Converging Pathways: A Review of Pulmonary Hypertension in Interstitial Lung Disease
Abstract
:1. Introduction
2. Pulmonary Hypertension
3. Pulmonary Hypertension in ILD
4. Histopathology and Pathophysiology of ILD-PH
5. Cell Signalling Pathways and Molecular Mechanisms in ILD-PH
6. Pharmacological Management of ILD-PH
7. ILD-PH: Other Management Considerations
8. Phenotyping ILD-PH
9. Conclusions
10. Key Learning Points
- Clinically significant pulmonary hypertension (PH) is a relatively common complication of interstitial lung disease (ILD), more so in advanced fibrotic ILD, with significant implications for morbidity and mortality;
- While our understanding of the complex mechanisms underlying both fibrotic ILD and PH remains incomplete, the fibrotic and vascular processes are closely related and likely influence each other, further promoting the development of ILD-PH;
- Treprostinil, a nebulised prostacyclin analogue, may be beneficial for patients with ILD-PH, with ongoing investigation into its apparent anti-fibrotic effects in IPF further supporting the hypothesis of an interrelated pathophysiological process;
- Improved phenotyping of ILD-PH, such as the “pulmonary vascular” phenotype, will help advance our understanding of the condition and lead to improved clinical management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, N.; Chen, J.; Zhang, M.; Zhou, L.; Liu, L.; Yuan, J.; Pang, X.; Hu, D.; Ren, X.; Jin, Z. PAH-specific therapy for pulmonary hypertension and interstitial lung disease: A systemic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 992879. [Google Scholar] [CrossRef]
- Wells, A.U.; Brown, K.K.; Flaherty, K.R.; Kolb, M.; Thannickal, V.J. What’s in a name? That which we call IPF, by any other name would act the same. Eur. Respir. J. 2018, 51, 1800692. [Google Scholar] [CrossRef]
- Ruaro, B.; Baratella, E.; Confalonieri, P.; Wade, B.; Marrocchio, C.; Geri, P.; Busca, A.; Pozzan, R.; Andrisano, A.G.; Cova, M.A.; et al. High-Resolution Computed Tomography: Lights and Shadows in Improving Care for SSc-ILD Patients. Diagnostics 2021, 11, 1960. [Google Scholar] [CrossRef]
- Wijsenbeek, M.; Cottin, V. Spectrum of Fibrotic Lung Diseases. N. Engl. J. Med. 2020, 383, 958–968. [Google Scholar] [CrossRef]
- Kimura, M.; Taniguchi, H.; Kondoh, Y.; Kimura, T.; Kataoka, K.; Nishiyama, O.; Aso, H.; Sakamoto, K.; Hasegawa, Y. Pulmonary. Pulmonary hypertension as a prognostic indicator at the initial evaluation in idiopathic pulmonary fibrosis. Respiration 2013, 85, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Dhont, S.; Zwaenepoel, B.; Vandecasteele, E.; Brusselle, G.; De Pauw, M. Pulmonary hypertension in interstitial lung disease: An area of unmet clinical need. ERJ Open Res. 2022, 8, 00272–2022. [Google Scholar] [CrossRef]
- Waxman, A.B.; Elia, D.; Adir, Y.; Humbert, M.; Harari, S. Recent advances in the management of pulmonary hypertension with interstitial lung disease. Eur. Respir. Rev. 2022, 31, 210220. [Google Scholar] [CrossRef] [PubMed]
- Waxman, A.; Elia, D.; Adir, Y.; Humbert, M.; Harari, S. Inhaled Treprostinil in Pulmonary Hypertension Due to Interstitial Lung Disease. N. Engl. J. Med. 2021, 384, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Nathan, S.D.; Waxman, A.; Rajagopal, S.; Case, A.; Johri, S.; DuBrock, H.; De La Zerda, D.J.; Sahay, S.; King, C.; Melendres-Groves, L.; et al. Inhaled treprostinil and forced vital capacity in patients with interstitial lung disease and associated pulmonary hypertension: A post-hoc analysis of the INCREASE study. Lancet Respir. Med. 2021, 9, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Nathan, S.D.; Behr, J.; Cottin, V.; Lancaster, L.; Smith, P.; Deng, C.Q.; Pearce, N.; Bell, H.; Peterson, L.; Flaherty, K.R. Study design and rationale for the TETON phase 3, randomised, controlled clinical trials of inhaled treprostinil in the treatment of idiopathic pulmonary fibrosis. BMJ Open Respir. Res. 2022, 9, e001310. [Google Scholar] [CrossRef] [PubMed]
- Piccari, L.; Allwood, B.; Antoniou, K.; Chung, J.H.; Hassoun, P.M.; Nikkho, S.M.; Saggar, R.; Shlobin, O.A.; Vitulo, P.; Nathan, S.D.; et al. Pathogenesis, clinical features, and phenotypes of pulmonary hypertension associated with interstitial lung disease: A consensus statement from the Pulmonary Vascular Research Institute’s Innovative Drug Development Initiative—Group 3 Pulmonary Hypertension. Pulm. Circ. 2023, 13, e12213. [Google Scholar] [PubMed]
- May, J.; Mitchell, J.A.; Jenkins, R.G. Beyond epithelial damage: Vascular and endothelial contributions to idiopathic pulmonary fibrosis. J. Clin. Investig. 2023, 133, e172058. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Ma, K.C.; Berlin, D.A. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease. Am. J. Med. 2016, 129, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger RM, F.; Brida, M.; Carlsen, J.; Coats AJ, S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2022, 61, 46. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.; Savarimuthu, S.; Zhao, J.; Yan, X.; Oakland, H.T.; Cullinan, M.; Heerdt, P.M.; Singh, I. Noninvasive determinants of pulmonary hypertension in interstitial lung disease. Pulm. Circ. 2023, 13, e12197. [Google Scholar] [CrossRef]
