; Wang, Z.; Wang, J. Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer. Biomolecules 2022, 12, 1410. [Google Scholar] [CrossRef]
- Ijaz, S.; Iqbal, J.; Abbasi, B.A.; Ullah, Z.; Yaseen, T.; Kanwal, S.; Mahmood, T.; Sydykbayeva, S.; Ydyrys, A.; Almarhoon, Z.M.; et al. Rosmarinic Acid and Its Derivatives: Current Insights on Anticancer Potential and Other Biomedical Applications. Biomed. Pharmacother. 2023, 162, 114687. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; de Jesus, D.; de Oliveira, L.D. Rosmarinus officinalis L. (Rosemary) Extract Decreases the Biofilms Viability of Oral Health Interest. Braz. Dent. Sci. 2017, 20, 64–69. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, Z.; Xu, X.; Qi, H.; Cheng, Z.; Chen, L. Anticancer effects of rosmarinic acid in human oral cancer cells is mediated via endoplasmic reticulum stress, apoptosis, G2/M cell cycle arrest and inhibition of cell migration. J. BUON Off. J. Balk. Union Oncol. 2020, 25, 1245–1250. [Google Scholar]
- Kayalar, E.; Goger, F.; Tas Deynek, G.; Tok, O.E.; Kucuk, S. New Bone-Generative Effect of Salvia officinalis L. in the Expanded Midpalatal Suture: An in Vivo and in Vitro Study. J. Orofac. Orthop. 2022, 83, 85–95. [Google Scholar] [CrossRef]
- Baldasquin-Caceres, B.; Gomez-Garcia, F.J.; López-Jornet, P.; Castillo-Sanchez, J.; Vicente-Ortega, V. Chemopreventive Potential of Phenolic Compounds in Oral Carcinogenesis. Arch. Oral Biol. 2014, 59, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.; Al-Wahab, A.; Gameil Gobran, H.; Ahmed, H.; Dameer, H. Effect of Rosmarinic Acid as a Chemopreventive Modality on Experimentally Induced Hamster Buccal Pouch Carcinogenesis. Egypt. Dent. J. 2020, 66, 2411–2421. [Google Scholar] [CrossRef]
- Amoah, S.K.S.; Sandjo, L.P.; Kratz, J.M.; Biavatti, M.W. Rosmarinic Acid—Pharmaceutical and Clinical Aspects. Planta Med. 2016, 82, 388–406. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.J.; Lim, D.S.; Kim, S.O.; Park, C.; Choi, Y.H.; Jeong, S.J. Effect of Rosmarinic Acid on Differentiation and Mineralization of MC3T3-E1 Osteoblastic Cells on Titanium Surface. Anim. Cells Syst. 2021, 25, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, M.I.; Asiri, A.M. Biomedical Features and Therapeutic Potential of Rosmarinic Acid. Arch. Pharmacal Res. 2022, 45, 205–228. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.M.; Elhawary, Y.M.; Elbeltagy, M.G.; Badr, A.E. The Effect of Rosmarinus officinalis as a Potential Root Canal Medication on the Viability of Dental Pulp Stem Cells. J. Contemp. Dent. Pract. 2023, 24, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Asai, M.; Jeon, S.K.; Iimura, T.; Yonezawa, T.; Cha, B.Y.; Woo, J.T.; Yamaguchi, A. Rosmarinic Acid Exerts an Antiosteoporotic Effect in the RANKL-Induced Mouse Model of Bone Loss by Promotion of Osteoblastic Differentiation and Inhibition of Osteoclastic Differentiation. Mol. Nutr. Food Res. 2015, 59, 386–400. [Google Scholar] [CrossRef]
- Phromnoi, K.; Suttajit, M.; Saenjum, C.; Limtrakul Dejkriengkraikul, P. Inhibitory Effect of a Rosmarinic Acid-Enriched Fraction Prepared from Nga-Mon (Perilla frutescens) Seed Meal on Osteoclastogenesis through the RANK Signaling Pathway. Antioxidants 2021, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tao, X.; Zhang, Y. Rosmarinic Acid Alleviates Diabetic Osteoporosis by Suppressing the Activation of NLRP3 Inflammasome in Rats. Physiol. Int. 2022, 109, 46–57. [Google Scholar] [CrossRef]
