Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Plant
2.2. Origin of the Plant Material and Experimental Design
2.2.1. Container Plots along the Elevation Transect
2.2.2. Study Sites in Natural Populations (NAT)
2.2.3. Climate Measurements
2.3. Timing of Flower Development and Flowering Phenology
2.4. Duration of Anthesis and Seed Development on a Single Flower Basis
2.5. Male and Female Performance
2.5.1. Anthers and Pollen
2.5.2. Carpels and Ovules
2.5.3. Seed Set
2.5.4. Pollen/Ovule Ratio
2.5.5. Stigma Pollen Load, Pollen Germination, and Pollen Tube Growth
2.6. Reproductive Mode
2.7. Statistics
3. Results
3.1. Climate and Vegetation Period
3.2. Timing of Flower Development and Reproductive Phenology
3.3. Duration of Anthesis and Seed Development on a Single Flower Basis
3.3.1. Natural Sites
3.3.2. Transect
3.4. Male Performance
3.4.1. Anthers
3.4.2. Pollen
3.5. Female Performance
3.6. Pollen/Ovule Ratio
3.7. Stigma Pollen Load, Pollen Germination, Pollen Tube Growth, and Reproductive Success
3.8. Reproductive Mode of Diploid and Tetraploid Plants at Different Elevations
4. Discussion
4.1. Flower Preformation
4.2. Anthesis
4.3. Seed Development
4.4. Developmental Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hojsgaard, D.; Klatt, S.; Baier, R.; Carman, J.G.; Hörandl, E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit. Rev. Plant Sci. 2014, 33, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Hojsgaard, D.; Pullaiah, T. Apomixis in Angiosperms: Mechanisms, Occurrences, and Biotechnology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; 274p. [Google Scholar] [CrossRef]
- Hörandl, E. Apomixis and the paradox of sex in plants. Ann. Bot. 2024, 134, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hojsgaard, D.; Hörandl, E. The Rise of apomixis in natural plant populations. Front. Plant Sci. 2019, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Carman, J.G. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol. J. Linn. Soc. 1997, 61, 51–94. [Google Scholar] [CrossRef]
- Richards, A.J. Apomixis in flowering plants: An overview. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Asker, S.; Jerling, L. Apomixis in Plants; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Barker, M.S.; Arrigo, N.; Baniaga, A.E.; Li, Z.; Levin, D.A. On the relative abundance of autopolyploids and allopolyploids. New Phytol. 2016, 210, 391–398. [Google Scholar] [CrossRef]
- Wood, T.E.; Takebayashi, N.; Barker, M.S.; Mayrose, I.; Greenspoon, P.B.; Rieseberg, L.H. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 2009, 106, 13875–13879. [Google Scholar] [CrossRef]
- Soltis, D.E.; Buggs, R.J.A.; Doyle, J.J.; Soltis, P.S. What we still don’t know about polyploidy. Taxon 2010, 59, 1387–1403. [Google Scholar] [CrossRef]
- Schinkel, C.C.F.; Kirchheimer, B.; Dullinger, S.; Geelen, D.; De Storme, N.; Hörandl, E. Pathways to polyploidy: Indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Plant Syst. Evol. 2017, 303, 1093–1108. [Google Scholar] [CrossRef]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Ashman, T.L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef]
- Mason, A.S.; Nelson, M.N.; Yan, G.; Cowling, W.A. Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol. 2011, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- De Storme, N.; Copenhaver, G.P.; Geelen, D. Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol. 2012, 160, 1808–1826. [Google Scholar] [CrossRef] [PubMed]