- Keir, G.J.; Wort, S.J.; Kokosi, M.; George, P.M.; Walsh SL, F.; Jacob, J.; Price, L.; Bax, S.; Renzoni, E.A.; Maher, T.M.; et al. Pulmonary hypertension in interstitial lung disease: Limitations of echocardiography compared to cardiac catheterization. Respirology 2018, 23, 687–694. [Google Scholar] [CrossRef]
- Zisman, D.A.; Ross, D.J.; Belperio, J.A.; Saggar, R.; Lynch, J.P.; Ardehali, A.; Karlamangla, A.S. Prediction of pulmonary hypertension in idiopathic pulmonary fibrosis. Respir. Med. 2007, 101, 2153–2159. [Google Scholar] [CrossRef]
- Alkukhun, L.; Wang, X.F.; Ahmed, M.K.; Baumgartner, M.; Budev, M.M.; Dweik, R.A.; Tonelli, A.R. Non-invasive Screening for Pulmonary Hypertension in Idiopathic Pulmonary Fibrosis. Respir. Med. 2016, 117, 65. [Google Scholar] [CrossRef]
- Furukawa, T.; Kondoh, Y.; Taniguchi, H.; Yagi, M.; Matsuda, T.; Kimura, T.; Kataoka, K.; Johkoh, T.; Ando, M.; Hashimoto, N.; et al. A scoring system to predict the elevation of mean pulmonary arterial pressure in idiopathic pulmonary fibrosis. Eur. Respir. J. 2018, 51, 1701311. [Google Scholar] [CrossRef]
- Sonti, R.; Gersten, R.A.; Barnett, S.; Brown, A.W.; Nathan, S.D. Multimodal noninvasive prediction of pulmonary hypertension in IPF. Clin. Respir. J. 2019, 13, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.; O’Sullivan, D.M.; Farber, H.W. The PH-ILD Detection tool: External validation and use in patients with ILD. Pulm. Circ. 2023, 13, e12273. [Google Scholar] [CrossRef] [PubMed]
- Nathan, S.D.; Chandel, A.; Wang, Y.; Xu, J.; Shao, L.; Watkins, T.R.; Diviney, J.; King, C.S.; Han, L. Derivation and validation of a noninvasive prediction tool to identify pulmonary hypertension in patients with IPF: Evolution of the model FORD. J. Heart Lung Transplant. 2024, 43, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Rahaghi, F.F.; Kolaitis, N.A.; Adegunsoye, A.; de Andrade, J.A.; Flaherty, K.R.; Lancaster, L.H.; Lee, J.S.; Levine, D.J.; Preston, I.R.; Safdar, Z.; et al. Screening Strategies for Pulmonary Hypertension in Patients With Interstitial Lung Disease: A Multidisciplinary Delphi Study. Chest 2022, 162, 145–155. [Google Scholar] [CrossRef]
- Olsson, K.M.; Hoeper, M.M.; Pausch, C.; Grünig, E.; Huscher, D.; Pittrow, D.; Rosenkranz, S.; Gall, H. Pulmonary vascular resistance predicts mortality in patients with pulmonary hypertension associated with interstitial lung disease: Results from the COMPERA registry. Eur. Respir. J. 2021, 58, 2101483. [Google Scholar] [CrossRef]
- Raghu, G.; Nathan, S.D.; Behr, J.; Brown, K.K.; Egan, J.J.; Kawut, S.M.; Flaherty, K.R.; Martinez, F.J.; Wells, A.U.; Shao, L.; et al. Pulmonary hypertension in idiopathic pulmonary fibrosis with mild-to-moderate restriction. Eur. Respir. J. 2015, 46, 1370–1377. [Google Scholar] [CrossRef]
- Shah Gupta, R.; Koteci, A.; Morgan, A.; George, P.M.; Quint, J.K. Incidence and prevalence of interstitial lung diseases worldwide: A systematic literature review. BMJ Open Respir. Res. 2023, 10, e001291. [Google Scholar] [CrossRef]
- Raghu, G.; Amatto, V.C.; Behr, J.; Stowasser, S. Comorbidities in idiopathic pulmonary fibrosis patients: A systematic literature review. Eur. Respir. J. 2015, 46, 1113–1130. [Google Scholar] [CrossRef]
- Arslan, A.; Smith, J.; Qureshi, M.R.; Uysal, A.; Patel, K.K.; Herazo-Maya, J.D.; Bandyopadhyay, D. Evolution of pulmonary hypertension in interstitial lung disease: A journey through past, present, and future. Front. Med. 2023, 10, 1306032. [Google Scholar] [CrossRef]
- Valeyre, D. Towards a better diagnosis of idiopathic pulmonary fibrosis. Eur. Respir. Rev. 2011, 20, 108–113. [Google Scholar] [CrossRef]
- Wälscher, J.; Gross, B.; Morisset, J.; Johannson, K.A.; Vasakova, M.; Bruhwyler, J.; Kreuter, M. Comorbidities and survival in patients with chronic hypersensitivity pneumonitis. Respir. Res. 2020, 21, 12. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.K.F.; Pereira CA, C.; Ramos, R.P.; Ferreira EV, M.; Messina CM, S.; Kuranishi, L.T.; Gimenez, A.; Campos, O.; Silva CM, C.; Ota-Arakaki, J.S. A haemodynamic study of pulmonary hypertension in chronic hypersensitivity pneumonitis. Eur. Respir. J. 2014, 44, 415–424. [Google Scholar] [CrossRef] [PubMed]
- King, C.S.; Brown, A.W.; Shlobin, O.A.; Weir, N.; Libre, M.; Franco-Palacios, D.; Ahmad, S.; Nathan, S.D. Prevalence and impact of WHO group 3 pulmonary hypertension in advanced idiopathic nonspecific interstitial pneumonia. Eur. Respir. J. 2018, 52, 1800545. [Google Scholar] [CrossRef] [PubMed]
