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Abstract: Leaf width is a key determinant of planting density and photosynthetic efficiency. In an
effort to determine which genes regulate maize plant leaf width, we performed a genome-wide
association study (GWAS) of 1.49 × 106 single nucleotide polymorphisms (SNPs) in 80 sequenced
backbone inbred maize lines in Jilin Province, China, based upon phenotypic leaf width data from
two years. In total, 14 SNPs were identified as being significantly related to leaf width (p < 0.000001),
with these SNPs being located on chromosomes 1, 2, 3, 5, 6, 7, 8, and 9. A total of five candidate genes
were identified within a mean linkage disequilibrium (LD) distance of 9.7 kb, with a significant SNP
being identified within the Zm00001d044327 candidate gene. RNA was then isolated from 12 different
inbred maize lines from this GWAS study cohort and was used to conduct qPCR analyses which
revealed significant differences in Zm00001d044327 expression among strains exhibiting significant
differences in leaf width. Based on an assessment of EMS mutant lines harboring a conserved amino
acid stop mutation and two non-synonymous mutations in Zm00001d044327 that exhibited a narrow
leaf width, these data suggested that Zm00001d044327 is a key regulator of maize leaf width.

Keywords: maize (Zea mays L.); leaf width; GWAS; Zm00001d044327; qPCR analysis; EMS mutants

1. Introduction

Maize (Zea mays) is one of the most economically important crops globally, serving as
a staple food, a feed for livestock, and a raw material in various industrial applications. As
a cornerstone of agricultural economies, maize production significantly influences food
security and economic stability in many countries. In commercial maize cultivation, a
shorter growth period is preferred to reduce ear water content at harvest, which is critical
for optimizing both grain quality and economic yield [1,2]. However, this can also diminish
photosynthetic activity, adversely affecting plant health [3,4]. Consequently, a higher
planting density is often employed to compensate and maintain high overall yields [5,6].
Leaf width is a primary characteristic of maize plants and plays a crucial role in these
dynamics, serving as a central facet of density tolerance breeding strategies [7]. Quantitative
trait loci (QTLs) associated with leaf width have been identified by various research groups
using parental mapping strategies. For instance, Pelleschi et al. [8] identified three QTLs on
chromosomes 1, 5, and 7 through restriction fragment length polymorphism (RFLP) analysis
in an F2 × MBS847 population. Similarly, Ku et al. [9] reported five QTLs associated with
leaf width on chromosomes 1, 2, 7, and 8, collectively explaining 34.13% of the phenotypic
variance observed in this trait. These findings provide a foundational understanding of the
genetic determinants of leaf width.

Against this backdrop, our research team previously published a study in PLoS ONE [10],
utilizing 1.49 million single nucleotide polymorphisms (SNPs) to sequence 80 maize inbred
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lines from Jilin Province. Based on phenotype data collected over two years, we conducted
a genome-wide analysis of leaf angle and leaf orientation value. This study identified SNPs
significantly associated with these critical traits, revealing that the regulatory genes for these
traits hold potential importance in enhancing planting density and photosynthetic efficiency.
In this study, we have further analyzed the genome-wide association study (GWAS) loci for
leaf width, with a particular focus on genetic regions not covered in the PLOS One study, as
well as new genes related to leaf width identified in this research. Our aim is to elucidate the
genetic architecture of maize leaf width further, thereby providing valuable insights for the
improvement of this economically significant crop species.

Genome-wide association study (GWAS) strategies enable researchers to survey the
genome in order to detect particular SNPs linked to traits of interest [11,12], permitting the
high-resolution and high-throughput profiling of germplasm resources to select for key
trait-associated alleles [13,14]. GWAS-based strategies have previously been employed to
assess maize leaf architecture, with Tian et al. [15] and Buckler et al. [16] having utilized a
nested association mapping (NAM) population in a joint linkage mapping approach that
ultimately identified 34 leaf width-related QTLs. In addition, Wang et al. [17] detected
the qLW4 region in the Huang C × X178 (H/X) population and found this region to be
associated with leaf width. However, these prior studies did not perform any in-depth
assessments of the candidate genes within their loci of interest. As such, we herein screened
for leaf width-associated SNPs using 80 backbone inbred maize lines collected in Jilin
Province, and we sought to assess the functional importance of detected genes in order to
better understand maize genetics.