- Klatt, S.; Schinkel, C.C.; Kirchheimer, B.; Dullinger, S.; Hörandl, E. Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). Ann. Bot. 2018, 121, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Hand, M.L.; Koltunow, A.M.G. The genetic control of apomixis: Asexual seed formation. Genetics 2014, 197, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Leon-Martinez, G.; Vielle-Calzada, J.P. Apomixis in flowering plants: Developmental and evolutionary considerations. In Plant Development and Evolution; Grossniklaus, U., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 565–604. [Google Scholar] [CrossRef]
- Schmidt, A. Controlling apomixis: Shared features and distinct characteristics of gene regulation. Genes 2020, 11, 329. [Google Scholar] [CrossRef]
- Grimanelli, D.; Leblanc, O.; Perotti, E.; Grossniklaus, U. Developmental genetics of gametophytic apomixis. Trends Genet. 2001, 17, 597–604. [Google Scholar] [CrossRef]
- Curtis, M.D.; Grossniklaus, U. Amphimixis and apomixis: Two sides of the same coin. In Apomixis: Evolution, Mechanisms and Perspectives; Hörandl, E., Grossniklaus, U., Van Dijk, P., Sharbel, T., Eds.; Gantner: Ruggell, Liechtenstein, 2007; pp. 37–62. [Google Scholar]
- Sharbel, T.F.; Voigt, M.L.; Corral, J.M.; Thiel, T.; Varshney, A.; Kumlehn, J.; Vogel, H.; Rotter, B. Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J. 2009, 58, 870–882. [Google Scholar] [CrossRef]
- Beck, J.B.; Alexander, P.J.; Allphin, L.; Al-Shehbaz, I.A.; Rushworth, C.; Bailey, C.D.; Windham, M.D. Does hybridization drive the transition to asexuality in diploid Boechera? Evolution 2012, 66, 985–995. [Google Scholar] [CrossRef]
- Hojsgaard, D.; Greilhuber, J.; Pellino, M.; Paun, O.; Sharbel, T.F.; Hörandl, E. Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. New Phytol. 2014, 204, 4. [Google Scholar] [CrossRef]
- Barke, B.H.; Daubert, M.; Hörandl, E. Establishment of apomixis in diploid F2 hybrids and inheritance of apospory from F1 to F2 hybrids of the Ranunculus auricomus complex. Front. Plant Sci. 2018, 9, 1111. [Google Scholar] [CrossRef] [PubMed]
- Paetzold, C.; Barke, B.H.; Hörandl, E. Evolution of transcriptomes in early-generation hybrids of the apomictic Ranunculus auricomus Complex (Ranunculaceae). Int. J. Mol. Sci. 2022, 23, 13881. [Google Scholar] [CrossRef] [PubMed]
- Spielman, M.; Vinkenoog, R.; Scott, R.J. Genetic mechanisms of apomixis. Phil. Trans. Roy. Soc. London. Series B Biol. Sci. 2003, 358, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Koltunow, A.; Grossniklaus, U. Apomixis: A developmental perspective. Ann. Rev. Plant Biol. 2003, 54, 547–574. [Google Scholar] [CrossRef] [PubMed]
- Klatt, S.; Hadacek, F.; Hodač, L.; Brinkmann, G.; Eilerts, M.; Hojsgaard, D.; Hörandl, E. Photoperiod extension enhances sexual megaspore formation and triggers metabolic reprogramming in facultative apomictic Ranunculus auricomus. Front. Plant Sci. 2016, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Ulum, F.B.; Costa Castro, C.; Hörandl, E. Ploidy-dependent effects of light stress on the mode of reproduction in the Ranunculus auricomus complex (Ranunculaceae). Front. Plant Sci. 2020, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, J.M.; Zappacosta, D.C.; Selva, J.P.; Garbus, I.; Albertini, E.; Echenique, V. Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula). PLoS ONE 2017, 12, e0175852. [Google Scholar] [CrossRef]
- Mateo de Arias, M.; Gao, L.; Sherwood, D.A.; Dwivedi, K.; Price, B.J.; Jamison, M.; Kowallis, B.M.; Carman, J.G. Whether gametophytes are reduced or unreduced in angiosperms might be determined metabolically. Genes 2020, 11, 1449. [Google Scholar] [CrossRef]
- Vandel, A. La parthenogenese geographique: Contribution a l’etude biologique et cytologique de la parthenogenese naturelle. Bull. Biol. De La Fr. Et De La Belg. 1928, 62, 164–281. [Google Scholar]