- Handa, T.; Nagai, S.; Miki, S.; Ueda, S.; Yukawa, N.; Fushimi, Y.; Ito, Y.; Ohta, K.; Mimori, T.; Mishima, M.; et al. Incidence of pulmonary hypertension and its clinical relevance in patients with interstitial pneumonias: Comparison between idiopathic and collagen vascular disease associated interstitial pneumonias. Intern. Med. 2007, 46, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Judge, E.P.; Fabre, A.; Adamali, H.I.; Egan, J.J. Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis. Eur. Respir. J. 2012, 40, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Chen, Y.; Ye, Q. Risk factors for acute exacerbation of idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Clin. Respir. J. 2018, 12, 1084–1092. [Google Scholar] [CrossRef]
- Ryerson, C.J.; Cottin, V.; Brown, K.K.; Collard, H.R. Acute exacerbation of idiopathic pulmonary fibrosis: Shifting the paradigm. Eur. Respir. J. 2015, 46, 512–520. [Google Scholar] [CrossRef]
- Nathan, S.D. Progress in the Treatment of Pulmonary Hypertension Associated with Interstitial Lung Disease. Am. J. Respir. Crit. Care Med. 2023, 208, 238–246. [Google Scholar] [CrossRef]
- Nikkho, S.M.; Richter, M.J.; Shen, E.; Abman, S.H.; Antoniou, K.; Chung, J.; Fernandes, P.; Hassoun, P.; Lazarus, H.M.; Olschewski, H.; et al. Clinical significance of pulmonary hypertension in interstitial lung disease: A consensus statement from the Pulmonary Vascular Research Institute’s innovative drug development initiative—Group 3 pulmonary hypertension. Pulm. Circ. 2022, 12, e12127. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Behr, J.; Held, M.; Grunig, E.; Vizza, C.D.; Vonk-Noordegraaf, A.; Lange, T.J.; Claussen, M.; Grohé, C.; Klose, H.; et al. Pulmonary Hypertension in Patients with Chronic Fibrosing Idiopathic Interstitial Pneumonias. PLoS ONE 2015, 10, e0141911. [Google Scholar] [CrossRef]
- Bagnato, G.; Harari, S. Cellular interactions in the pathogenesis of interstitial lung diseases. Eur. Respir. Rev. 2015, 24, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.C. Abnormal wound healing responses in pulmonary fibrosis: Focus on coagulation signalling. Eur. Respir. Rev. 2008, 17, 130–137. [Google Scholar] [CrossRef]
- Borie, R.; Le Guen, P.; Ghanem, M.; Taillé, C.; Dupin, C.; Dieudé, P.; Kannengiesser, C.; Crestani, B. The genetics of interstitial lung diseases. Eur. Respir. Rev. 2019, 28, 190053. [Google Scholar] [CrossRef] [PubMed]
- Fingerlin, T.E.; Murphy, E.; Zhang, W.; Peljto, A.L.; Brown, K.K.; Steele, M.P.; Loyd, J.E.; Cosgrove, G.P.; Lynch, D.; Groshong, S.; et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet. 2013, 45, 613. [Google Scholar] [CrossRef]
- Renzoni, E.A.; Walsh, D.A.; Salmon, M.; Wells, A.U.; Sestini, P.; Nicholson, A.G.; Veeraraghavan, S.; Bishop, A.E.; Romanska, H.M.; Pantelidis, P.; et al. Interstitial vascularity in fibrosing alveolitis. Am. J. Respir. Crit. Care Med. 2003, 167, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, S.C.; Poth, J.M.; Fini, M.A.; Olschewski, A.; El Kasmi, K.C.; Stenmark, K.R. The role of inflammation in hypoxic pulmonary hypertension: From cellular mechanisms to clinical phenotypes. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 308, L229–L252. [Google Scholar] [CrossRef]
- Ruffenach, G.; Hong, J.; Vaillancourt, M.; Medzikovic, L.; Eghbali, M. Pulmonary hypertension secondary to pulmonary fibrosis: Clinical data, histopathology and molecular insights. Respir. Res. 2020, 21, 303. [Google Scholar] [CrossRef]
- Harder, E.; Abtin, F.; Nardelli, P.; Brownstein, A.; Channick, R.N.; Washko, G.R.; Goldin, J.; San José Estépar, R.; Rahaghi, F.N.; Saggar, R.; et al. Pulmonary Hypertension in Idiopathic Interstitial Pneumonia Is Associated with Small Vessel Pruning. Am. J. Respir. Crit. Care Med. 2024, 209, 1170–1173. [Google Scholar] [CrossRef]
- Dotan, Y.; Stewart, J.; Gangemi, A.; Wang, H.; Aneja, A.; Chakraborty, B.; Dass, C.; Zhao, H.; Marchetti, N.; D’Alonzo, G.; et al. Pulmonary vasculopathy in explanted lungs from patients with interstitial lung disease undergoing lung transplantation. BMJ Open Respir. Res. 2020, 7, e000532. [Google Scholar] [CrossRef]
- Chin, K.M.; Kim NH, S.; Rubin, L.J. The right ventricle in pulmonary hypertension. Coron. Artery Dis. 2005, 16, 13–18. [Google Scholar] [CrossRef]
- Thorin, E.; Webb, D.J. Endothelium-derived endothelin-1. Pflug. Arch. 2010, 459, 951. [Google Scholar] [CrossRef] [PubMed]
- Saleh, D.; Furukawa, K.; Tsao, M.S.; Maghazachi, A.; Corrin, B.; Yanagisawa, M.; Barnes, P.J.; Giaid, A. Elevated expression of endothelin-1 and endothelin-converting enzyme-1 in idiopathic pulmonary fibrosis: Possible involvement of proinflammatory cytokines. Am. J. Respir. Cell Mol. Biol. 1997, 16, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Giaid, A.; Michel, R.P.; Stewart, D.J.; Sheppard, M.; Corrin, B.; Hamid, Q. Expression of endothelin-1 in lungs of patients with cryptogenic fibrosing alveolitis. Lancet 1993, 341, 1550–1554. [Google Scholar] [PubMed]
