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Abstract: Sarcopenia, the age-related decline in muscle mass and function, poses a significant health
challenge as the global population ages. Mitochondrial dysfunction is a key factor in sarcopenia, as
evidenced by the role of mitochondrial reactive oxygen species (mtROS) in mitochondrial biogenesis
and dynamics, as well as mitophagy. Resistance exercise training (RET) is a well-established interven-
tion for sarcopenia; however, its effects on the mitochondria in aging skeletal muscles remain unclear.
This review aims to elucidate the relationship between mitochondrial dynamics and sarcopenia, with
a specific focus on the implications of RET. Although aerobic exercise training (AET) has traditionally
been viewed as more effective for mitochondrial enhancement, emerging evidence suggests that RET
may also confer beneficial effects. Here, we highlight the potential of RET to modulate mtROS, drive
mitochondrial biogenesis, optimize mitochondrial dynamics, and promote mitophagy in aging skele-
tal muscles. Understanding this interplay offers insights for combating sarcopenia and preserving
skeletal muscle health in aging individuals.

Keywords: aging; resistance exercise training; mitochondria; sarcopenia; skeletal muscle

1. Introduction

A decline in physical fitness naturally occurs as individuals age, leading to increased
vulnerability to both physical and psychological impairments [1]. This is reflected in an
increased prevalence of chronic health issues. A key feature of aging is the progressive loss
of muscle mass, strength, and function, known as sarcopenia [2,3].

Loss of muscle mass in older adults is associated not only with falls and fractures but
also with an increased risk of chronic diseases such as diabetes, hypertension, heart disease,
and cancer [2,4,5]. The etiology of sarcopenia involves a range of factors and pathways,
ranging from environmental influences such as physical inactivity and poor diet to cellular
changes such as reduced satellite cell counts, activation of apoptotic pathways, and mito-
chondrial dysfunction [2]. Emerging evidence indicates that mitochondrial dysfunction and
the activation of apoptotic pathways play pivotal roles in the development of age-related
sarcopenia [6].
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Mitochondria serve as the powerhouses of cells, responsible for producing adenosine
triphosphate (ATP), and thus play a critical role in central metabolic pathways and cellular
functions, ultimately impacting the overall health of the individual. Deficiencies in these
processes can lead to various diseases, such as Alzheimer’s and cancer [7]. Furthermore,
the mitochondria play a crucial role in regulating the metabolic function of skeletal muscles,
and mitochondrial dysfunction directly affects normal skeletal muscle functioning [8]. In
older adults with sarcopenia, skeletal muscle mitochondria demonstrate a characteristic
decline in the expression and activity of mitochondrial respiratory complexes, accompanied
by suppressed oxidative phosphorylation and downregulation of genes responsible for
mitochondrial protein quality control [9].

Exercise provides numerous benefits, including improved cardiovascular health, en-
hanced skeletal muscle and bone health, chronic disease prevention, longevity, and im-
proved immune function in aging individuals with sarcopenia [10]. Resistance exercise
training (RET) and aerobic exercise training (AET) are two distinct exercise modalities
with well-documented health benefits in aging patients with sarcopenia. Typically, the
adaptation of skeletal muscles to exercise is often viewed through a dichotomous lens,
where AET induces increased mitochondrial adaptations, whereas RET leads to myofibrillar
adaptations through mechanical tension [11]. AET improves endurance, oxidative capacity,
mitochondrial content, and function [12,13]. A systematic review and meta-analysis of
20 randomized controlled trials (RCTs) demonstrated that regular AET significantly reduces
oxidative stress markers and increases antioxidant levels in older adults [14]. Furthermore,
Konopka et al. examined mitochondrial quality control in young and older men. They
found that 12 weeks of AET promoted mitochondrial biogenesis, as evidenced by increased
levels of related proteins and elevated metabolic enzyme activity in both age groups [15].
Interestingly, the authors also reported an increase in markers of both mitochondrial fusion
and fission following AET, regardless of age [15]. However, the effects of AET on mitophagy
and selective removal of damaged mitochondria remain a topic of debate [16]. Researchers
found in one study of an aged animal model of sarcopenia a decrease in mitophagic flux,
potentially due to improved overall mitochondrial quality following endurance exercise
training [17]; another report contradicted this finding. These results suggest that 4 to
5 weeks of voluntary wheel-running exercise promotes elevated basal mitophagy in trained
skeletal muscles, potentially reflecting a heightened rate of mitochondrial turnover in
skeletal muscle [18]. In contrast, RET research has primarily focused on adaptations related
to the enhancement of skeletal muscle hypertrophy and strength [19]. The impact of RET
on mitochondrial adaptation in aging skeletal muscles remains inconclusive. Traditionally
viewed as less effective than endurance exercise in improving mitochondrial function,
recent studies have reported enhanced markers of mitochondrial content and function
following RET in both young [20,21] and old populations [22–24]. Further research is
required to determine how much RET contributes to mitochondrial adaptation.