- Bierzychudek, P. Patterns in plant parthenogenesis. Experientia 1985, 41, 1255–1264. [Google Scholar] [CrossRef]
- Kearney, M. Hybridization, glaciation and geographical parthenogenesis. Trends Ecol. Evol. 2005, 20, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Hörandl, E. The complex causality of geographical parthenogenesis. New Phytol. 2006, 171, 525–538. [Google Scholar] [CrossRef]
- Hörandl, E. Geographical parthenogenesis: Opportunities for asexuality. In Lost Sex; Schön, I., Martens, K., Van Dijk, P.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 161–186. [Google Scholar]
- Hörandl, E. Geographical parthenogenesis in alpine and arctic plants. Plants 2023, 12, 844. [Google Scholar] [CrossRef] [PubMed]
- Marble, B.K. Polyploidy and self-compatibility: Is there an association? New Phytol. 2004, 162, 803–811. [Google Scholar] [CrossRef]
- Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005, 6, 836–846. [Google Scholar] [CrossRef]
- Hörandl, E. The evolution of self-fertility in apomictic plants. Sex. Plant Reprod. 2010, 23, 73–86. [Google Scholar] [CrossRef]
- Cosendai, A.C.; Wagner, J.; Ladinig, U.; Rosche, C.; Hörandl, E. Geographical parthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae). Heredity 2013, 110, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Alpine Plant Life. Functional Plant Ecology of High Mountain Systems, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2021; p. 500. [Google Scholar]
- Mogie, M. The Evolution of Asexual Reproduction in Plants; Chapman and Hall: London, UK, 1992; p. 292. [Google Scholar]
- Baker, H.G. Support for Baker’s Law—As a rule. Evolution 1967, 21, 853–856. [Google Scholar] [CrossRef]
- Schinkel, C.C.F.; Kirchheimer, B.; Dellinger, A.S.; Klatt, S.; Winkler, M.; Dullinger, S.; Hörandl, E. Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant. AoB Plants 2016, 8, plw064. [Google Scholar] [CrossRef]
- Karbstein, K.; Tomasello, S.; Hodač, L.; Lorberg, E.; Daubert, M.; Hörandl, E. Moving beyond assumptions: Polyploidy and environmental effects explain a geographical parthenogenesis scenario in European plants. Mol. Ecol. 2021, 30, 2659–2675. [Google Scholar] [CrossRef]
- Ramsey, J.; Ramsey, T.S. Ecological studies of polyploidy in the 100 years following its discovery. Phil. Trans. R. Soc. B 2014, 369, 20130352. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, G.L.; Dawe, J. Polyploidy and distribution in the European flora: A reappraisal. Bot. Jahrb. Syst. 1987, 108, 343–354. [Google Scholar]
- Brochmann, C.; Brysting, A.K.; Alsos, I.G.; Borgen, L.; Grundt, H.H.; Scheen, A.C.; Elven, R. Polyploidy in arctic plants. Biol. J. Linn. Soc. 2004, 82, 521–536. [Google Scholar] [CrossRef]
- Cosendai, A.-C.; Hörandl, E. Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann. Bot. 2010, 105, 457–470. [Google Scholar] [CrossRef]
- Hörandl, E. Evolutionary implications of self-compatibility and reproductive fitness in the apomictic Ranunculus auricomus polyploid complex (Ranunculaceae). Int. J. Plant Sci. 2008, 169, 1219–1228. [Google Scholar] [CrossRef]
- Burnier, J.; Burki, S.; Arrigo, N.; Küpfer, P.; Alvarez, N. Genetic structure and evolution of alpine polyploid complexes: Ranunculus kuepferi (Ranunculaceae) as a case study. Mol. Ecol. 2009, 18, 3720–3744. [Google Scholar] [CrossRef]
- Schinkel, C.C.F.; Syngelaki, E.; Kirchheimer, B.; Dullinger, S.; Klatt, S.; Hörandl, E. Epigenetic patterns and geographical parthenogenesis in the alpine plant species Ranunculus kuepferi (Ranunculaceae). Int. J. Mol. Sci. 2020, 21, 3318. [Google Scholar] [CrossRef]