- Abraham, D.J.; Vancheeswaran, R.; Dashwood, M.R.; Rajkumar, V.S.; Pantelides, P.; Xu, S.W.; Du Bois, R.M.; Black, C.M. Increased levels of endothelin-1 and differential endothelin type A and B receptor expression in scleroderma-associated fibrotic lung disease. Am. J. Pathol. 1997, 151, 831–841. [Google Scholar] [PubMed]
- Pulito-Cueto, V.; Genre, F.; López-Mejías, R.; Mora-Cuesta, V.M.; Iturbe-Fernández, D.; Portilla, V.; Sebastián Mora-Gil, M.; Ocejo-Vinyals, J.G.; Gualillo, O.; Blanco, R.; et al. Endothelin-1 as a Biomarker of Idiopathic Pulmonary Fibrosis and Interstitial Lung Disease Associated with Autoimmune Diseases. Int. J. Mol. Sci. 2023, 24, 1275. [Google Scholar] [CrossRef]
- Park, S.H.; Saleh, D.; Giaid, A.; Michel, R.P. Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am. J. Respir. Crit. Care Med. 1997, 156, 600–608. [Google Scholar] [CrossRef]
- Pullamsetti, S.S.; Mamazhakypov, A.; Weissmann, N.; Seeger, W.; Savai, R. Hypoxia-inducible factor signaling in pulmonary hypertension. J. Clin. Investig. 2020, 130, 5638. [Google Scholar] [CrossRef]
- Garcia-Morales, L.J.; Chen, N.Y.; Weng, T.; Luo, F.; Davies, J.; Philip, K.; Volcik, K.A.; Melicoff, E.; Amione-Guerra, J.; Bunge, R.R.; et al. Altered Hypoxic-Adenosine Axis and Metabolism in Group III Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2016, 54, 574–583. [Google Scholar] [CrossRef]
- Goodwin, J.; Choi, H.; Hsieh, M.H.; Neugent, M.L.; Ahn, J.M.; Hayenga, H.N.; Singh, P.K.; Shackelford, D.B.; Lee, I.K.; Shulaev, V.; et al. Targeting Hypoxia-Inducible Factor-1α/Pyruvate Dehydrogenase Kinase 1 Axis by Dichloroacetate Suppresses Bleomycin-induced Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2018, 58, 216–231. [Google Scholar] [CrossRef]
- Nicolls, M.R.; Mizuno, S.; Taraseviciene-Stewart, L.; Farkas, L.; Drake, J.I.; Al Husseini, A.; Gomez-Arroyo, J.G.; Voelkel, N.F.; Bogaard, H.J. New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm. Circ. 2012, 2, 434. [Google Scholar] [CrossRef]
- Farkas, L.; Farkas, D.; Ask, K.; Möller, A.; Gauldie, J.; Margetts, P.; Inman, M.; Kolb, M. VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. J. Clin. Investig. 2009, 119, 1298–1311. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Kuwano, K.; Yamada, M.; Hagimoto, N.; Hiasa, K.; Egashira, K.; Nakashima, N.; Maeyama, T.; Yoshimi, M.; Nakanishi, Y.; et al. Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. J. Immunol. 2005, 175, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Barratt, S.L.; Flower, V.A.; Pauling, J.D.; Millar, A.B. VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease. Int. J. Mol. Sci. 2018, 19, 1269. [Google Scholar] [CrossRef] [PubMed]
- Ebina, M.; Shimizukawa, M.; Shibata, N.; Kimura, Y.; Suzuki, T.; Endo, M.; Sasano, H.; Kondo, T.; Nukiwa, T. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2004, 169, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Rol, N.; Kurakula, K.B.; Happé, C.; Bogaard, H.J.; Goumans, M.J. TGF-β and BMPR2 Signaling in PAH: Two Black Sheep in One Family. Int. J. Mol. Sci. 2018, 19, 2585. [Google Scholar] [CrossRef]
- Wei, P.; Xie, Y.; Abel, P.W.; Huang, Y.; Ma, Q.; Li, L.; Hao, J.; Wolff, D.W.; Wei, T.; Tu, Y. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 2019, 10, 670. [Google Scholar] [CrossRef]
- Younesi, F.S.; Miller, A.E.; Barker, T.H.; Rossi, F.M.; Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 617–638. [Google Scholar] [CrossRef]
- Austin, E.D.; Loyd, J.E. The Genetics of Pulmonary Arterial Hypertension. Circ. Res. 2014, 115, 189. [Google Scholar] [CrossRef]
- Chen, N.Y.; Collum, S.D.; Luo, F.; Weng, T.; Le, T.T.; Hernandez, A.M.; Philip, K.; Molina, J.G.; Garcia-Morales, L.J.; Cao, Y.; et al. Translational Research in Acute Lung Injury and Pulmonary Fibrosis: Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and Group III pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, L238. [Google Scholar] [CrossRef]
- Yanagihara, T.; Tsubouchi, K.; Zhou, Q.; Chong, M.; Otsubo, K.; Isshiki, T.; Schupp, J.C.; Sato, S.; Scallan, C.; Upagupta, C.; et al. Vascular-Parenchymal Cross-Talk Promotes Lung Fibrosis through BMPR2 Signaling. Am. J. Respir. Crit. Care Med. 2023, 207, 1498–1514. [Google Scholar] [CrossRef]
- Hoeper, M.; Dinh-Xuan, A.; Behr, J.; Ryu, J. Pulmonary hypertension in interstitial lung disease. Eur. Respir. J. 2008, 31, 1357–1367. [Google Scholar]
- Yang, L.; Zhou, F.; Zheng, D.; Wang, D.; Li, X.; Zhao, C.; Huang, X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor. Rev. 2021, 62, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Dorfmüller, P.; Shlobin, O.A.; Ventetuolo, C.E. Group 3 Pulmonary Hypertension: From Bench to Bedside. Circ. Res. 2022, 130, 1404–1422. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, N.; Phan, S.H.; Imaizumi, K.; Matsuo, M.; Nakashima, H.; Kawabe, T.; Shimokata, K.; Hasegawa, Y. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2010, 43, 161–172. [Google Scholar] [CrossRef]