- Elbatreek, M.H.; Fathi, A.M.; Mahdi, I.; Abdelfattah, M.A.O.; Mahmoud, M.F.; Sobeh, M. Thymus Satureioides Coss. Combats Oral Ulcer via Inhibition of Inflammation, Proteolysis, and Apoptosis. Inflammopharmacology 2023, 31, 2557–2570. [Google Scholar] [CrossRef]
- Yao, Y.; Li, R.; Su, J.; Lei, X.-J.; Long, L.-H.; Wang, Q. Effect of Rosmarinicacid on Inflammatory Factors and Immune Function for Rats with Oral Ulcers. J. Med. Postgrad. 2018, 29–32. [Google Scholar] [CrossRef]
- Kostić, M.; Kitić, D.; Petrović, M.B.; Jevtović-Stoimenov, T.; Jović, M.; Petrović, A.; Živanović, S. Anti-Inflammatory Effect of the Salvia sclarea L. Ethanolic Extract on Lipopolysaccharide-Induced Periodontitis in Rats. J. Ethnopharmacol. 2017, 199, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Aburel, O.M.; Pavel, I.Z.; Dǎnilǎ, M.D.; Lelcu, T.; Roi, A.; Lighezan, R.; Muntean, D.M.; Rusu, L.C. Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. Oxid. Med. Cell. Longev. 2021, 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bhardwaj, G.; Sohal, H.S.; Gohain, A. Eugenol. In Nutraceuticals and Health Care; Academic Press: Cambridge, MA, USA, 2022; pp. 177–198. [Google Scholar] [CrossRef]
- Abdou, A.; Elmakssoudi, A.; El Amrani, A.; JamalEddine, J.; Dakir, M. Recent Advances in Chemical Reactivity and Biological Activities of Eugenol Derivatives. Med. Chem. Res. 2021, 30, 1011–1030. [Google Scholar] [CrossRef]
- Pytko-Polończyk, J.; Stawarz-Janeczek, M.; Kryczyk-Poprawa, A.; Muszyńska, B. Antioxidant-Rich Natural Raw Materials in the Prevention and Treatment of Selected Oral Cavity and Periodontal Diseases. Antioxidants 2021, 10, 1848. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, G.E.; Lawrence, R. Mechanisms of Bactericidal Action of Eugenol against Escherichia coli. J. Herb. Med. 2021, 26, 100406. [Google Scholar] [CrossRef]
- Rodrigues, M.L. The Multifunctional Fungal Ergosterol. mBio 2018, 9, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Didehdar, M.; Chegini, Z.; Shariati, A. Eugenol: A Novel Therapeutic Agent for the Inhibition of Candida Species Infection. Front. Pharmacol. 2022, 13, 872127. [Google Scholar] [CrossRef]
- Kiki, M.J. In Vitro Antiviral Potential, Antioxidant, and Chemical Composition of Clove (Syzygium aromaticum) Essential Oil. Molecules 2023, 28, 2421. [Google Scholar] [CrossRef]
- Kothiwale, S.V.; Patwardhan, V.; Gandhi, M.; Sohoni, R.; Kumar, A. A Comparative Study of Antiplaque and Antigingivitis Effects of Herbal Mouthrinse Containing Tea Tree Oil, Clove, and Basil with Commercially Available Essential Oil Mouthrinse. J. Indian. Soc. Periodontol. 2014, 18, 316–320. [Google Scholar] [CrossRef]
- Vishnu, T.S.; Dubey, A.; Ravi, G.S.; Hebbar, S. Design of Proniosomal Gel Containing Eugenol as an Antifungal Agent for the Treatment of Oral Candidiasis. Indian. Drugs 2018, 55, 55–57. [Google Scholar] [CrossRef]