2. Materials and Methods
2.1. Study Population

A total of 80 parental inbred maize lines collected over a 5-year period from a >80%
maize hybrid total planting area in Jilin Province were collected and utilized for the
present GWAS analyses. All plants were planted in triplicate in a random block design
in an experimental field in Changchun from 2015–2016. Leaf width measurements were
conducted using a standard ruler.

2.2. Leaf Width Phenotypic Data Analysis

Leaf width was measured at the widest portion of the leaf above the uppermost ear
in five plants during the R1 developmental stage, with the mean value being calculated.
All statistical analyses of phenotypic data were conducted with SPSS v19.0 [18]. Statistical
distinctions between samples were assessed using Student’s t-test (p ≤ 0.05).

2.3. Whole-Genome Sequencing

Whole-genome sequencing was conducted as described previously by Lu et al. [19].
Briefly, a modified CTAB approach was utilized to extract gDNA from all plants in the
GWAS population [20]. Novogene Biological Company (Beijing, China) then conducted
next-generation sequencing. For these sequencing analyses, samples were fragmented
to yield 350 bp fragments via sonication, followed by A-tailing, end repair, and ligation
to Illumina sequencing adapters. Following sequencing, adapters and ambiguous bases
were removed from raw reads, followed by clean read alignment to the B73 maize genome
(ZmB73_RefGen 4) with the BWA software (alignment via Burrows-Wheeler transforma-
tion) Version: 0. 5. 9-r16 [21,22]. SAMtools (v1.3) was utilized to remove duplicate reads
with the rmdup parameters [23]. A miss rate of <10% and a minimum allele frequency
(MAF) ≧ 0.05 were used to screen for high-quality SNPs associated with the 80 maize lines
used in the present study.

2.4. GWAS

The present GWAS study was conducted via a fixed and random model
Circulating Probability Unification [24] (FarmCPU) approach, with leaf width-associated
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SNPs being identified based upon a p < 0.000001 threshold. PLINK was used to calculate
average LD decay distance values [24], with the B73 reference genome being used to identify
candidate genes of interest within leaf width-related regions. Annotation and functional
predictive analyses of known candidate genes were conducted with MaizeGDB and NCBI,
while functional predictions for unknown genes were made based upon the Arabidopsis
database TAIRP43 [25].

2.5. Candidate Gene Validation

After identifying Zm00001d044327 as a candidate gene of interest harboring the significant
sLW225305520 SNP, we employed a quantitative real-time PCR (qPCR) approach to assess the
expression of this gene in 12 different inbred maize lines selected based upon their differences
in leaf width phenotypes. These lines included those with broad leaves (W12, W62, W44,
W38, W65, and W42) and those with narrow leaves (W56, W58, W03, W43, W48, and W36).
When plants were in the silking stage (R1) of growth, total RNA samples were extracted
and qPCR was employed to assess Zm00001d044327 gene expression [26], with EF-1α as
a normalization control. Primers used in the present analysis are shown in Table 1. We
additionally obtained a mutant with one conserved amino acid termination mutation and two
non-synonymous mutations in the LOG domain of Zm00001d044327 in an EMS mutant library
(http://www.elabcaas.cn/memd/index.php, accessed on 25 December 2023) as a means of
verifying the functional relevance of this candidate gene.

Table 1. qPCR primers.