- Waxman, A.; Restrepo-Jaramillo, R.; Thenappan, T.; Engel, P.; Bajwa, A.; Ravichandran, A.; Feldman, J.; Hajari Case, A.; Argula, R.G.; Tapson, V.; et al. Long-term inhaled treprostinil for PH-ILD: INCREASE open-label extension study. Eur. Respir. J. 2023, 61, 2202414. [Google Scholar] [CrossRef]
- Mura, M.; Anraku, M.; Yun, Z.; McRae, K.; Liu, M.; Waddell, T.K.; Singer, L.G.; Granton, J.T.; Keshavjee, S.; De Perrot, M. Gene expression profiling in the lungs of patients with pulmonary hypertension associated with pulmonary fibrosis. Chest 2012, 141, 661–673. [Google Scholar] [CrossRef]
- Farkas, L.; Kolb, M. Pulmonary microcirculation in interstitial lung disease. Proc. Am. Thorac. Soc. 2011, 8, 516–521. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Wang, Y.; Yuan, H.; Zhao, M.; Lian, H.; Ma, S.; Xu, K.; Li, Z.; Yu, G. Injured Endothelial Cell: A Risk Factor for Pulmonary Fibrosis. Int. J. Mol. Sci. 2023, 24, 8749. [Google Scholar] [CrossRef]
- Fließer, E.; Lins, T.; Berg, J.L.; Kolb, M.; Kwapiszewska, G. The endothelium in lung fibrosis: A core signaling hub in disease pathogenesis? Am. J. Physiol. Cell Physiol. 2023, 325, C2–C16. [Google Scholar] [CrossRef]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Manetti, M. The contribution of endothelial cells to tissue fibrosis. Curr. Opin. Rheumatol. 2024, 36, 52. [Google Scholar] [CrossRef]
- Zisman, D.A.; Schwarz, M.; Anstrom, K.J.; Collard, H.R.; Flaherty, K.R. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N. Engl. J. Med. 2010, 363, 620–628. [Google Scholar] [PubMed]
- Kolb, M.; Raghu, G.; Wells, A.U.; Behr, J.; Richeldi, L.; Schinzel, B.; Quaresma, M.; Stowasser, S.; Martinez, F.J. Nintedanib plus Sildenafil in Patients with Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 379, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Behr, J.; Nathan, S.D.; Wuyts, W.A.; Mogulkoc Bishop, N.; Bouros, D.E.; Antoniou, K.; Guiot, J.; Kramer, M.R.; Kirchgaessler, K.U.; Bengus, M.; et al. Efficacy and safety of sildenafil added to pirfenidone in patients with advanced idiopathic pulmonary fibrosis and risk of pulmonary hypertension: A double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2021, 9, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Seibold, J.R.; Denton, C.P.; Furst, D.E.; Guillevin, L.; Rubin, L.J.; Wells, A.; Matucci Cerinic, M.; Riemekasten, G.; Emery, P.; Chadha-Boreham, H.; et al. Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum. 2010, 62, 2101–2108. [Google Scholar] [CrossRef]
- King, T.E.; Brown, K.K.; Raghu, G.; Du Bois, R.M.; Lynch, D.A.; Martinez, F.; Valeyre, D.; Leconte, I.; Morganti, A.; Roux, S.; et al. BUILD-3: A randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2011, 184, 92–99. [Google Scholar] [CrossRef]
- Raghu, G.; Million-Rousseau, R.; Morganti, A.; Perchenet, L.; Behr, J.; Goh, N.; Glanville, A.; Musk, M.; Hopkins, P.; Lien, D.C.; et al. Macitentan for the treatment of idiopathic pulmonary fibrosis: The randomised controlled MUSIC trial. Eur. Respir. J. 2013, 42, 1622–1632. [Google Scholar] [CrossRef]
- Raghu, G.; Behr, J.; Brown, K.K.; Egan, J.J.; Kawut, S.M.; Flaherty, K.R.; Martinez, F.J.; Nathan, S.D.; Wells, A.U.; Collard, H.R.; et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: A parallel, randomized trial. Ann. Intern. Med. 2013, 158, 641–649. [Google Scholar] [CrossRef]
- Corte, T.J.; Keir, G.J.; Dimopoulos, K.; Howard, L.; Corris, P.A.; Parfitt, L.; Foley, C.; Yanez-Lopez, M.; Babalis, D.; Marino, P.; et al. Bosentan in pulmonary hypertension associated with fibrotic idiopathic interstitial pneumonia. Am. J. Respir. Crit. Care Med. 2014, 190, 208–217. [Google Scholar] [CrossRef]
- Nathan, S.D.; Behr, J.; Collard, H.R.; Cottin, V.; Hoeper, M.M.; Martinez, F.J.; Corte, T.J.; Keogh, A.M.; Leuchte, H.; Mogulkoc, N.; et al. Riociguat for idiopathic interstitial pneumonia-associated pulmonary hypertension (RISE-IIP): A randomised, placebo-controlled phase 2b study. Lancet Respir. Med. 2019, 7, 780–790. [Google Scholar] [CrossRef]
- Nathan, S.D.; Flaherty, K.R.; Glassberg, M.K.; Raghu, G.; Swigris, J.; Alvarez, R.; Ettinger, N.; Loyd, J.; Fernandes, P.; Gillies, H.; et al. A Randomized, Double-Blind, Placebo-Controlled Study of Pulsed, Inhaled Nitric Oxide in Subjects at Risk of Pulmonary Hypertension Associated With Pulmonary Fibrosis. Chest 2020, 158, 637–645. [Google Scholar] [CrossRef]
- King, C.S.; Flaherty, K.R.; Glassberg, M.K.; Lancaster, L.; Raghu, G.; Swigris, J.J.; Argula, R.G.; Dudenhofer, R.A.; Ettinger, N.A.; Feldman, J.; et al. A Phase-2 Exploratory Randomized Controlled Trial of INOpulse in Patients with Fibrotic Interstitial Lung Disease Requiring Oxygen. Ann. Am. Thorac. Soc. 2022, 19, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Study Details|A Study to Assess Pulsed Inhaled Nitric Oxide in Subjects with Pulmonary Fibrosis at Risk for Pulmonary Hypertension|ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/study/NCT03267108 (accessed on 11 September 2024).
