Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Earthworm Collection
2.2. Chemical Products
2.3. Lethality Test
2.4. Sublethality Test
2.4.1. Growth Inhibition Rate
2.4.2. Morphohistological Study
2.5. Statistical Analyses
3. Results
3.1. Lethality Effects
3.2. Sublethality Effects
3.2.1. Effects of Ammonium Sulfate on the Growth of Worms
3.2.2. Morphological Alterations
3.2.3. Histopathological Examination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, H.K.; Garg, H. Environmental impacts and management strategies. Pestic. Toxic. Asp. 2014, 8, 187–230. [Google Scholar]
- Băcanu, C.S.; Cristina, S.D.; Iuliana Manuela, D.I.; Silvius, S. Agricultural production, soil quality and fertilizer used in Braila County, Romania. Res. Agr. Agron. 2019, 9. [Google Scholar] [CrossRef]
- IFA. “International Fertilizer Industry Association.” Assessment of Fertilizer Use by Crop at the Global Level; IFA: Paris, France, 2013. [Google Scholar]
- Meena, R.S.; Bohra, J.S.; Singh, S.P.; Meena, V.S.; Verma, J.P.; Verma, S.K.; Sihag, S.K. Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: A book review. J. Clean. Prod. 2016, 112, 1258–1260. [Google Scholar] [CrossRef]
- Hanăcek, K.; Beatriz, R.L. Impacts of land-use and management changes on cultural agroecosystem services and environmental conflicts—A global review. Glob. Environ. Chang. 2018, 50, 41–59. [Google Scholar] [CrossRef]
- Díaz-Álvarez, E.A.; Lindig-Cisneros, R.; Barrera, E. Biomonitors of atmospheric nitrogen deposition: Potential uses and limitations. Conserv. Physiol. 2018, 6, coy011. [Google Scholar] [CrossRef] [PubMed]
- Payne, R.J.; Dise, N.B.; Field, C.D.; Dore, A.J.; Carpon, S.J.; Stevens, C.J. Nitrogen deposition and plant biodiversity: Past, present, and future. Front. Ecol. Environ. 2017, 15, 431–436. [Google Scholar] [CrossRef]
- Shruthi, N.; Biradar, A.P.; Muzammil, S. Toxic effect of inorganic fertilizers to earthworms (Eudrilus eugeniae). J. Entomol. Zool. Stud. 2017, 5, 1135–1137. [Google Scholar]
- Eijsackers, H. Earthworms in environmental research. In Earthworms Ecology; Edwards, C.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 103–122. [Google Scholar]
- Jansirani, D.; Nivethitha, S.; Singh, M. Production and utilization of vermicast using organic wastes and its impact on Trigonella foenum and Phaseolus aureus. Int. J. Res. Biol. Sci. 2012, 2, 187–189. [Google Scholar]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbulcke, F. Pesticides and earthworms: A review. Agro. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef]
- Fründ, H.C.; Butt, K.; Capowiez, Y.; Eisenhauer, N.; Emmerling, C.; Ernst, G.; Potthoff, M.; Schädler, M.; Schrader, S. Using earthworms as model organisms in the laboratory: Recommendations for experimental implementations. Pedobiologia 2010, 53, 119–125. [Google Scholar] [CrossRef]
- OECD. Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei); OECD: Paris, France, 2004; p. 222. [Google Scholar]
- OECD. Earthworm Reproduction Test (Eisenia fetida/andrei); OECD Guidelines for the Testing of Chemicals (Test 2004); OECD: Paris, France, 2004; p. 220. [Google Scholar]
- Curry, J.P.; Doherty, P.; Purvis, G.; Schmidt, O. Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland. Appl. Soil Ecol. 2008, 39, 58–64. [Google Scholar] [CrossRef]