- Monton, C.; Settharaksa, S.; Suksaeree, J.; Chusut, T. The Preparation, Characterization, and Stability Evaluation of a Microemulsion-Based Oral Spray Containing Clove Oil for the Treatment of Oral Candidiasis. J. Drug Deliv. Sci. Technol. 2020, 57, 101735. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, F.J.; Bedi, S.; Sharma, S.; Umar, S.; Ansari, M.A. A Novel Nanoformulation Development of Eugenol and Their Treatment in Inflammation and Periodontitis. Saudi Pharm. J. 2019, 27, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Garg, A.; Kang, R.; Mann, J.; Manchanda, S.; Ahuja, B. A Comparison of Apical Seal Produced by Zinc Oxide Eugenol, Metapex, Ketac Endo and AH Plus Root Canal Sealers. Endodontology 2014, 26, 252. [Google Scholar] [CrossRef]
- Jafri, H.; Khan, M.S.A.; Ahmad, I. In Vitro Efficacy of Eugenol in Inhibiting Single and Mixed-Biofilms of Drug-Resistant Strains of Candida Albicans and Streptococcus Mutans. Phytomedicine 2019, 54, 206–213. [Google Scholar] [CrossRef]
- Ajmal, M.; Shenoy, A.; Shabaraya, A.R. Comprehensive Review on Physiological Effects of Eugenol. World J. Pharm. Res. 2015, 10, 1103. [Google Scholar] [CrossRef]
- Preethi, R.; Padma, P.R. Anticancer Activity of Silver Nanobioconjugates Synthesised from Piper Betle Leaves Extract and Its Active Compound Eugenol. Int. J. Pharm. Pharm. Sci. 2016, 8, 201–205. [Google Scholar] [CrossRef]
- Xu, J.S.; Li, Y.; Cao, X.; Cui, Y. The Effect of Eugenol on the Cariogenic Properties of Streptococcus Mutans and Dental Caries Development in Rats. Exp. Ther. Med. 2013, 5, 1667. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhu, X.; Cao, P.; Wei, S.; Lu, Y. Antibacterial and Antibiofilm Activities of Eugenol from Essential Oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (Clove) Leaf against Periodontal Pathogen Porphyromonas gingivalis. Microb. Pathog. 2017, 113, 396–402. [Google Scholar] [CrossRef]
- Surducan, D.A.; Racea, R.C.; Cabuta, M.; Olariu, I.; Macasoi, I.; Rusu, L.C.; Chiriac, S.D.; Chioran, D.; Dinu, S.; Pricop, M.O. Eugenol Induces Apoptosis in Tongue Squamous Carcinoma Cells by Mediating the Expression of Bcl-2 Family. Life 2023, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Navarro Triviño, F.J.; Cuenca-Barrales, C.; Ruiz-Villaverde, R. Eugenol Allergy Mimicking Recurrent Aphthous Stomatitis and Burning Mouth Syndrome. Contact Dermat. 2019, 81, 462–463. [Google Scholar] [CrossRef] [PubMed]
- Yazicioglu, O.; Ucuncu, M.K.; Guven, K. Ingredients in Commercially Available Mouthwashes. Int. Dent. J. 2024, 74, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Chen, H.; Zhou, F.; Zheng, J.P.; Zhang, J.T. Development of an Innovative Eugenol and Borax-Based Orodispersible Film for Enhanced Treatment of Mouth Ulcers. Eur. J. Pharm. Biopharm. 2024, 200, 114337. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Juneja, A.; Siddiqui, M.; Sultan, A. Immediate Contact Hypersensitivity to Zinc Oxide–Eugenol Restorative Material in a Pediatric Patient: An Unusual Case Report. BLDE Univ. J. Health Sci. 2023. [Google Scholar] [CrossRef]
- Racea, R.C.; Macasoi, I.G.; Dinu, S.; Pinzaru, I.; Marcovici, I.; Dehelean, C.; Rusu, L.C.; Chioran, D.; Rivis, M.; Buzatu, R. Eugenol: In Vitro and In Ovo Assessment to Explore Cytotoxic Effects on Osteosarcoma and Oropharyngeal Cancer Cells. Plants 2023, 12, 3549. [Google Scholar] [CrossRef] [PubMed]
- Jesudasan, J.S.; Wahab, P.U.A.; Sekhar, M.R.M. Effectiveness of 0.2% Chlorhexidine Gel and a Eugenol-Based Paste on Postoperative Alveolar Osteitis in Patients Having Third Molars Extracted: A Randomised Controlled Clinical Trial. Br. J. Oral Maxillofac. Surg. 2015, 53, 826–830. [Google Scholar] [CrossRef] [PubMed]