Primer Sequence (5′-3′) Candidate Gene

QLWS TGCTCAGTCAGCAGCATATC
Zm00001d044327QLWAS CCTTCCTTCCTCCCTACTTCTA

3. Results
3.1. Study Population Phenotypic Characteristics

The 80 inbred maize lines used for this GWAS analysis exhibited leaf width phenotypes
conforming to a normal distribution over the course of this study (2015–2016) (Figure 1), with
significant differences in width values among members of the study population (p < 0.01). Mean
leaf width values in 2015 and 2016 were 8.1 and 8.3 cm, respectively (range: 4.8–10.8 cm).
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3.2. NGS Data Quality and LD Analysis

Next-generation sequencing of the study population generated 3230.75 GB of high-
quality genomic data through approaches that have been detailed previously [18,19].
All sequence data from this study were uploaded to the Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra) under the accession number PRJNA495031. A total
of 34,872,961 SNPs were identified in this analysis and filtered according to the criteria:
MAF > 0.05, miss rate < 10%. This filtering and screening effort yielded 1,490,007 SNPs for
subsequent analysis, with a mean population decay distance of 9.7 kb that was measured
at an LD decay parameter (R2) of 0.1 (Figure 2).
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3.3. Leaf Width-Related SNP Identification

In total, we identified 14 leaf width-related SNPs at a significance threshold of p < 0.000001 in
the present GWAS analysis (Table 2), and we found these SNPs to be distributed on chromosomes
1, 2, 3, 5, 6, 7, 8, and 9 (Figures 3 and 4). Eight of these SNPs, accounting for 0.4–13.2% of
overall phenotypic variability, were detected in samples collected in 2015, whereas the other six
SNPs, which accounted for 3.1–14.2% of overall phenotypic variability, were detected in samples
collected in 2016. We localized the sLW225305520 marker to be within an exonic region of the
Zm00001d044327 candidate gene.

Table 2. Significant SNPs and candidate genes associated with leaf width in 2015 and 2016.

Year SNP Physical
Position Chr Genotype MAF log10 (P) Distance (bp) Contribution (r2) Candidate

Gene Functional Annotation

2015 sLW-226131901 226131901 2 A/G 0.05 6.31 −9706 6.20% Zm00001d007267
Chlorophyll a-b

binding protein CP26,
chloroplastic

sLW-225322565 225322565 3 C/T 0.07 6.33 6%

sLW-225305520 225305520 3 C/T 0.30 6.35 0 13.20% Zm00001d044327

Cytokinin riboside
5′-monophosphate

phosphoribohydrolase
LOG7

sLW-141511859 141511859 5 G/A 0.11 6.11 4.90%
sLW-150065211 150065211 6 T/A 0.06 6.07 0.40%
sLW-30006587 30006587 7 T/G 0.34 6.73 3.20%

sLW-104304481 104304481 7 C/A 0.05 6.17 3128 7.10% Zm00001d020285
Putative pumilio

homolog 7,
chloroplastic

sLW-104304481 104304481 7 C/A 0.05 6.17 −2528 7.10% Zm00001d020287 hypothetical protein
ZEAMMB73

sLW-68332493 68332493 8 C/T 0.12 6.04 1.90%
2016 sLW-20566973 20566973 1 G/T 0.07 8.60 3.10%

sLW-186867035 186867035 2 C/A 0.07 12.81 2768 13.60% Zm00001d005758
sLW-153643898 153643898 5 G/T 0.13 8.38 14.20%
sLW-11019663 11019663 8 C/T 0.49 9.26 7.20%
sLW-12911742 12911742 9 T/A 0.10 13.09 3.70%

sLW-100159475 100159475 9 T/A 0.13 10.23 11.60%

https://www.ncbi.nlm.nih.gov/sra
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3.4. Identification and Functional Annotation of Leaf Width-Related Candidate Genes