- Tindaon, F.; Benckiser, G.; Ottow, J.C.G. Side effects of nitrification inhibitors on non target microbial processes in soils. J. Trop. Soils 2011, 16, 7–16. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sahu, S.K. Lethal effect of urea on soil biota: A laboratory study on earthworm (Drawida willsi). J. Biodivers. Environ. Sci. 2014, 4, 64–72. [Google Scholar]
- Miglani, R.; Bisht, S.S. World of earthworms with pesticides and insecticides. Interdiscip. Toxicol. 2019, 12, 71–82. [Google Scholar] [CrossRef]
- Seamans, T.W.; Blackwell, B.F.; Bernhardt, G.E.; Potter, D.A. Assessing chemical control of earthworms at airports. Wildl. Soc. Bull. 2015, 39, 434–442. [Google Scholar] [CrossRef]
- Yahyaabadi, M.; Hamidian, A.H.; Ashrafi, S. Dynamics of earthworm species at different depths of orchard soil receiving organic or chemical fertilizer amendments. Eurasian. J. Soil. Sci. 2018, 7, 318–325. [Google Scholar] [CrossRef]
- OECD. No. 207: Earthworm, Acute Toxicity Tests; OECD Publishing: Paris, France, 1984. [Google Scholar]
- ISO. Soil Quality—Avoidance Test for Determining the Quality of Soils and Effects of Chemicals on Behaviour—Part 1: Test with Earthworms (Eisenia fetida and Eisenia andrei); ISO: Geneva, Switzerland, 2008. [Google Scholar]
- ISO. Effects of Pollutants on Earthworms—Part 1: Determination of Acute Toxicity to Eisenia fetida/Eisenia Andrei; ISO: Geneva, Switzerland, 2012; p. 18. [Google Scholar]
- ISO. Effects of Pollutants on Earthworms—Part 2: Determination of Effects on Reproduction of Eisenia fetida/Eisenia andrei; ISO: Geneva, Switzerland, 2012; p. 21. [Google Scholar]
- Bazri, K.E.; Ouahrani, G.; Gheribi-Aoulmi, Z.; DíazCosín, D.J. La diversité des lombriciens dans l’Est algérien depuis la côte jusqu’au désert. Ecologia. Mediterr. 2013, 39, 5–17. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, Y.; Wang, X.; Lu, Y.; Yan, S. Comparative effects of lindane and deltamethrin on mortality, growth, and cellulose activity in earthworms (Eisenia fetida). Pestic. Biochem. Physiol. 2007, 89, 31–38. [Google Scholar] [CrossRef]
- Hould, R.; De Shawinigan, C. Techniques D’histopathologie et de Cytopathologie; Décarie: Québec, QC, Canada, 1984; Volume 1, p. 400. [Google Scholar]
- Curry, J.P. Factors Affecting the Abundance of Earthworms in Soils; Edwards, C.A., Ecology, E., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 91–114. [Google Scholar]
- Pfiffner, L. Earthworms Architects of fertile soils. Their significance and recommendations for their promotion in agriculture. In Technical Guide on Earthworms, International edition; Research Institute of Organic Agriculture: Frick, Switzerland, 2014. [Google Scholar]
- Rusek, J.; Marshall, V.G. Impacts of air borne pollutants on soil fauna. Annu. Rev. Ecol. Syst. 2000, 31, 395–423. [Google Scholar] [CrossRef]
- Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms, 3rd ed.; Chapman and Hall: London, UK, 1996. [Google Scholar]
- Zhang, J.E.; Yu, J.; Ouyang, Y.; Xu, H. Responses of earthworm to aluminum toxicity in latosol. Environ. Sci. Pollut. Res. 2013, 20, 1135–1141. [Google Scholar] [CrossRef]
- Homan, C.; Beier, C.; McCay, T.; Lawrence, G. Application of lime (CaCO3) to promote forest recovery from severe acidification in- creases potential for earthworm invasion. For. Ecol. Manag. 2016, 368, 39–44. [Google Scholar] [CrossRef]