- Kirchheimer, B.; Schinkel, C.C.F.; Dellinger, A.S.; Klatt, S.; Moser, D.; Winkler, M.; Lenoir, J.; Caccianiga, M.; Guisan, A.; Nieto-Lugilde, D.; et al. A matter of scale: Apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. J. Biogeogr. 2016, 43, 716–726. [Google Scholar] [CrossRef]
- Kirchheimer, B.; Wessely, J.; Gattringer, G.; Hülber, K.; Moser, D.; Schinkel, C.C.F.; Appelhans, M.; Klatt, S.; Caccianiga, M.; Dellinger, A.; et al. Reconstructing geographical parthenogenesis: Effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecol. Lett. 2018, 21, 392–401. [Google Scholar] [CrossRef]
- Syngelaki, E.; Daubert, M.; Klatt, S.; Hörandl, E. Phenotypic responses, reproduction mode and epigenetic patterns under temperature treatments in the alpine plant species Ranunculus kuepferi (Ranunculaceae). Biology 2020, 9, 315. [Google Scholar] [CrossRef]
- Cosendai, A.C.; Rodewald, J.; Hörandl, E. Origin and distribution of autopolyploids via apomixis in the alpine species Ranunculus kuepferi (Ranunculaceae). Taxon 2011, 60, 355–364. [Google Scholar] [CrossRef]
- Ladinig, U.; Hörandl, E.; Wagner, J. Geographical parthenogenesis in the sexual/apomictic alpine plant species Ranunculus kuepferi: Growth performance and reproductive success at climatically different sites along an elevation gradient. Alp. Bot. 2024; submitted. [Google Scholar]
- Huber, W. Natürliche Bastardierungen zwischen weißblühenden Ranunculus-Arten in den Alpen (Natural hybridizations between white-flowered species of Ranunculus in the Alps). Veröff. Geobot. Inst. ETH Stift. Rübel Zürich 1988, 100, 1–160, (German with English Abstract). [Google Scholar]
- Herr, J.M. A new clearing-squash technique for the study of ovule development in Angiosperms. Am. J. Bot. 1971, 58, 785–790. [Google Scholar] [CrossRef]
- Dafni, A.; Kevan, P.G.; Husband, B.C. Practical Pollination Biology; Enviroquest, Ltd.: Cambridge, ON, Canada, 2005; p. 590. [Google Scholar]
- Matzk, F.; Meister, A.; Schubert, I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J. 2000, 21, 97–108. [Google Scholar] [CrossRef]
- Syngelaki, E.; Schinkel, C.C.F.; Klatt, S.; Hörandl, E. Effects of temperature treatments on cytosine-methylation profiles of diploid and autotetraploid plants of the alpine species Ranunculus kuepferi (Ranunculaceae). Front. Plant Sci. 2020, 11, 435. [Google Scholar] [CrossRef]
- Syngelaki, E.; Paetzold, C.; Hörandl, E. Gene expression profiles suggest a better cold acclimation of polyploids in the alpine species Ranunculus kuepferi. Genes 2021, 12, 1818. [Google Scholar] [CrossRef]
- Heide, O.M. Ecotypic variation among European arctic and alpine populations of Oxyria digyna. Arct. Antarct. Alp. Res. 2005, 37, 233–238. [Google Scholar] [CrossRef]
- Larl, I.; Wagner, J. Timing of reproductive and vegetative development in Saxifraga oppositifolia in an alpine and a subnival climate. Plant Biol. 2006, 8, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Ladinig, U.; Steinacher, G.; Larl, I. From the flower bud to the mature seed: Timing and dynamics of flower and seed development in high-mountain plants. In Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies; Lütz, C., Ed.; Springer: Vienna, NY, USA, 2012; pp. 135–152. [Google Scholar]
- Rosenheim, J.A.; Williams, N.M.; Schreiber, S.J. Parental optimism versus parental pessimism in plants: How common should we expect pollen limitation to be? Am. Nat. 2014, 184, 75–90. [Google Scholar] [CrossRef]
- Burd, M.; Ashman, T.-L.; Campbell, D.R.; Dudash, M.R.; Johnston, M.O.; Knight, T.M.; Mazer, S.J.; Mitrchell, R.J.; Steets, J.A.; Vamosi, J.C. Ovule number per flower in a world of unpredictable pollination. Am. J. Bot. 2009, 96, 1159–1167. [Google Scholar] [CrossRef]