In this review, we discuss the underappreciated role of RET in aging skeletal muscle
mitochondria, offering a new perspective on its therapeutic benefits in combating age-
related sarcopenia. We summarize the effects of RET on mitochondria in aging skeletal
muscles and focus on mitochondrial reactive oxygen species (mtROS), biogenesis, dynamics,
and mitophagy, exploring the potential underlying mechanisms.

2. Role of Mitochondria in Sarcopenia

Skeletal muscle loss is influenced by several factors and pathways, including chronic
inflammation, reduced growth hormone signaling, and inadequate protein intake [25–27].
Furthermore, sarcopenia entails a complex interplay of factors, such as mitochondrial dys-
function, leading to impaired skeletal muscle fiber energy production, malfunctioning mus-
cle satellite cell function, and neurological impairments affecting motor unit recruitment
and innervation [28]. Recent research suggests that changes in mitochondrial biogenesis,
dynamics, function, and structure may be the primary factors influencing skeletal muscle
quality and performance [29]. Understanding how these factors affect skeletal muscle
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metabolism is key to developing effective strategies for preventing and treating sarcopenia
and, ultimately, promoting healthy aging.

2.1. Mitochondrial Reactive Oxygen Species and Mitochondrial Respiration

The overexpression of mtROS causes oxidative stress and is a major contributor to
skeletal muscle weakness and loss during sarcopenia. mtROS are produced as a by-product
of the electron transport chain (ETC). The excessive production of mtROS leads to loss of
muscle mass and skeletal muscle strength, protein damage, mitochondrial dysfunction,
and mitochondrial DNA (mtDNA) damage [30]. Skeletal muscle fibers experiencing higher
levels of oxidative stress appear to have a greater prevalence of mtDNA deletions and
mutations. The mtDNA genome is particularly vulnerable to mutational damage because
of its proximity to the electron transport system, a major source of free radicals [31,32]. The
accumulation of unrepaired mtDNA damage can exacerbate mitochondrial dysfunction by
promoting increased mtROS production [33]. mtDNA mutations can impair mitochondrial
respiration by damaging ETC complexes, leading to the presence of defective subunits
within the ETC, which disrupts oxidative phosphorylation, reduces ATP synthesis, and
elevates reactive oxygen species (ROS) generation [34–38]. Consequently, mitochondrial
respiration, the cellular process that utilizes oxygen to generate ATP, is further impaired by
mtDNA mutations [37,39].

Studies suggest elevated mtROS and impaired skeletal muscle mitochondrial res-
piration are associated with age-related sarcopenia [40,41]. For example, Grevendonk
et al. investigated the impact of aging on mitochondrial function in older and young
individuals maintaining similar levels of habitual physical activity [42]. To assess skeletal
muscle mitochondrial respiration, the researchers employed high-resolution respirometry
with permeabilized skeletal muscle fibers. They found approximately 15% lower ADP-
stimulated mitochondrial respiration rate in older adults relative to young adults. However,
no significant difference in mitochondrial content, assessed by mitochondrial oxidative
phosphorylation (OXPHOS) protein levels, was observed between the groups [42]. Simi-
larly, Joseph et al. observed a more specific association between low physical function and
mitochondrial dysfunction in aging muscle [43]. They reported a decline in mitochondrial
respiration, potentially leading to higher free radical formation and subsequent muscle
damage, in elderly individuals with low physical function [43]. Furthermore, González-
Blanco et al. reported that severely functional-dependent patients with extreme sarcopenia
have lower expression of the main complexes of the ETC [44]. This finding suggests a
decline in mitochondrial function and a reduced ability to produce energy (ATP) within
muscle cells. Fan et al. reported higher levels of circulating cell-free mitochondrial DNA
(ccf-mtDNA) in older adults with sarcopenia [45]. ccf-mtDNA, a short segment of mtDNA
derived from cells, is released into systemic circulation in response to cellular injury or
stress [46]. Elevated ccf-mtDNA levels may indicate mitochondrial damage due to abnor-
mal mitochondrial leakage [45]. Damage to mtDNA caused by ROS is thought to initiate a
cycle of increasing oxidative stress within the mitochondria [47].