- De Grado Gabriel, F.; Clément, B.; Florence, F.; Anne-Marie, M.; Damien, O. Efficacy of Articaine or Eugenol for Pain Relief after Emergency Coronal Pulpotomy in Teeth with Irreversible Pulpitis: A Randomized Clinical Trial. Dent. J. 2023, 11, 167. [Google Scholar] [CrossRef]
- Maryam Javidi, D.; Mina Zarei, D.; Ehsan Ashrafpour, D.; Maryam Gharechahi, D.; Hossein Bagheri, P. Post-Treatment Flare-up Incidence after Using Nano Zinc Oxide Eugenol Sealer in Mandibular First Molars with Irreversible Pulpitis. J. Dent. 2020, 21, 307. [Google Scholar] [CrossRef]
- Khan, Z.A.; Prabhu, N.; Ahmed, N.; Lal, A.; Issrani, R.; Maqsood, A.; Alam, M.K.; Alanazi, S.; Aljohani, F.M.; Almndel, M.N.; et al. A Comparative Study to Evaluate the Effect of Honey and Zinc Oxide Eugenol Dressing for the Treatment of Dry Socket: A Double-Blind Randomized Controlled Trial. Appl. Sci. 2022, 12, 6. [Google Scholar] [CrossRef]
- Alhamshary, A.; El-Bayoumy, S.; Eisa, A.-E. Clinical and Radiographic Evaluation of Chitosan-Zinc Oxide Eugenol Mix in Pulp Capping of Primary Teeth. Al-Azhar J. Dent. Sci. 2020, 23, 263–270. [Google Scholar] [CrossRef]
- Castro, M.; Lima, M.; Lima, C.; Moura, M.; Moura, J.; Moura, L. Lesion Sterilization and Tissue Repair with Chloramphenicol, Tetracyline, Zinc Oxide/Eugenol Paste versus Conventional Pulpectomy: A 36-Month Randomized Controlled Trial. Int. J. Paediatr. Dent. 2023, 33, 335–345. [Google Scholar] [CrossRef] [PubMed]
Uses | Formulation | Type of Study | Spectrum | Results | Ref. |
---|---|---|---|---|---|
Gingivitis | CUR mouthwash (0.06%, 0.1%, 1%, 20%) | Systematic review | - | Curcumin mouthwash is a safer alternative than CHX with fewer side effects in the management of plaque reduction and gingivitis. | [36] |
Chronic gingivitis | CUR toothpaste | Randomized controlled trial | - | This formulation successfully reduced dental plaque and gingival index even after 2 weeks of use. | [37] |
Dental caries | CUR solution | In vitro | S. mutans | Curcumin presented a bacteriostatic effect at 125 µmol/L and reduced biofilm mass at a concentration of 15 µmol/L. These findings indicate its beneficial effect on dental caries prevention. | [38] |
Periodontitis | CUR gel | Clinical trial | - | Treatment with scaling and root planing, followed by application of the gel containing 10 mg of curcumin, was administered for 5 min, once daily, for 1 month, resulting in a decrease in IL-1β and TNF-α levels. Additionally, improvements in Zn, Mg, and Cu levels were observed, making curcumin a promising candidate for periodontitis treatment. | [39] |
Oral candidiasis | Topic CUR nanoparticles (NP) | In vivo | C. albicans | Treatment with CUR NP was followed for 10 days with 2 applications daily. It exhibited a bacteriostatic effect at 64 µg/mL. It improved oral lesions after 5 days, and by the 10th day, its effect was comparable to nystatin in rat models. | [40] |
Oral mucositis (OM) | 10 mg/g CUR gel | Controlled trial | - | After 2 weeks of treatment, significant improvements were observed in erythema, ulcer size, and pain levels, with noticeable results evident after just one week. | [41] |