- Alatalo, J.M.; Molau, U. Effect of altitude on the sex ratio in populations of Silene acaulis (Caryophyllaceae). Nord. J. Bot. 1995, 15, 251–256. [Google Scholar] [CrossRef]
- Gugerli, F. Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 1998, 114, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Du, G.; Zhou, X.; Wang, M.; Ren, Q. Variations with altitude in reproductive traits and resource allocation on three Tibetan species of Ranunculaceae. Aust. J. Bot. 2006, 54, 691–700. [Google Scholar] [CrossRef]
- Ladinig, U.; Wagner, J. Timing of sexual reproduction and reproductive success in the high- mountain plant Saxifraga bryoides L. Plant Biol. 2007, 9, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.T.; Pérez, F.; Jara-Arancio, P.; Pacheco, D.; Vidal, P.; Flores, M.F. Ovule bet-hedging at high elevation in the South American Andes: Evidence form a phylogenetically controlled multispecies study. J. Ecol. 2019, 107, 668–683. [Google Scholar] [CrossRef]
- DeMarche, M.L.; Angert, A.L.; Kay, K.M. Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol. Evol. 2020, 10, 612–625. [Google Scholar] [CrossRef]
- Mauracher, S.; Wagner, J. Flower preformation in the nival plant Ranunculus glacialis L.: Shoot architecture and impact of the growing season length on floral morphogenesis and developmental dynamics. Alp. Bot. 2021, 131, 1–12. [Google Scholar] [CrossRef]
- Kimball, S.L.; Salisbury, F.B. Plant development under snow. Bot. Gaz. 1974, 135, 147–149. [Google Scholar] [CrossRef]
- Körner, C.; Riedl, S.; Keplinger, T.; Richter, A.; Wiesenbauer, J.; Schweingruber, F.; Hiltbrunner, E. Life at 0 °C: The biology of the alpine snowbed plant Soldanella pusilla. Alp. Bot. 2019, 129, 63–80. [Google Scholar] [CrossRef]
- Hamerlynck, E.P.; Smith, W.K. Subnivean and emergent microclimate, photosynthesis, and growth in Erythronium grandiflorum Pursh, a snowbank geophyte. Arct. Alp. Res. 1994, 26, 21–28. [Google Scholar] [CrossRef]
- Ladinig, U.; Hacker, J.; Neuner, G.; Wagner, J. How endangered is sexual reproduction of high-mountain plants by summer frosts?—Frost resistance, frequency of frost events and risk assessment. Oecologia 2013, 171, 743–760. [Google Scholar] [CrossRef] [PubMed]
- Hojsgaard, D.; Martínez, E.J.; Quarin, C.L. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. New Phytol. 2013, 197, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Bomblies, K.; Higgins, J.D.; Yant, L. Meiosis evolves: Adaptation to external and internal environments. New Phytol. 2015, 208, 306–323. [Google Scholar] [CrossRef]
- De Storme, N.; Geelen, D. The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant Cell Environ. 2014, 37, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mo, W.-J.; Zhang, D.; De Storme, N.; Geelen, D. Cold influences male reproductive development in plants: A hazard to fertility, but a window for evolution. Plant Cell Physiol. 2019, 60, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Bretagnolle, F.; Thompson, J.D. Gametes with the somatic chromosome number: Mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol. 1995, 129, 1–22. [Google Scholar] [CrossRef]
- De Storme, N.; Geelen, D. Sexual polyploidization in plants—Cytological mechanisms and molecular regulation. New Phytol. 2013, 198, 670–684. [Google Scholar] [CrossRef]
- Cruden, R.W. Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 1977, 31, 32–46. [Google Scholar] [CrossRef]
- Escaravage, N.; Wagner, J. Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population. Plant Biol. 2004, 6, 606–615. [Google Scholar] [CrossRef]