Scanning within the LD decay distance enabled us to identify five putative leaf width-
associated candidate genes based upon the 14 SNPs identified in the above GWAS analysis.
Of these genes, Zm00001d044327, which encodes a monophosphate phosphoribohydro-
lase, was found to harbor a significant SNP (sLW-225305520). Additionally, the 2310 bp
Zm00001d020287, which encodes the hypothetical ZEAMMB73 protein, was 2528 bp away
from a significant SNP (sLW-104304481; phenotype contribution rate = 7.1%). The 2539 bp
Zm00001d020285 candidate gene was predicted to code for the chloroplastic homolog 7 and
was 3128 bp from sLW-104304481, while the 1739 bp Zm00001d007267 candidate gene was
predicted to encode a chlorophyll a-b binding protein and was 9706 bp from a significant
SNP (sLW-226131901; phenotype contribution rate = 6.2%).

3.5. Functional Confirmation of SNP-Associated Gene Variants

Given the presence of a significant SNP within the Zm00001d044327 candidate gene, we
next conducted a qPCR analysis to confirm the association between this SNP and differences
in maize plant leaf width through comparative analyses. We additionally obtained a mutant
with a conserved amino acid termination mutation and non-synonymous mutations in the
LOG domain of Zm00001d044327 to better validate the functional role of this gene.

3.6. qPCR Analysis of the Zm00001d044327 Candidate Gene

To better understand the relationship between Zm00001d044327 and leaf width, we next
chose six inbred maize lines with an average leaf width of <7 cm, including W56
(mean leaf width = 6.2 cm), W58 (mean leaf width = 6.3 cm), W3 (mean leaf width = 6.6 cm), W43
(mean leaf width = 6.8 cm), W48 (mean leaf width = 7 cm), and W36 (mean leaf width = 7 cm).
We additionally selected six inbred lines with a mean leaf width > 9.3 cm, including W42 (mean
leaf width = 9.3 cm), W65 (mean leaf width = 9.4 cm), W38 (mean leaf width = 9.4 cm), W44
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(mean leaf width = 9.4 cm), W62 (mean leaf width = 9.5 cm), and W12 (mean leaf width = 9.7 cm).
These 12 plant lines were then used in qPCR analyses to assess Zm00001d044327 expression.

Through this approach, we found that Zm00001d044327 was expressed at significantly
higher levels in inbred maize lines with broad leaves (W12, W62, W44, W38, W65, and W42)
(p < 0.05) relative to those with narrow leaves (W56, W58, W3, W43, W48, and W36) (Figure 5).
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3.7. Assessment of the Phenotypic Impact of Zm00001d044327 Candidate Gene Mutations

Next, analyses were conducted based upon EMS mutants with a conserved amino acid
termination mutation and two non-synonymous mutations in Zm00001d044327. Zmlw-1 was
a conserved amino acid termination mutation (mutation location: chr3, 225305248). Zmlw-2
(mutation location: chr3, 225306397) and Zmlw-3 (mutation location: chr3, 225308016) are two
non-synonymous mutants in the LOG domain of Zm00001d044327, with Zmlw-2 causing a non-
synonymous tyrosine (Y) substitution for a histidine (H) and Zmlw-3 causing a non-synonymous
arginine (A) substitution for a valine (V) (Figure 6). Relative to the wild-type inbred B73 maize
line, the leaf width values for these three mutants were significantly narrower (Table 3, Figure 7).
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Table 3. Mutant leaf width phenotype variations.

Mutant Leaf Width above the Uppermost Ear (cm) Sig.

wild type (B73) 9.8 A
ZMLW-1 7.2 B
ZMLW-2 6.8 B
ZMLW-3 7.4 B
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4. Discussion
4.1. Leaf Width-Related SNP Markers