Recurrent aphthous stomatitis | 1% CUR nanomicelle gel, 2% CUR gel | Randomized clinical trial | - | The treatment was administered for one week with three daily applications. Both formulations showed improvement in pain score and lesion size after one week. However, the 1% CUR nanomicelle gel was more effective, showing visible results even after 4 days. | [19] |
Uses | Formulation | Type of Study | Spectrum | Results | Ref. |
---|---|---|---|---|---|
Dental caries | - | In vitro | S. mutans | It ↓ biofilm formation even more than CHX. It presented bactericidal action against S. mutans comparable to CHX, making it a safer alternative in dental caries prevention. | [73] |
Periodontal disease | QRC nanoemulsion | In vitro | T. forsythia, P. gingivalis | P. gingivalis was sensitive to QRC action at a concentration of 100 µg/mL and T. forsythia was sensitive at both 50, and 100 µg/mL. These results suggest its positive effect on the management of periodontal disease. | [62] |
Oral mucositis (OM) | QRC capsules (250 mg) | Randomized double-blind clinical trial | - | QRC ↓ the relative risk of OM in patients following chemotherapy treatment. It has proven to be a suitable adjuvant treatment with no side effects in this debilitating condition. | [74] |
Oral infections | QRC mouthwash at 25, 50, 100 µL | In vitro | C. albicans, E. faecalis, S. aureus, S. mutans, Lactobacillus | QRC presented antimicrobial effects in a dose-dependent manner, making it useful in the treatment of various pathogen-related oral infections. | [65] |
Uses | Formulation | Type of Study | Spectrum | Results | Ref. |
---|---|---|---|---|---|
Dental caries | - | In vitro | S. mutans, S. sobrinus, A. oris | At a concentration of 600 µg/mL, allicin exhibited a bacteriostatic effect against S. mutans. Following 1-h exposure at concentrations of 2200, 4500, and 9800 µg/mL, it demonstrated a dose-dependent bactericidal effect on S. mutans biofilms. However, it did not destroy the biofilm structure. While the findings suggest potential benefits for caries prevention, further studies are necessary to validate its efficacy against this disease. | [107] |
Periodontitis | - | In vitro | F. nucleatum, A. actinomycetemcomitans | The bacteriostatic effect was exhibited at a concentration of 300 µg/mL, making it a potential treatment for periodontitis. | [107] |
Chronic periodontal disease | - | In vitro | P. gingivalis, P. gingivalis deficient mutant | A bacteriostatic effect was observed at 2400 µg/mL. It successfully inhibited the mutant strain at a concentration below 300 µg/mL, indicating that it can have a protecting action against periodontium destruction. | [107] |
Stage II oral submucous fibrosis | 1% allicin injection | Randomized clinical trial | - | After the treatment, there was an improvement in overall oral health. It alleviated the burning sensation and helped with the mouth opening. | [99] |
Recurrent aphthous stomatitis | Allicin mouthrinse, capsules | Clinical trial | - | Both formulations significantly reduced ulcer size within 7 days of treatment. However, allicin is not effective in preventing recurrence. | [100] |
Uses | Formulation | Type of Study | Spectrum | Results | Ref. |
---|---|---|---|---|---|