- Chen, J.H. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use; Land Development Department: Bangkok, Thailand, 2006; pp. 1–11. [Google Scholar]
- Zhou, Q.; Zhang, Q.; Liang, J.D. Toxic effects of acetochlor and methamidophos on earthworm Eisenia fetida in phaiozem, northeast China. J. Environ. Sci. 2006, 18, 741–745. [Google Scholar]
- McCallum, H.M.; Wilson, J.D.; Beaumont, D.; Sheldon, R.; O’Brien, M.G.; Park, K.J. A role for liming as a conservation intervention? Earthworm abundance is associated with higher soil pH and foraging activity of a threatened shorebird in upland grasslands. Agric. Ecosyst. Environ. 2016, 223, 182–189. [Google Scholar] [CrossRef]
- Schnabel, E.; Wilcoxen, T.E. Effects of ammonium sulfate on stress physiology and innate immunity of Western mosquitofish (Gambusia affinis). Fish Physiol. Biochem. 2020, 46, 2027–2035. [Google Scholar] [CrossRef]
- Tiwari, S.C. Effects of organic manure and NPK fertilization on earthworm activity in an Oxisol. Biol. Fertil. Soils 1993, 16, 293–295. [Google Scholar] [CrossRef]
- Iordache, M.; Borza, I. Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant Soil Environ. 2010, 56, 401–407. [Google Scholar] [CrossRef]
- Aouaichia, K.; Grara, N.; Bousbia, A. Ecotoxicological effects of potassium nitrate fertilizer on mortality, growth rate and morpho-histological levels of Aporrectodea trapezoides (Dugès, 1828) earthworm. Analele Univ. Din Oradea Fasc. Biol. 2023, 30, 53–59. [Google Scholar]
- Frank, J.F. The toxicity of sodium chlorate herbicide. Can. J. Comp. Med. 1948, 12, 216–218. [Google Scholar] [PubMed]
- Yamanaka, S.; Hashimoto, M.; Tobe, M.; Kobayashi, K.; Sekizawa, J.; Nishimura, M. A simple method for screening assessment of acute toxicity of chemicals. Arch. Toxicol. 1990, 64, 262–268. [Google Scholar] [CrossRef]
- Xu, Q.; Oldham, R. Lethal and sublethal effects of nitrogen fertilizer ammonium nitrate on common toad (Bufo bufo) tadpoles. Arch. Environ. Contam. Toxicol. 1997, 32, 298–303. [Google Scholar] [CrossRef]
- Nahmani, J.; Lavelle, P.; Lapied, E.; Van Oort, F. In Proceedings of the heavy metal soil pollution on earthworm communities in the north of France: The 7th international symposium on earthworm ecology Cardiff·Wales·2002. Pedobiologia 2002, 47, 663–669. [Google Scholar]
- Wu, S.; Wu, E.; Qiu, L.; Zhong, W.; Chen, J. Effects of phenanthrene on the mortality, growth, and anti-oxidant system of earthworms (Eisenia fetida) under laboratory conditions. Chemosphere 2011, 83, 429–434. [Google Scholar] [CrossRef]
- Curry, J.P. Grassland Invertebrates: Ecology, Influence on Soil Fertility, and Effects on Plant Growth; Springer Science & Business Media: Berlin/Heidelberg, Germany; Chapman and Hall: London, UK, 1994. [Google Scholar]
- Liu, T.; Wang, X.; Chen, D.; Li, Y.; Wang, F. Growth, reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms (Eisenia fetida). Ecotox. Environ. Saf. 2018, 150, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Zhang, F.; Yao, X.; Yu, H.; Sun, S.; Li, X.; Zhang, J.; Jiang, X. DNA damage and biochemical toxicity of cyantraniliprole in earthworms (Eisenia fetida). Chemosphere 2019, 236, 124328. [Google Scholar] [CrossRef]