2.2. Mitochondrial Biogenesis

Reduced mitochondrial biogenesis, which involves not only generating new mito-
chondria but also increasing their size and mass, is a key factor in the loss of skeletal
muscle quality and the development of sarcopenia [29,48,49]. Mitochondrial biogenesis is a
complex process that involves building proteins encoded by mtDNA, importing nuclear-
encoded mitochondrial proteins, and replicating mtDNA [50]. Studies have shown that
peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) plays
a pivotal role in mitochondrial biogenesis by regulating the transcriptional machinery
responsible for increasing mitochondrial mass [51,52]. The levels of PGC-1α protein and
mRNA decline with age, and this decrease is associated with skeletal muscle weakness
and poor exercise performance in older adults [49]. Joseph et al. demonstrated that lower
physical function in older adults correlates with weaker mitochondrial function and re-
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duced PGC-1α protein levels compared with both younger adults and high-functioning
older adults [43]. Cannavino et al. reported that mice genetically modified to have high
levels of PGC-1α maintained skeletal muscle mass even when the hindlimb was unloaded,
potentially by suppressing autophagy and proteasome degradation pathways that break
down skeletal muscle proteins [53]. However, a recent study investigating hindlimb un-
loading in mice overexpressing PGC-1α did not observe a protective effect against disuse
atrophy with respect to muscle mass or cross-sectional area [54]. This discordance in results
may be attributable to differences in the age of the mice used in the studies [54]. Aging in
skeletal muscles is associated with altered mitochondrial biogenesis pathways, which may
contribute to skeletal muscle loss and reduced physical function commonly observed in
older adults [43].

2.3. Mitochondrial Dynamics

Mitochondrial dysfunction, caused by altered dynamics and morphology, is a major
contributor to the decline in skeletal muscle function observed in sarcopenia [29,55]. Mi-
tochondria are dynamic organelles that constantly undergo fusion and fission, which are
important for maintaining mitochondrial function. Mitochondrial fusion is the merging
of two mitochondria at the interfaces of their outer and inner membranes. In contrast,
mitochondrial fission refers to the process by which a mitochondrion is divided into two
separate mitochondria [56]. The constant interplay between fusion and fission determines
the size, shape, and number of mitochondria in a cell [57]. In healthy cells, these processes
are balanced to maintain the mitochondrial morphology. Mitochondrial fusion occurs in a
two-step process. The fusion process involves the facilitation of the outer mitochondrial
membrane by Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2), followed by the mediation of
inner mitochondrial membrane fusion by the Optic Atrophy 1 protein (OPA1) [8]. Mi-
tochondrial fission involves dynamin-related protein 1 (Drp1), which forms constricting
rings around the organelle and is recruited by mitochondrial Fission-1 protein (Fis1) to
the outer membrane [57]. The results of recent studies suggest that disruptions in the
balance of mitochondrial dynamics can impair mitochondrial function and health in skele-
tal muscles [29,56,57]. This imbalance is associated with senescence and muscle atrophy.
For example, Sebastián et al. reported that Mfn2 deletion leads to the accumulation of
damaged mitochondria, increased production of harmful molecules, impaired skeletal mus-
cle function, reduced energy production, and general weakness [58]. In addition, Favaro
et al. showed that the absence of Drp1 leads to abnormal enlargement and dysfunction
of mitochondria and causes skeletal muscle atrophy and degeneration [59]. Dulac et al.
demonstrated that Drp1 knockdown in middle-aged mice leads to severe skeletal muscle
atrophy, oxidative stress, and impaired autophagy, whereas Drp1 overexpression results
in mild skeletal muscle atrophy and negatively affects mitochondrial quality [60]. This
suggests that Drp1 content in skeletal muscle must be maintained within a certain phys-
iological range to ensure that the rate of mitochondrial fission is neither excessive nor
deficient [60].