Oral candidiasis | RA solution | In vitro | C. albicans, C. krusei, C. glabrata, C. tropicalis, C. parapsilosis | It exhibited antifungal activity at 0.1–0.2 mg, making it a potential alternative in the treatment of yeast infections. | [117] |
Biofilm reduction | 200 mg/mL RA solution | In vitro | S. aureus, P. aeruginoa, C. albicans, E. faecalis, S. mutans and C. albicans | It reduced the viability of all pathogens, suggesting its beneficial role in preventing biofilm formation that can lead to oropharyngeal problems. | [131] |
Oral cancer | - | In vitro | - | It was observed that RA has a dose-dependent effect on oral cancerous cells, presenting the highest activity at 40 µM. | [132] |
Uses | Formulation | Type of Study | Spectrum | Results | Ref. |
---|---|---|---|---|---|
Biofilm reduction | - | In vitro | C. albicans, S. mutans | At a concentration of 100 µg/mL EUG inhibited single and mixed biofilm by approximately 30% for the single strains, and by 50% in mixed biofilm. At 200 µg/mL, it significantly ↓ the viability of single and mixed biofilms. | [160] |
Dental caries development | EUG nanoemulsion | In vitro | S. mutans | 16 mg/mL EUG ↓ total flora counts after 5 weeks in rat models, ↓ the incidence of smooth surface, and sulcal caries. | [163] |
In vivo | S. mutans | EUG at concentrations of 4, 8, and 16 mg/mL ↓ acid production, bacterial adherence, and suppressed water-insoluble glucans synthesis in a dose-dependent manner in rat models, making it a potential candidate for dental caries prevention. | [163] | ||
Periodontitis | - | In vitro | P. gingivalis | EUG exhibits bacteriostatic activity at 31.25 µM with a significant decrease in cell viability after 4 h, and a bactericidal effect at 125 µM. At 15.6 µM it ↓ biofilm formation by 90% and down-regulated virulent factor genes of P. gingivalis. Additionally, it has the ability to ↓ already-formed biofilm by 40% at 125 µm. These results suggest that eugenol could be a safer alternative for periodontitis treatment. | [164] |
Tongue squamous cell carcinoma | - | In vitro | - | After 72 h of exposure to different concentrations of EUG (0.1, 0.25, 0.5, 0.75, 1 mM), a dose-dependent decrease in cell viability was observed. A concentration of 0.5 mM significantly ↑ expression of pro-apoptotic mRNA markers (Bax, Bad), indicating eugenol’s antitumor effect. | [165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, S.; Dumitrel, S.-I.; Buzatu, R.; Dinu, D.C.; Popovici, R.; Szuhanek, C.; Matichescu, A. New Perspectives about Relevant Natural Compounds for Current Dentistry Research. Life 2024, 14, 951. https://doi.org/10.3390/life14080951
Dinu S, Dumitrel S-I, Buzatu R, Dinu DC, Popovici R, Szuhanek C, Matichescu A. New Perspectives about Relevant Natural Compounds for Current Dentistry Research. Life. 2024; 14(8):951. https://doi.org/10.3390/life14080951
Chicago/Turabian StyleDinu, Stefania, Stefania-Irina Dumitrel, Roxana Buzatu, Dorin Cristian Dinu, Ramona Popovici, Camelia Szuhanek, and Anamaria Matichescu. 2024. "New Perspectives about Relevant Natural Compounds for Current Dentistry Research" Life 14, no. 8: 951. https://doi.org/10.3390/life14080951
APA StyleDinu, S., Dumitrel, S. -I., Buzatu, R., Dinu, D. C., Popovici, R., Szuhanek, C., & Matichescu, A. (2024). New Perspectives about Relevant Natural Compounds for Current Dentistry Research. Life, 14(8), 951. https://doi.org/10.3390/life14080951