- Yao, X.; Qiao, Z.; Zhang, F.; Liu, X.; Du, Q.; Zhang, J.; Li, X.; Jiang, X. Effects of a novel fungicide benzovindiflupyr in Eisenia fetida: Evaluation through different levels of biological organization. Environ. Pollut. 2021, 271, 116336. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, F.; Qiao, Z.; Yu, H.; Sun, S.; Li, X.; Zhang, J.; Jiang, X. Toxicity of thifluzamide in earthworm (Eisenia fetida). Ecotox. Environ. Saf. 2020, 188, 109880. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Xiong, K.; Liu, J. toxicity and bioaccumulation of fenvalerate and esfenvalerate to earthworm Eisenia fetida. J. Hazard. Mater. 2016, 310, 82–88. [Google Scholar] [CrossRef]
- Mekersi, N.; Kadi, K.; Addad, D.; Amari, A.; Lekmine, S. Soil amendment by olive pomace improving soil quality. Int. J. Nat. Resour. Environ. 2022, 4, 17–22. [Google Scholar]
- Marco, A.; Ortiz-Santaliestra, M. Pollution: Impact of reactive nitrogen on amphibians (nitrogen pollution). Amphib. Biol. 2009, 8, 3145–3185. [Google Scholar]
- Zeguerrou, N.; Adjroudi, R.; Si Bachir, A.; El Okki, M.E.H. Assessment of ammonium hydroxide effect on Eisenia fetida (Savigny, 1826). acute toxicity and avoidance tests. Int. J. Agric. Resour. Gov. Ecol. 2019, 15, 27–44. [Google Scholar] [CrossRef]
- Zeguerrou, N.; Adjroudi, R. Study on The Effect of Ammonium Hydroxide on Survival, Growth, Reproduction and Cocoon Hatching of Eisenia fetida. Iran. J. Health Saf. Environ. 2022, 7, 1536–1546. [Google Scholar]
- Bouazdia, K. Combined effect of two agrochemicals on Aporrectodea caliginosa in a semi-arid land. J. Biol. Environ. Sci. 2020, 14, 115–126. [Google Scholar]
- Singh, S.; Tiwari, R.K.; Pandey, R.S. Acute toxicity evaluation of triazophos, deltamethrin and their combination on earthworm, Eudrilus eugeniae and its impact on AChE activity. Chem. Ecol. 2019, 35, 563–575. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, S.M. Toxicological effects of organo phosphate pesticide, phorate on the prostomial region of earthworm, metaphire posthuma. J. Environ. Bio-Sci. 2019, 33, 153–157. [Google Scholar]
- Connon, R.E.; Geist, J.; Werner, I. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 2012, 12, 12741–12771. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ma, X.; Saleem, M.; Wang, X.; Sun, L.; Yang, Y.; Zhang, Q. response, histopathological change and DNA damage in earthworm (Eisenia fetida) exposed to sulfentrazone herbicide. Ecol. Indic. 2020, 115, 106465. [Google Scholar] [CrossRef]
- Lahive, E.; Jurkschat, K.; Shaw, B.J.; Handy, R.D.; Spurgeon, D.J.; Svendsen, C. Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: Subtle effects. Environ. Chem. 2014, 11, 268–278. [Google Scholar] [CrossRef]
- Lapied, E.; Moudilou, E.; Exbrayat, J.M.; Oughton, D.H.; Joner, E.J. Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta). Nanomedicine 2010, 5, 975–984. [Google Scholar] [CrossRef]
- Washington, T.A.; White, J.P.; Davis, J.M.; Wilson, L.B.; Lowe, L.L.; Sato, S.; Carson, J.A. Skeletal muscle mass recovery from atrophy in IL-6 knockout mice. Acta Physiol. 2011, 202, 657–669. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, Y.; Liao, Z.; Xing, K.; Zhu, C.; Xu, Y.; Yu, L.; Wang, L.; Wang, S.; Zhu, X.; et al. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway. Faseb J. 2018, 32, 488–499. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Mangwandi, C. Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. J. Environ. Manag. 2015, 164, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Scott-Fordsmand, J.J.; Weeks, J.M. Biomarkers in earthworms. Rev. Environ. Contam. Toxicol. 2000, 165, 117–159. [Google Scholar] [PubMed]