2.4. Mitophagy

Mitophagy selectively removes damaged or unnecessary mitochondria through the
autophagy-lysosomal system. Initiated post-mitochondrial fission, this process facilitates
the encapsulation of smaller mitochondrial fragments for the selective removal of damaged
mitochondria, essentially constituting a “quality control” mechanism [61]. Cells employ
various mechanisms for mitophagy, including ubiquitin- and receptor-dependent path-
ways [62]. Several authors have proposed correlations between alterations in signaling
pathways associated with autophagy and mitophagy and skeletal muscle atrophy and
decreased physical function in the elderly. For instance, Picca et al. observed elevated levels
of the autophagy protein p62 and the mitophagy-targeting protein BCL2/adenovirus E1B
19 kDa protein-interacting protein-3 (BNIP3) in older adults compared with younger con-
trols, linking them to increased mitochondrial dysfunction [63]. However, Drummond et al.
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reported reduced expression levels of skeletal muscle mitophagy regulators BNIP3, Drp1,
and Parkin in sedentary older women, attributing it to mitochondrial dysfunction [64].
Ito et al. demonstrated the crucial role of Parkin-mediated mitophagy in modulating skele-
tal muscle myotube atrophy by regulating mtROS production [65]. While there are some
contradictory data on mitophagy, the literature results increasingly suggest a decline in
mitophagy in skeletal muscle with age, which is associated with impaired skeletal muscle
function. Consequently, targeting mitophagy in skeletal muscle emerges as crucial for
preserving mitochondrial function and skeletal muscle mass.

3. Effects of Resistance Exercise Training on Aging Skeletal Muscle Mitochondria

Exercise is recognized as the most effective intervention for sarcopenia, as no specific
drugs have been approved for its treatment. Evidence-based clinical practice guidelines
strongly recommend physical activity as the primary treatment for sarcopenia [66]. Tradi-
tionally, AET has been recommended to improve mitochondrial adaptations [11]. However,
a growing body of research suggests that RET also has a positive effect on mitochondria [67].
Here, we briefly describe the effects of RET on aging skeletal muscle mitochondria in rela-
tion to sarcopenia (Table 1).

Table 1. Effects of resistance exercise training on skeletal muscle mitochondria in the elderly.

Reference Sample Size Age RET Protocol RET Type Results

Parise et al.,
2005 [68]

15 Males
15 Females 68.5 ± 5.1 yr 3 times/week for 14 weeks,

50–80% of 1RM

Circuit exercise
training of all major

muscle group
exercises

CS Activity ↔
mtDNA ↔

Parise et al.,
2005 [69] 12 Males 71.2 ± 6.5 yr

Unilateral training, 3 times/week
for 12 weeks,

3 sets of 10 reps at 50–80% of 1RM
Leg press

Leg extension

CS Activity ↔

Acute training, 3 sets of 10 reps
using untrained leg at 80% of 1RM CS Activity ↔

Balakrishnan
et al., 2010 [70]

23 CKD
patients 64 ± 10 yr 3 times/week for 12 weeks,

80% of 1RM

Chest and leg press
Latissimus
pull-down

Knee extension
Flexion pneumatic

RET machines

mtDNA ↑

Sparks et al.,
2013 [71]

23 Males
29 Females 57.6 ± 7.5 yr 3 times/week for 9 months,

2–3 sets

4 upper body RET
3 lower body RET

Abdominal crunches
Back extensions

CS Activity ↑
mtDNA ↑

protein (OXPHOS) ↑

Irving et al.,
2015 [72]