- Wagner, J.; Lechleitner, M.; Hosp, D. Pollen limitation is not the rule in nival plants: A study from the European Central Alps. Am. J. Bot. 2016, 103, 375–387. [Google Scholar] [CrossRef]
- Harder, L.D.; Aizen, M.A.; Richards, S.A.; Joseph, M.A.; Busch, J.W. Diverse ecological relations of male gametophyte populations in stylar environments. Am. J. Bot. 2016, 103, 484–497. [Google Scholar] [CrossRef] [PubMed]
- Mizuta, Y.; Higashiyama, T. Chemical signaling for pollen tube guidance at a glance. J. Cell Sci. 2018, 131, jcs208447. [Google Scholar] [CrossRef] [PubMed]
- Haig, D.; Westoby, M. Genomic imprinting in endosperm: Its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos. Trans. Biol. Sci. 1991, 333, 1–13. [Google Scholar] [CrossRef]
- Curtis, M.D.; Grossniklaus, U. Molecular control of autonomous embryo and endosperm development. Sex. Plant Reprod. 2008, 21, 79–88. [Google Scholar] [CrossRef]
- Wagner, J.; Mitterhofer, E. Phenology, seed development, and reproductive success of an alpine population of Gentianella germanica in climatically varying years. Bot. Acta 1998, 111, 159–166. [Google Scholar] [CrossRef]
- Sandvik, S.M.; Totland, Ø. Short-term effects of simulated environmental changes on phenology, reproduction, and growth in the late-flowering snowbed herb Saxifraga stellaris L. Ecoscience 2000, 7, 201–213. [Google Scholar] [CrossRef]
- Inouye, D.W.; Morales, M.A.; Dodge, G.J. Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): The roles of snowpack, frost, and La Niña, in the context of climate change. Oecologia 2002, 130, 543–550. [Google Scholar] [CrossRef]
- Molau, U.; Nordenhäll, U.; Eriksen, B. Onset of flowering and climate variability in an alpine landscape: A 10-year study from Swedish Lapland. Am. J. Bot. 2005, 92, 422–431. [Google Scholar] [CrossRef]
(A) | (B) | (C) | (D) | (E) | (F) | ||
---|---|---|---|---|---|---|---|
Cytotype | Site | Stigma Pollen Load | Germinated Pollen Grains | % Pollen Grains Germinated | Pollen Tubes per Style | Seed Set % | Seeds per Flower |
2x | P1800 | 41.8 ± 35.2 a | 34.6 ± 30.5 a | 75 a | 1.8 ± 1.0 | 56 ± 27 ab *** | 10.7 ± 6.8 ab ns |
P2300 | 54.7 ± 34.9 a | 44.4 ± 31.1 a | 78 a | 3.2 ± 1.5 | 40 ± 23 a ** | 6.7 ± 4.3 b *** | |
P2600 | 8.1 ± 10.2 b | 6.6 ± 7.8 b | 72 a | 3.0 ± 2.0 | 42 ± 22 a *** | 9.8 ± 6.5 a *** | |
P2800 | 12.4 ± 13.8 c | 10.2 ± 12.7 b | 72 a | 1.5 ± 0.7 | 39 ± 25 a *** | 11.3 ± 8.5 a *** | |
NAT | 68 ± 20 b *** | 16.5 ± 7.0 c ns | |||||
4x | P1800 | 13.7 ± 11.2 a | 7.3 ± 8.1 a | 48 a | 2.0 ± 0.0 | 19 ± 14 a | 8.8 ± 6.7 a |
P2300 | 53.7 ± 28.8 b | 23.2 ± 13.9 b | 43 a | 2.1 ± 0.9 | 27 ± 14 b | 11.5 ± 6.0 a | |
P2600 | 5.6 ± 5.4 c | 1.5 ± 2.1 c | 25 b | 1.0 ± 0.0 | 10 ± 9 c | 5.5 ± 6.1 b | |
P2800 | 2.5 ± 4.1 c | 1.7 ± 1.9 c | 42 a | 1.0 ± 0.0 | 7 ± 6 c | 4.1 ± 3.8 b | |
NAT | 40 ± 17 d | 18 ± 10 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladinig, U.; Hörandl, E.; Klatt, S.; Wagner, J. Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids. Life 2024, 14, 1202. https://doi.org/10.3390/life14091202
Ladinig U, Hörandl E, Klatt S, Wagner J. Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids. Life. 2024; 14(9):1202. https://doi.org/10.3390/life14091202
Chicago/Turabian StyleLadinig, Ursula, Elvira Hörandl, Simone Klatt, and Johanna Wagner. 2024. "Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids" Life 14, no. 9: 1202. https://doi.org/10.3390/life14091202
APA StyleLadinig, U., Hörandl, E., Klatt, S., & Wagner, J. (2024). Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids. Life, 14(9), 1202. https://doi.org/10.3390/life14091202