- Kılıç, G.A. Histopathological and biochemical alterations of the earthworm (Lumbricus terrestris) as biomarker of soil pollution along Porsuk River Basin (Turkey). Chemosphere 2011, 83, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.N.; Gupta, S.K.; Murthy, R.C. cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida-A possible mechanism. Ecotoxicol. Environ. Saf. 2014, 100, 218–225. [Google Scholar] [CrossRef]
- Morowati, M. Histochemical and histopathological study of the intestine of the earthworm (Pheretimae longata) exposed to a field dose of the herbicide glyphosate. Environmentalist 2000, 20, 105–111. [Google Scholar] [CrossRef]
- Amaral, A.F.; Rodrigues, A. accumulation and apoptosis in the alimentary canal of Lumbricus terrestris as a metal biomarker. Biometals 2005, 18, 199–206. [Google Scholar] [CrossRef]
- Muthukaruppan, G.; Janardhanan, S.; Vijayalakshmi, G. toxicity of the herbicide butachlor on the earthworm Perionyx sansibaricus and its histological changes. J. Soils Sediments 2005, 5, 82–86. [Google Scholar] [CrossRef]
- Reddy, N.C.; Rao, J.V. Biological response of earthworm, Eisenia fetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicol. Environ. Saf. 2008, 71, 574–582. [Google Scholar] [CrossRef]
- Gao, M.; Song, W.; Zhang, J.; Guo, J. Effect on enzymes and histopathology in earthworm (Eisenia foetida) induced by triazole fungicides. Environ. Toxicol. Pharmacol. 2013, 35, 427–433. [Google Scholar] [CrossRef]
- Qi, S.; Wang, D.; Zhu, L.; Teng, M.; Wang, C.; Xue, X.; Wu, L. Effects of a novel neonicotinoid insecticide cycloxaprid on earthworm, Eisenia fetida. Environ. Sci. Pollut. Res. 2018, 25, 14138–14147. [Google Scholar] [CrossRef]
- Wang, K.; Pang, S.; Mu, X.; Qi, S.; Li, D.; Cui, F.; Wang, C. Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides. Chemosphere 2015, 132, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xia, X.; Yang, J.; Tariq, M.; Zhao, J.; Zhang, M.; Zhang, W. Exploring the bioavailability of nickel in a soil system: Physiological and histopathological toxicity study to the earthworms (Eisenia fetida). J. Hazard. Mater. 2020, 383, 121169. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Mishra, C.S.K.; Guru, B.C.; Samal, S. Histological anomalies and alterations in enzyme activities of the earthworm Glyphidrillus tuberosus exposed to high concentrations of phosphogypsum. Environ. Monit. Assess. 2018, 190, 529. [Google Scholar] [CrossRef]
- Samal, S.; Mishra, C.S.K.; Sahoo, S. Setal-epidermal, muscular and enzymatic anomalies induced by certain agrochemicals in the earthworm Eudrilus eugeniae (Kinberg). Environ. Sci. Pollut. Res. 2019, 26, 8039–8049. [Google Scholar] [CrossRef]
- Oluah, M.S.; Obiezue, R.N.N.; Ochulor, A.J.; Onuoha, E. Toxicity and histopathological effect of atrazin herbicides on the earthworm Nsukkadrilus mbae under laboratory condition. Anim. Res. Int. 2010, 7, 1287–1293. [Google Scholar]
- Stanley, O.N.; Ochulor, A.J. Histopathological Effects of Glyphosate and Its Toxicity to the Earthworm Nsukkadrilus mbae. Brit. Biotech. J. 2014, 4, 149. [Google Scholar] [CrossRef]