5 Males
5 Females 70 yr 4–5 times/week for 8 weeks,

4 sets of 8–10 reps
Multiple muscle

groups RET

mRNA (PGC-1α) ↑
mRNA (TFAM, Nrf2) ↔

mRNA (Nrf1) ↓
protein (PGC-1α) ↑

protein (TFAM, OXPHOS) ↔

Ogborn et al.,
2015 [73] 9 Males 70 ± 4 yr Acute unilateral training,

4 sets of 10 reps at 75% of 1RM
Leg press

Knee extension

mt DNA ↑
mRNA (PGC-1α,
TFAM, BNIP3) ↑
mRNA (Nrf2) ↓

protein (PINK1, Parkin) ↔

Flack et al.,
2016 [74] 20 Males ≥60 yr

3 times/week for 12 weeks,
repetitions to volitional

fatigue/failure

3 upper body RET
4 lower body RET

CS activity ↔
mRNA (PGC1α, TFAM) ↔

Mesquita et al.,
2020 [22]

6 Males
10 Females 59 ± 4 yr 2 times/week for 10 weeks,

3 sets of 10–12 reps

Leg press
Leg extensions

Leg curls
Barbell bench press
Cable pull-downs

protein (OXPHOS, Nrf1,
Mfn1/2, OPA1) ↑

protein (PGC-1α, TFAM, Drp1,
Fis1, PINK1, Parkin) ↔
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Table 1. Cont.

Reference Sample Size Age RET Protocol RET Type Results

Berg et al.,
2020 [75]

7 Males
3 Females 75 ± 9 yr 3 times/week for 8 weeks,

4 sets of 4 reps at 85–90% of 1RM Knee extension CS activity ↔
protein (OXPHOS) ↔

Marshall et al.,
2022 [76] 7 Male 74 ± 3 yr Acute training, 6 sets of 12 reps,

6 sets of 12 reps at 75% of 1RM Knee extension

CS activity ↓
protein (PGC-1α, TFAM,

OXPHOS, Drp1, Fis1,
OPA1, Mfn2) ↔

↑: increase; ↓: decrease; ↔: no difference. 1RM: one-repetition maximum; CS: citrate synthase; CKD: chronic kidney
disease; mtDNA: mitochondrial DNA; OXPHOS: oxidative phosphorylation; PGC-1α: peroxisome proliferator-
activated receptor-gamma coactivator 1 alpha; TFAM: mitochondrial transcription factor A; Nrf: nuclear respiratory
factor; BNIP3: BCL2/adenovirus E1B 19 kDa protein-interacting protein-3; PINK: PTEN-induced putative kinase
protein; Mfn: mitofusin; OPA: optic atrophy; Drp: dynamin-related protein; Fis: mitochondrial fission.

3.1. Mitochondrial Reactive Oxygen Species and Mitochondrial Respiration

The effects of exercise-induced oxidative stress remain a topic of ongoing debate. The
relationship between physical activity, the generation of ROS, and their potential impact is a
complex and multifaceted issue. Exercise-induced ROS production can have both beneficial
and detrimental effects. Moderate levels of ROS generated during exercise can promote
positive physiological adaptations in active skeletal muscles. These adaptations include
stimulating mitochondrial biogenesis, increasing the synthesis of antioxidant enzymes,
and upregulating stress response proteins [77–80]. On the other hand, high levels of ROS
production during exercise can damage macromolecular structures such as proteins, lipids,
and DNA [77,78,81]. While speculation exists regarding the hormetic effect of exercise-
induced ROS production in skeletal muscles, insufficient evidence suggests that extended
periods of high-intensity exercise lead to tissue damage and compromised physiological
functions [82,83]. Numerous studies consistently indicate that prolonged high-intensity
exercise yields significant health advantages [82,84].

The widely accepted antioxidant benefits of exercise training have led some authors
to propose that exercise itself can be considered an effective antioxidant [85,86] (Figure 1).
Parise et al. examined oxidative stress, antioxidant enzyme protein levels, mitochondrial
enzymes, and mtDNA levels in older adults who underwent RET for 14 weeks [68]. The
researchers reported that RET did not significantly alter the levels of antioxidant proteins.
However, they observed a significant attenuation in DNA damage caused by oxidative
stress. An analysis of mitochondrial enzyme activity revealed a significant increase in
complex IV activity, suggesting a potential indirect antioxidant role for complex IV after
RET. Electron leakage from the ETC can directly interact with oxygen, resulting in enhanced
ROS [87]. However, efficient electron transfer at complex IV reduces ROS formation in
mitochondria by ensuring complete oxygen reduction and preventing electron leaks from
upstream complexes [36,88].