- Ghofrani, H.A.; Wiedemann, R.; Rose, F.; Schermuly, R.T.; Olschewski, H.; Weissmann, N.; Gunther, A.; Walmrath, D.; Seeger, W.; Grimminger, F. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: A randomised controlled trial. Lancet 2002, 360, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Madden, B.P.; Allenby, M.; Loke, T.K.; Sheth, A. A potential role for sildenafil in the management of pulmonary hypertension in patients with parenchymal lung disease. Vasc. Pharmacol. 2006, 44, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Collard, H.R.; Anstrom, K.J.; Schwarz, M.I.; Zisman, D.A. Sildenafil improves walk distance in idiopathic pulmonary fibrosis. Chest 2007, 131, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K.; Bach, D.S.; Hagan, P.G.; Yow, E.; Flaherty, K.R.; Toews, G.B.; Anstrom, K.J.; Martinez, F.J. Sildenafil preserves exercise capacity in patients with idiopathic pulmonary fibrosis and right-sided ventricular dysfunction. Chest 2013, 143, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Neupane, B.; Zhang, Y.; Garcia, C.C.; Raghu, G.; Richeldi, L.; Brozek, J.; Beyene, J.; Schünemann, H. Treatment of idiopathic pulmonary fibrosis: A network meta-analysis. BMC Med. 2016, 14, 18. [Google Scholar] [CrossRef]
- Dawes, T.J.W.; McCabe, C.; Dimopoulos, K.; Stewart, I.; Bax, S.; Harries, C.; Samaranayake, C.B.; Kempny, A.; Molyneaux, P.L.; Seitler, S.; et al. Phosphodiesterase 5 inhibitor treatment and survival in interstitial lung disease pulmonary hypertension: A Bayesian retrospective observational cohort study. Respirology 2023, 28, 262–272. [Google Scholar] [CrossRef]
- Kacprzak, A.; Tomkowski, W.; Szturmowicz, M. Pulmonary Hypertension in the Course of Interstitial Lung Diseases—A Personalised Approach Is Needed to Identify a Dominant Cause and Provide an Effective Therapy. Diagnostics 2023, 13, 2354. [Google Scholar] [CrossRef]
- Sanchez, O.; Sitbon, O.; Jaï, S.X.; Simonneau, G.; Humbert, M. Immunosuppressive therapy in connective tissue diseases-associated pulmonary arterial hypertension. Chest 2006, 130, 182–189. [Google Scholar] [CrossRef]
- Jais, X.; Launay, D.; Yaici, A.; Le Pavec, J.; Tchérakian, C.; Sitbon, O.; Simonneau, G.; Humbert, M. Immunosuppressive therapy in lupus- and mixed connective tissue disease-associated pulmonary arterial hypertension: A retrospective analysis of twenty-three cases. Arthritis Rheum. 2008, 58, 521–531. [Google Scholar] [CrossRef]
- Miyamichi-Yamamoto, S.; Fukumoto, Y.; Sugimura, K.; Ishii, T.; Satoh, K.; Miura, Y.; Tatebe, S.; Nochioka, K.; Aoki, T.; Doe, Z.; et al. Intensive immunosuppressive therapy improves pulmonary hemodynamics and long-term prognosis in patients with pulmonary arterial hypertension associated with connective tissue disease. Circ. J. 2011, 75, 2668–2674. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, T.; Nagaoka, T.; Yoshida, T.; Wang, L.; Kuriyama, S.; Suzuki, Y.; Nagata, Y.; Harada, N.; Kodama, Y.; Takahashi, F.; et al. Nintedanib ameliorates experimental pulmonary arterial hypertension via inhibition of endothelial mesenchymal transition and smooth muscle cell proliferation. PLoS ONE 2019, 14, e0214697. [Google Scholar] [CrossRef] [PubMed]
- Tahara, M.; Oda, K.; Yamasaki, K.; Kawaguchi, T.; Sennari, K.; Noguchi, S.; Sakamoto, N.; Kawanami, T.; Mukae, H.; Yatera, K. Temporal echocardiographic assessment of pulmonary hypertension in idiopathic pulmonary fibrosis patients treated with nintedanib with or without oxygen therapy. BMC Pulm. Med. 2019, 19, 157. [Google Scholar] [CrossRef] [PubMed]
- Adir, Y.; Humbert, M.; Chaouat, A. Sleep-related breathing disorders and pulmonary hypertension. Eur. Respir. J. 2020, 57, 2002258. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, P.; Lu, W.; Gaikwad, A.V.; Dey, S.; Chia, C.; Larby, J.; Haug, G.; Hardikar, A.; Williams, A.; Singhera, G.K.; et al. Arterial remodelling in smokers and in patients with small airway disease and COPD: Implications for lung physiology and early origins of pulmonary hypertension. ERJ Open Res. 2022, 8, 00254–2022. [Google Scholar] [CrossRef]
- Weissmann, N.; Grimminger, F.; Seeger, W. Smoking: Is it a risk factor for pulmonary vascular diseases? Pulm. Circ. 2012, 2, 395. [Google Scholar] [CrossRef]
- Weitzenblum, E.; Sautegeau, A.; Ehrhart, M.; Mammosser, M.; Pelletier, A. Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1985, 131, 493–498. [Google Scholar] [CrossRef]