- Joana, I.L.; Ruth, O.P.; Ana, C.S.; José, M.M.; Fernando, P.C.; João, M.O.; Margarida, P.M.; Artur, A.P.; Sónia, A.M.; Fernando, J.G. Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. J. Hazard. Mater. 2011, 186, 788–795. [Google Scholar]
- Vishal, J.S.; Shanta, S. Effects of selected heavy metals on the histopathology of different tissues of earthworm Eudrilus eugeniae. Environ. Monit. Assess. 2011, 180, 257–267. [Google Scholar]
- Canbek, M.; Ozen, A.; Yerli, N.; Uyano, M.; Arslan, N. Histopathology of the tissue of a tubicid worm (Limnodrilus homeisteri) exposed to cadmium. Cankaya Univ. J. Sci. Eng. 2012, 9, 69–73. [Google Scholar]
- Eseigbe, F.J.; Doherty, V.F.; Sogbanmu, T.; Otitoloju, A.A. Histopathology alterations and lipid peroxidation as biomarkers of hydrocarbon-induced stress in the earthworm, Eudrilus eugeniae. Environ. Monit. Assess. 2013, 185, 2189–2196. [Google Scholar] [CrossRef]
- Bangarusamy, V.; Karpagam, S.; Martin, P. Toxicity and histopathological effect of different organic waste on the earthworms (Eudrillus eugeniae and Eisenia fetida) under laboratory conditions. Int. J. Ethnomed. Pharm. Res. 2014, 2, 18–22. [Google Scholar]
- Samal, S.; Sahoo, S.; Mishra, C.S.K. Morpho-histological and enzymatic alterations in earthworms Drawida willsi and Lampito mauritii exposed to urea, phosphogypsum and paper mill sludge. Chem. Ecol. 2017, 33, 762–776. [Google Scholar] [CrossRef]
- Samal, S.; Mishra, C.S.K.; Sahoo, S. Dermal, histological anomalies with variations in enzyme activities of the earthworms Lampito mauritii and Drawida willsi after short-term exposure to organophosphate pesticides. Invertebr. Surviv. J. 2020, 17, 117–128. [Google Scholar]
- Awad, W.A.; Hess, C.; Hess, M. Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins 2017, 9, 60. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, P.; Li, M. Tri-n-butyl phosphate induced earthworm intestinal damage by influencing nutrient absorption and energy homeostasis of intestinal epithelial cells. J. Hazard. Mater. 2020, 398, 122850. [Google Scholar] [CrossRef]
- Sommer, F.; Anderson, J.M.; Bharti, R.; Raes, J.; Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 2017, 15, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Kamat, J.; Devasagayam, T.; Priyadarsini, K.; Mohan, H. Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 2000, 155, 55–61. [Google Scholar] [CrossRef]
- Bowen, I.D.; Lockshin, R.A. Cell Death in Biology and Pathology; Chapman and Hall: London, UK, 1981. [Google Scholar]
- Vogel, J.; Seifert, G. Histological changes in the chloragogen tissue of the earthworm Eisenia fetida after administration of sublethal concentrations of different fluorides. J. Invert. Pathol. 1992, 60, 192–196. [Google Scholar] [CrossRef]
- Cancio, I.; Gwynn, I.; Ireland, M.; Cajaraville, M. The effect of sublethal lead exposure on the ultrastructure and on the distribution of acid phosphatase activity in chloragocytes of earthworms (Annelida, Oligochaeta). Histochem. J. 1995, 27, 965–973. [Google Scholar] [CrossRef]
- Morgan, A.J.; Turner, M.P.; Morgan, J.E. Morphological plasticity in metal sequestering earthworm chloragocytes: Morphometric electron microscopy provides a biomarker of exposure in field populations. Environ. Toxicol. Chem. 2002, 21, 610–618. [Google Scholar]