In a study where older adults underwent 12 weeks of moderate-intensity RET, indi-
cators of oxidative stress were measured in blood and urine samples [89]. The authors
reported that moderate-intensity RET resulted in a significant decrease in ROS production
by nonenzymatic antioxidant capacity and a significant decrease in all measures of oxida-
tive stress, including the accumulation of oxidized proteins, degree of lipid peroxidation,
and oxidative DNA damage. Interestingly, the authors of this study suggested that reduced
oxidative stress may be associated with increased strength and a slower rate of skeletal
muscle loss.

More recently, Mesquita et al. examined the effect of 6 weeks of RET on the mRNA
expression, protein levels, and enzymatic activity of several endogenous antioxidants in
the skeletal muscle of 13 older males [90]. Additionally, lipid peroxidation and levels of
heat-shock proteins, known for their protective role against oxidative stress, were measured.
The results showed that protein levels varied, with enzymes such as catalase showing a
decrease, whereas other enzymes remained unchanged. However, mRNA expression and
enzymatic activity increased, and lipid peroxidation decreased. The researchers concluded
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that RET may be a viable approach to counteract age-related disruptions in muscle redox
homeostasis through multilevel regulation of the antioxidant system.
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role of mitochondrial adaptations in this process remains under debate.

In contrast to research suggesting that resistance exercise reduces oxidative stress, two
studies found no significant improvement in mitochondrial respiratory function following
RET [23,72]. Notably, these studies assessed mitochondrial respiration in skeletal muscle
using high-resolution respirometry. Irving et al. investigated the effects of 8 weeks of
combined exercise training (CET) compared with AET and RET on mitochondrial physiol-
ogy in both young and older adults [72]. Interestingly, while all three training modalities
improved muscle strength and cardiorespiratory fitness, only AET and CET led to enhanced
mitochondrial respiratory function. Similarly, Robinson et al. investigated the effects of
high-intensity aerobic interval training (HIIT), RET, and CET on skeletal muscle adaptations
in young and older adults following a 12-week intervention [23]. This study revealed that
HIIT significantly enhanced maximal mitochondrial respiration in both young and older
adults, with a greater increase observed in the older group. Conversely, CET only led to a
significant rise in young adults, with no improvement in the older population. RET did
not elicit a statistically significant change in mitochondrial respiration for either age group.
Researchers explored the potential link between changes in mitochondrial protein synthesis
rate and alterations in mitochondrial respiration. Their investigation revealed no significant
difference in the baseline mitochondrial protein synthesis rate between young and older
participants. However, HIIT intervention led to a significant increase in the mitochondrial
protein synthesis rate for both young and older groups.

3.2. Mitochondrial Biogenesis

Exercise is an effective stimulus for mitochondrial biogenesis, a process that involves
intricate molecular pathways that promote mitochondrial growth [19,91–94]. PGC-1α is
a critical regulator of mitochondrial biogenesis in skeletal muscle [95]. Exercise has been
shown to increase PGC-1α expression and activity, which in turn interacts with nuclear
respiratory factor 1 (Nrf1) and 2 (Nrf2) and mitochondrial transcription factor A (TFAM)
to promote the transcription of mtDNA and enhance mitochondrial biogenesis [50,95].
Mitochondrial biogenesis can be measured by various methods. The first approach analyzes
the expression of regulatory markers such as PGC-1α, Nrf1/2, and TFAM, using techniques
such as real-time polymerase chain reaction (qPCR) or Western blotting [96]. Researchers
often use the mtDNA copy number as an indicator of mitochondrial biogenesis and content,
which can be quantified by qPCR [71,97]. A more accurate but complex approach involves
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measuring the mitochondrial content or synthesis [96]. Citrate synthase (CS) activity
and the protein content of OXPHOS are commonly used as markers of mitochondrial
content [98–101]. CS activity has been shown to correlate with mitochondrial volume
density as measured by electron microscopy, offering a considerably faster and more
practical method [100].