- Ulrich, S.; Hasler, E.D.; Saxer, S.; Furian, M.; Müller-Mottet, S.; Keusch, S.; Bloch, K.E. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: Randomized, sham-controlled cross-over trial. Eur. Heart J. 2017, 38, 1159–1168. [Google Scholar] [CrossRef]
- Ulrich, S.; Keusch, S.; Hildenbrand, F.F.; Lo Cascio, C.; Huber, L.; Tanner, F.C.; Speich, R.; Bloch, K.E. Effect of nocturnal oxygen and acetazolamide on exercise performance in patients with pre-capillary pulmonary hypertension and sleep-disturbed breathing: Randomized, double-blind, cross-over trial. Eur. Heart J. 2015, 36, 615–623. [Google Scholar] [CrossRef]
- Bell, E.C.; Cox, N.S.; Goh, N.; Glaspole, I.; Westall, G.P.; Watson, A.; Holland, A.E. Oxygen therapy for interstitial lung disease: A systematic review. Eur. Respir. Rev. 2017, 26, 160080. [Google Scholar] [CrossRef]
- Kvale, P.A.; Conway, W.A.; Coates, E.O. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: A clinical trial. Nocturnal Oxygen Therapy Trial Group. Ann. Intern. Med. 1980, 93, 391–398. [Google Scholar]
- Leggett, R.J.; Cooke, N.J.; Clancy, L.; Leitch, A.G.; Kirby, B.J.; Flenley, D.C. Long-term domiciliary oxygen therapy in cor pulmonale complicating chronic bronchitis and emphysema. Thorax 1976, 31, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Petty, T.L.; Finigan, M.M. Clinical evaluation of prolonged ambulatory oxygen therapy in chronic airway obstruction. Am. J. Med. 1968, 45, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.; Adamali, H.; Millar, A.B. Ambulatory and short-burst oxygen for interstitial lung disease. Cochrane Database Syst. Rev. 2016, 7, CD011716. [Google Scholar] [CrossRef] [PubMed]
- Creamer, A.W.; Barratt, S.L. Does ambulatory oxygen improve quality of life in patients with fibrotic lung disease? Results from the AmbOx trial. Breathe 2019, 15, 140. [Google Scholar] [CrossRef]
- Holland, A.E.; Corte, T.; Chambers, D.C.; Palmer, A.J.; Ekström, M.P.; Glaspole, I.; Goh NS, L.; Hepworth, G.; Khor, Y.H.; Hoffman, M.; et al. Ambulatory oxygen for treatment of exertional hypoxaemia in pulmonary fibrosis (PFOX trial): A randomised controlled trial. BMJ Open 2020, 10, e040798. [Google Scholar] [CrossRef]
- Margaritopoulos, G.A.; Proklou, A.; Trachalaki, A.; Bonet, D.B.; Kokosi, M.; Kouranos, V.; Chua, F.; George, P.M.; Renzoni, E.A.; Devaraj, A.; et al. Overnight desaturation in interstitial lung diseases: Links to pulmonary vasculopathy and mortality. ERJ Open Res. 2024, 10, 00740–02023. [Google Scholar] [CrossRef]
- Myall, K.J.; West, A.G.; Martinovic, J.L.; Lam, J.L.; Roque, D.; Wu, Z.; Maher, T.M.; Molyneaux, P.L.; Suh, E.S.; Kent, B.D. Nocturnal Hypoxemia Associates With Symptom Progression and Mortality in Patients With Progressive Fibrotic Interstitial Lung Disease. Chest 2023, 164, 1232–1242. [Google Scholar] [CrossRef]
- Rajan, S.K.; Cottin, V.; Dhar, R.; Danoff, S.; Flaherty, K.R.; Brown, K.K.; Mohan, A.; Renzoni, E.; Mohan, M.; Udwadia, Z.; et al. Progressive pulmonary fibrosis: An expert group consensus statement. Eur. Respir. J. 2023, 61, 2103187. [Google Scholar] [CrossRef]
- Caminati, A.; Cassandro, R.; Harari, S. Pulmonary hypertension in chronic interstitial lung diseases. Eur. Respir. Rev. 2013, 22, 292–301. [Google Scholar] [CrossRef]
- Krompa, A.; Marino, P. Diagnosis and management of pulmonary hypertension related to chronic respiratory disease. Breathe 2022, 18, 220205. [Google Scholar] [CrossRef] [PubMed]
- Eyries, M.; Montani, D.; Girerd, B.; Favrolt, N.; Riou, M.; Faivre, L.; Manaud, G.; Perros, F.; Gräf, S.; Morrell, N.W.; et al. Familial pulmonary arterial hypertension by KDR heterozygous loss of function. Eur. Respir. J. 2020, 55, 1902165. [Google Scholar] [CrossRef] [PubMed]
WHO Group | Classification | Causes | mPAP (mmHg) | PAWP (mmHg) | PVR (Wood Units-WU) |
---|---|---|---|---|---|
Group 1 Pre-capillary | Pulmonary arterial hypertension (PAH) | 1.1 Idiopathic 1.2 Heritable 1.3 Associated with drugs and toxins 1.4 Associated with connective tissue disease, HIV infection, portal hypertension, congenital heart disease, schistosomiasis 1.5 PAH with features of venous/capillary (PVOD/PCH) involvement 1.6 Persistent PH of the newborn | >20 | ≤15 | >2 |
Group 2 Post-capillary | Pulmonary hypertension associated with left heart disease | 1.2 Heart failure 2.2 Valvular heart disease 2.3 Congenital/acquired cardiovascular conditions leading to post-capillary PH | >20 | >15 | ≤2 |