In this study, we utilized the farmCPU genome-wide association strategy to mitigate the
confounding effects of mixed genetic backgrounds and reduce false-negative outcomes [26].
This method facilitated a more precise identification of single nucleotide polymorphisms (SNPs)
associated with leaf width in inbred maize lines. Notably, several detected SNPs, such as
sLW-141511859 and sLW-104304481, were localized within the chromosomal regions bin5.04
and bin7.02, respectively. These regions correspond to previously characterized quantita-
tive trait loci (QTLs) associated with leaf width, specifically Y168871-umc1687 as identified
in Tang’s research [27]. Additionally, our results corroborated findings from Zhang et al.,
where sLW-30006587 and sLW-11019663 SNPs aligned with bnlg1808-dupssr9 and bnlg2235-
bnlg162 QTLs [28]. Furthermore, the sLW-226131901 SNP was concordant with the phi101049-
bnlg1520 QTL, and the sLW-225305520 SNP matched the umc1608-umc1030 QTL identified in a
Yu82 × Shen137 F2:3 population analysis conducted by Ku et al. [29]. Our analyses also un-
veiled novel SNP markers potentially linked to leaf width, underscoring the complex multigenic
inheritance of this trait. Challenges in precise microgene localization were noted, reflecting
limitations in the parental QTL mapping strategies employed in prior studies.

4.2. Candidate Gene Functional Analysis

In our genome-wide association study, we identified the candidate gene Zm00001d044327,
which harbors a significant SNP associated with leaf width. Notably, this gene was not
covered in our previous research published in PLOS One [10], highlighting a novel genetic
component in the architecture of maize leaf width. This gene is annotated to encode cytokinin
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phosphoribohydrolase LOG7 in the TAIRP43 database. Given that this enzyme is integral
to cytokinin biosynthesis and metabolism [30], it is hypothesized that LOG7 influences leaf
width through the modulation of hormone synthesis and signaling pathways. Expression
analysis revealed that Zm00001d044327 is predominantly expressed in maize foliage, reaching
peak expression in the ninth leaf (V9). Notably, expression levels were elevated in broad-
leaved phenotypes compared to their narrow-leaved counterparts. Ethyl methanesulfonate
(EMS) mutagenesis confirmed the gene’s role, where structural alterations in Zm00001d044327
correlated with reduced leaf width above the uppermost ear, substantiating its regulatory
function in leaf morphology.

Further investigations led to the identification of Zm00001d020287, located 2528 bp
upstream of SNP sLW-104303853. This gene encodes the hypothetical protein ZEAMMB73,
implicated in plant-bacterial interactions [31]. Additionally, the gene Zm00001d007267,
positioned 9706 bp from sLW-226131901, encodes the chlorophyll a-b binding protein. This
protein plays a pivotal role in the photosynthetic apparatus, facilitating the transduction of
light signals within maize foliage [32].

5. Conclusions

We performed a GWAS-based assessment of 80 backbone inbred maize lines and
1.49 × 106 SNPs, leading to the identification of 14 SNPs significantly associated with leaf
width based upon two years of phenotypic data (p < 0.000001), with these SNPs accounting
for 14.2% of the observed phenotypic variability in this trait. The sLW225305520 marker was
localized to an exonic region in the Zm00001d044327 candidate gene, resulting in the nonsyn-
onymous substitution of leucine (L) in place of phenylalanine (F) at amino acid position 227.

In total, five potential leaf width-associated genes were identified within the LD region.
Of these genes, Zm00001d044327, which encodes a cytokinin phosphoribohydrolase, was of
particular interest as it was predicted to positively regulate leaf width, it was expressed
at higher levels in broad-leaved plants relative to narrow-leaved plants, and it harbored a
significant SNP detected through this GWAS approach. The relevance of this candidate
gene was further confirmed based upon analyses of EMS mutants with one conserved
amino acid termination mutation and two non-synonymous mutations in Zm00001d044327,
as these plants exhibited a narrow leaf width variation.

Together, our data provide a robust scientific basis for future studies pertaining to the
genetic control of maize leaf width, while also providing a theoretical foundation for efforts to
optimize maize leaf width properties through accelerated molecular-based breeding strategies.
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