Although mitochondrial biogenesis that occurs in response to AET has been well
studied, the effects of RET on mitochondrial adaptation remain controversial (Figure 1).
Long-term (“chronic”) RET has been shown to increase the mtDNA copy number, mi-
tochondrial contents, and PGC-1α mRNA and protein contents [70–72]. In a study by
Ogborn et al., both young and elderly individuals underwent one-time unilateral RET [73];
the researchers observed significant increases in PGC-1α mRNA levels 3 h after exercise,
followed by a rise in TFAM mRNA 24 h later in the vastus lateralis muscle. Notably, there
were no age-related differences in the mitochondrial response.

It should be noted that there are conflicting findings in terms of the response of
mitochondrial biogenesis and mitochondrial content to RET in older adults. Parise et al.
examined the effects of unilateral RET on mitochondrial enzymes in the skeletal muscles of
older adults [69]. CS activity was measured in the vastus lateralis muscle of both trained
and untrained legs. Over the 12-week training period, neither the trained nor the untrained
leg showed any changes in CS activity. This finding adds to the growing body of evidence
suggesting no change in CS activity following RET [68,74,75]. Similarly, in three recent
investigations by Flack et al., Mesquita et al., and Berg et al., the authors observed no change
in the levels of mitochondrial biogenesis proteins PGC-1α, TFAM, and total OXPHOS, or
mRNA expression of PGC-1α and TFAM in vastus lateralis muscle after 8–12 weeks of
RET [22,74,75]. These results suggest that unchanged mitochondrial protein expression,
despite greater muscle volume after RET, indicates that mitochondrial biogenesis may
have occurred [75]. Moreover, decreased maximal mitochondrial respiratory rate suggests
potential qualitative adaptations, such as an increased proton leak and changes in cristae
morphology, rather than a simple increase in mitochondrial content [75].

3.3. Mitochondrial Dynamics

The effects of exercise on mitochondrial dynamics, including fusion and fission, have
not been extensively studied [102]. Although it is expected that changes in cellular en-
ergy status during exercise can be achieved through mitochondrial network dynamics,
the specific effects of exercise on these mitochondrial dynamic processes require further
investigation [103] (Figure 1). Available evidence from a limited number of studies suggests
that physical activity influences mitochondrial dynamics via multiple signaling pathways.
For example, high-intensity interval training appears to induce a progressive increase in
Mfn1 and Fis1 protein levels, whereas single exercise bouts result in increased mRNA ex-
pression of Mfn1 and Mfn2 at specific time points post-exercise [104–106]. Several methods
exist to quantify protein or mRNA levels associated with mitochondrial fusion and fission.
These include quantifying the levels of proteins using techniques such as Western blot
analysis, immunofluorescence analysis, and quantitative immunofluorescence analysis or
assessing mRNA levels using quantitative reverse transcription-polymerase chain reaction
(RT-qPCR) [96].

There are relatively few investigations of mitochondrial dynamics in the skeletal
muscles of older adults during RET, with most studies relying on molecular biology
analyses. Recently, researchers have reported the response of mitochondrial dynamics
markers following either acute or chronic RET in older adults [22]. Researchers reported no
acute changes in mitochondrial dynamics-related proteins following RET. However, chronic
RET (over 10 weeks) led to an increase in Mfn1, Mfn2, OPA1, and Drp1 protein levels. The
authors suggest that the age-related increase in mitochondrial fusion observed might be a
compensatory response to counteract the negative effects associated with aging. Age-related
increases in mitochondrial fission led to fragmented networks and dysfunction [107,108].
The authors propose that fusion could act to dilute damaged mitochondrial contents by
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combining them with healthier mitochondria. Additionally, their data show that RET
counteracts age-related dysregulation of mitochondrial dynamics, as evidenced by changes
in markers of mitochondrial fusion, potentially leading to improved mitochondrial function.