Group 3 Pre-capillary | Pulmonary hypertension associated with lung diseases and/or hypoxia | 3.1 Obstructive lung disease or emphysema 3.2 Restrictive lung disease 3.3 Lung disease with mixed restrictive/obstructive pattern 3.4 Hypoventilation syndromes 3.5 Hypoxia without lung disease (e.g., high altitude) 3.6 Developmental lung disorder | >20 | ≤15 | >2 Severe PH >5 |
Group 4 Pre-capillary | Pulmonary hypertension associated with pulmonary artery obstructions | 4.1 Chronic thrombo-embolic PH 4.2 Other pulmonary artery obstructions | >20 | ≤15 | >2 |
Group 5 Unclear or mixed | Pulmonary hypertension with unclear and/or multifactorial mechanisms | 5.1 Haematological disorders 5.2 Systemic disorders 5.3 Metabolic disorders 5.4 Chronic renal failure with or without haemodialysis 5.5 Pulmonary tumour thrombotic microangiopathy 5.6 Fibrosing mediastinitis | >20 | Not specified | Not specified |
Study | Study Group | Primary Outcome | Result | Additional Information | Safety |
---|---|---|---|---|---|
Sildenafil STEP-IPF Zisman et al., 2010 [81] | Advanced IPF (DLCO < 35%) n = 180 | Improvement in 6MWD (12 weeks) | Not met | Statistically significant improvement in paO2, DLCO, breathlessness and QoL | No concerns |
Nintedanib + Sildenafil INSTAGE Kolb et al., 2018 [82] | IPF + DLCO ≤ 35% n = 274 | Improvement in SGRQ score (12 weeks) | Not met | No concerns | |
Sildenafil + Pirfenidone SP-IPF Behr et al., 2021 [83] | Advanced IPF (DLCO < 40%p and at risk of G3PH) n = 177 | Disease progression (52 weeks) | Not met | Disease progression defined as a composite of decline in 6MWD, respiratory hospitalisation and all-cause mortality | No concerns |
Bosentan BUILD-2 Seibold et al., 2010 [84] | SSc-ILD n = 163 | Improvement in 6MWD (52 weeks) | Not met | No concerns | |
Bosentan BUILD-3 King et al., 2011 [85] | IPF (<5% honeycombing on HRCT) n = 616 | Improvement in 6MWD (52 weeks) | Not met | No concerns | |
Macitentan MUSIC Raghu et al., Million-Rousseau et al., 2013 [86] | IPF n = 178 | Improvement in FVC (52 weeks) | Not met | No concerns | |
Ambrisentan ARTEMIS-IPF Raghu, Behr et al., 2013 [87] | IPF n = 492 | Time to disease progression | Terminated early | Disease progression defined as a decline in lung function, respiratory hospitalisation or death | Increased likelihood of disease progression (27.4% vs. 17.2%) and death (7.9% vs. 3.7%) |
Bosentan B-PHIT Corte et al., 2014 [88] | Fibrotic IIP + RHC confirmed PH n = 60 | Reduction in PVRi ≥20% (16 weeks) | Not met | No concerns | |
Riociguat RISE-IIP Nathan et al., 2019 [89] | IIP + RHC confirmed PH n = 147 | Improvement in 6MWD (26 weeks) | Terminated early | Higher SAE’s (37% vs. 23%) and mortality (8 vs. 3) | |
Nitric oxide iNO-PF Nathan et al., 2020 [90] | Fibrotic ILD n = 41 | ΔMVPA and overall activity (8 weeks) | ΔMVPA met | Improvement in oxygen saturation in the study group | No concerns |
Nitric oxide King et al., 2022 [91] | Fibrotic ILD n = 44 | ΔMVPA, SOBQ and SGRQ scores (3 months) | n/a-exploratory | Stabilised activity levels and SOBQ and SGRQ scores compared to placebo | No concerns |
Nitric oxide REBUILD [92] | ILD on LTOT, at risk of PH n = 145 | Δ6MWD | Terminated early | Terminated early as not meeting primary or secondary endpoints | No concerns |
Treprostinil INCREASE Waxman et al., 2021 [8] | Fibrotic ILD + RHC confirmed PH (PVR > 3) n = 326 | Δ6MWD (16 weeks) | Δ6MWD met | Mean group difference: 31.12 m, ΔNT-proBNP from baseline: ↓ 15% vs. ↑ 46%, clinical worsening: 22.7% vs. 33.1% | No concerns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawrence, A.; Myall, K.J.; Mukherjee, B.; Marino, P. Converging Pathways: A Review of Pulmonary Hypertension in Interstitial Lung Disease. Life 2024, 14, 1203. https://doi.org/10.3390/life14091203
Lawrence A, Myall KJ, Mukherjee B, Marino P. Converging Pathways: A Review of Pulmonary Hypertension in Interstitial Lung Disease. Life. 2024; 14(9):1203. https://doi.org/10.3390/life14091203
Chicago/Turabian StyleLawrence, Alexandra, Katherine Jane Myall, Bhashkar Mukherjee, and Philip Marino. 2024. "Converging Pathways: A Review of Pulmonary Hypertension in Interstitial Lung Disease" Life 14, no. 9: 1203. https://doi.org/10.3390/life14091203
APA StyleLawrence, A., Myall, K. J., Mukherjee, B., & Marino, P. (2024). Converging Pathways: A Review of Pulmonary Hypertension in Interstitial Lung Disease. Life, 14(9), 1203. https://doi.org/10.3390/life14091203