- Prento, P. Metals and phosphate in the chloragosomes of Lumbricus terrestris and their possible physiological significance. Cell Tissue 1979, 196, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.; Trombitas, K. microprobe analysis of chloragosomes of untreated and of EDTA treated Lumbricus terrestris by using airdried smears. Actahistochemica 1980, 66, 237–242. [Google Scholar]
- Morgan, A.J. A morphological and electron microprobe study of the inorganic composition of the mineralized secretory product of the calciferous gland and chloragogenous tissue of the earthworm, Lumbricus terrestris L. Cell Tissue Res. 1981, 220, 829–844. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.J.; Winters, C. The elemental composition of the chloragosomes of two earthworm species Lumbricus terrestris and Allolobophora longa determined by electron probe X-ray microanalysis of freeze-dried cryosection. Histochemistry 1982, 73, 589–598. [Google Scholar] [CrossRef]
- Fischer, E.; Molnar, L. Environmental aspects of the chloragogenous tissue of earthworms. Soil Biol. Biochem. 1992, 24, 1723–1727. [Google Scholar] [CrossRef]
Properties | Results |
---|---|
pH | 7.34 ± 0.01 |
K | 0.17 ± 0.2 (meq/100 g) |
Na | 1.57 ± 0.05 (meq/100 g) |
Mg | 2.68 ± 0.34 (meq/100 g) |
Ca | 34.93 ± 0.15 (meq/100 g) |
P | 1.80 ± 0.23 ppm |
N | 0.150 ± 0.65% |
Total carbon | 7.5 ± 0.04% |
Electrical conductivity | 0.16 ± 0.54 mS/cm |
Organic matter | 2.060 ± 0.08% |
Texture | Sand 12%; silt 76%; Clay 12% |
Exposure Conc. mg/kg | Total Test Worms | No. of Dead Worms Replicate | Total No. of Dead Worms | % Mortality | LC10 (mg/kg) | LC25 (mg/kg) | LC50 (mg/kg) | LC90 (mg/kg) | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | ||||||||
0 | 30 | 0 | 0 | 0 | 0 | 0 | 3533.44 | 4131.65 | 4831.13 | 6605.42 |
2500 | 30 | 0 | 0 | 1 | 1 | 3.33 | ||||
4500 | 30 | 3 | 4 | 3 | 10 | 33.33 | ||||
6500 | 30 | 6 | 10 | 10 | 26 | 86.66 | ||||
7500 | 30 | 10 | 10 | 10 | 30 | 100 |
Exposure Conc. mg/kg | Total Test Worms | No. of Dead Worms Replicate | Total No. of Dead Worms | % Mortality | LC10 (mg/kg) | LC25 (mg/kg) | LC50 (mg/kg) | LC90 (mg/kg) | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | ||||||||
0 | 30 | 0 | 0 | 0 | 0 | 0 | 1128.27 | 1744.94 | 2698.67 | 6454.84 |
2500 | 30 | 5 | 6 | 5 | 16 | 53.3 | ||||
4500 | 30 | 5 | 7 | 6 | 18 | 60 | ||||
6500 | 30 | 8 | 10 | 10 | 28 | 93 | ||||
7500 | 30 | 10 | 10 | 10 | 30 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aouaichia, K.; Grara, N.; Bazri, K.E.; Barbieri, E.; Mamine, N.; Hemmami, H.; Capaldo, A.; Rosati, L.; Bellucci, S. Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm. Life 2024, 14, 1209. https://doi.org/10.3390/life14091209
Aouaichia K, Grara N, Bazri KE, Barbieri E, Mamine N, Hemmami H, Capaldo A, Rosati L, Bellucci S. Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm. Life. 2024; 14(9):1209. https://doi.org/10.3390/life14091209
Chicago/Turabian StyleAouaichia, Khaoula, Nedjoud Grara, Kamel Eddine Bazri, Edison Barbieri, Nedjma Mamine, Hadia Hemmami, Anna Capaldo, Luigi Rosati, and Stefano Bellucci. 2024. "Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm" Life 14, no. 9: 1209. https://doi.org/10.3390/life14091209
APA StyleAouaichia, K., Grara, N., Bazri, K. E., Barbieri, E., Mamine, N., Hemmami, H., Capaldo, A., Rosati, L., & Bellucci, S. (2024). Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm. Life, 14(9), 1209. https://doi.org/10.3390/life14091209