In contrast, Marshall et al. did not observe significant effects after a single bout of
RET on markers of mitochondrial fission/fusion dynamics [76] in a study comparing
post-exercise recovery of master endurance athletes with that of untrained healthy age-
matched older adults at both the 1- and 48-h time points. The researchers found that the
only significant effect of RET was observed in the phosphorylation/total Drp1 ratio, a
marker of mitochondrial fission, at the 1-h post-exercise time point. Importantly, this effect
was observed only in the master endurance athlete group, with no changes in this or any
other mitochondrial dynamics marker detected in the control group. Collectively, these
findings suggest that master endurance athletes maintain more efficient mechanisms for
skeletal muscle mitochondrial quality control, facilitating the fragmentation of damaged
or dysfunctional organelles. Given the conflicting findings in the recent literature, the
influence of RET on mitochondrial volume in older adults requires further investigation.

3.4. Mitophagy

The signaling pathway mediated by PTEN-induced putative kinase protein 1 (PINK1)
and Parkin is recognized as an extensively investigated pathway responsible for trans-
mitting signals related to mitochondrial damage, ultimately leading to the initiation of
mitophagy [109]. Mitophagy is also partially mediated by BNIP3 and BNIP3L/NIX, which
are located on the outer mitochondrial membrane [110,111]. Exercise induces mitophagy
through various mechanisms, including the PINK1/Parkin pathway [112]. A recent cross-
sectional study found that older individuals who engaged in regular exercise exhibited
elevated levels of key proteins involved in mitophagy, specifically Parkin and BNIP3 [113].
Although some studies have suggested that exercise promotes mitophagy, the overall effect
on this process during aging requires further investigation [16] (Figure 1). Studies have
shown that Parkin protein levels may remain unchanged or increase at the mRNA level
in elderly individuals in response to exercise [64,114]. This suggests that exercise may not
strongly stimulate the PINK1/Parkin pathway in this population. However, PINK1 did
not show a clear response, with some studies reporting no significant changes [114,115].
The current methods for assessing mitophagy are limited. Transmission electron mi-
croscopy (TEM) and Western blot analysis of mitochondrial protein levels are established
methods for directly visualizing and quantifying mitophagy [96,116]. However, these
methods lack accuracy and the ability to specifically quantify mitophagy [96,116]. In com-
parison, fluorescent-based strategies offer enhanced reliability and potential for live-cell
imaging [96].

One limitation of the existing literature is the paucity of studies investigating the effects
of RET on mitophagy in older adults. The previously mentioned study by Ogborn et al.
compared the acute response of young and aged skeletal muscle mitochondria to RET [73].
They found that the levels of PINK1 and Parkin proteins in the cytosolic fraction remained
unchanged after exercise, and neither age nor exercise regimen appeared to influence
their interactions significantly. Given this confirmation of a mitophagy response in the
mitochondria following acute RET exposure, it is critical to determine if this response
persists in chronic settings [117].

A recent study by Mesquita et al. further supported these findings by demonstrating
a lack of statistically significant differences in the mitophagic response of skeletal muscles
in older adults following acute and chronic RET [22]. There was no change in the levels
of PINK1 and Parkin proteins in the vastus lateralis tissue either 24 h after the first RET
session or 72 h after 10 weeks of RET. In fact, the authors argued that the results presented
do not definitively show unaltered mitophagy, as the study did not analyze the levels of
phosphorylated PINK1 and Parkin proteins, which can affect their activity [118]. These
results suggest that RET does not significantly affect mitophagy markers in older individu-
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als. This finding is in contrast with the increased PINK1 protein levels observed in young
skeletal muscles following chronic RET [21].

4. Conclusions

The findings of this review indicate that mitochondrial dysfunction contributes to the
acceleration of age-related sarcopenia (Figure 2). Specifically, mtROS production, mitochon-
drial biogenesis, mitochondrial dynamics, and mitophagy are implicated in sarcopenia.
Previous studies have demonstrated that AET reduces oxidative stress and enhances mito-
chondrial biogenesis and dynamics. While RET has also emerged as a promising preventive
and therapeutic approach for improving muscle strength and potentially attenuating sar-
copenia, much of the research on RET has focused on muscle hypertrophy and strength
gains, with relatively few studies investigating mitochondrial responses to RET. Despite
conflicting findings regarding the effects of RET on mitochondria in the elderly, numerous
studies have reported the beneficial effects of RET on mitochondrial function in aging
skeletal muscles. Further investigations are imperative to elucidate the specific mechanisms
through which RET influences mitochondrial adaptation in aging skeletal muscles.
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