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Abstract: The genus Ruspolia refers to a small group of plants in the Acanthaceae family,
with two dominant species R. decurrens and R. hypocrateriformis essentially distributed
in tropical parts of Africa. Decoctions from these plants are used in folk medicine for
the treatment of a few human pathologies but the active ingredients at the origin of the
bioactivities have been little studied. Here, we give an insight into the main phytochemicals
of the Ruspolia species published in the literature so far and their pharmacological properties.
The flavone glycosides justicialosides A-B likely serve as antioxidant agents and free radical
scavengers. Several pyrrolidine alkaloids have been isolated from these Ruspolia species,
notably (nor)ruspolinone and a few related products. These molecules have attracted
the interest of medicinal chemists, with different synthetic routes leading to ruspolinone
and analogues. There are versatile operating procedures to synthesize (nor)ruspolinone
isomers. Despite these chemical efforts, the pharmacology of ruspolinone remains largely
unknown. A few other Ruspolia alkaloids have been isolated, notably the rare bispyrrolidine
benzodioxin alkaloid hypercratine, possibly acting as a ligand of β2-adrenergic receptors.
A phytochemical survey of the Ruspolia species sheds light on the diversity of products in
this family to promote further investigations into the mechanism of action of ruspolinone
and related natural products.

Keywords: hypercratine; justicialoside; pyrrolidine alkaloids; Ruspolia plants; ruspolinone

1. Introduction
Plants from the genus Ruspolia in the Acanthaceae family are distributed essentially

in tropical regions of Africa, from Mali to Sudan in the north, and from Angola to the
Republic of Mozambique in the south, as well as the island of Madagascar (Figure 1).
The name Ruspolia was given by the German mycologist and botanist Gustav Lindau
(1866–1923). It pays homage to the Italian botanist Francesco Maria Marescotti Ruspoli
(1672–1731). Parenthetically, the name Ruspolia should not be confused with that of the
three plant species Lopriorea ruspolii (family: Amaranthaceae), Moringa ruspoliana Engl.
(family: Moringaceae), and Pterodiscus ruspolii Engl. (family: Pedaliaceae), named after
another Italian naturalist, Prince Eugenio Ruspoli (1866–1893).
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The Ruspolia genus includes five little-known species with an accepted name (Table 
1). The major species is R. decurrens, a subshrub mainly found in central and south-tropical 
Africa. It grows primarily in the seasonally dry tropical biome. This vascular plant pro-
ducing nice yellow flowers (Figure 1) can be found in riverine forests, shady places in 
woodland and rocky hills and on termite mounds, notably in Zambia and Zimbabwe [1,2]. 
The species R. hypocrateriformis (Vahl), also known as Justicia hypocrateriformis Vahl, is a 
medicinal plant used to prepare a herbal remedy for diarrhea in Cameroon folk medicine 
[1,2]. In the rural area of Bui Division of Cameroon, a decoction from the leaves and stems 
of R. hypocrateriformis (locally named “kifu ke menseh”) is used in combination with two 
other plants to treat anemia, hemiplegia, and neuralgia [3,4]. This fast-growing evergreen 
plant shows nice pink to red flowers producing a large amount of nectar largely consumed 
by butterflies. Ruspolia hypocrateriformis (Vahl) is not to be confused with the totally dis-
tinct species Rivea hypocrateriformis (Desr.) Choisy, an edible plant found in India [5]. The 
species R. australis is native to Tanzania and South Africa. It is a tall shrub known as red 
mock-plumbago, also producing scarlet red flowers. The species Ruspolia seticalyx is native 
to east and south tropical Africa, whereas Ruspolia paniculata is found essentially in Mad-
agascar. There is also a species called Ruspolia humbertii Benoist (family: Acanthaceae), 
also originating in Madagascar, but it has an unchecked status in the World Flora Online 
repertoire. The main species in the genus is R. hypocrateriformis, which also presents a nu-
tritional potential due to its content in mineral elements, macro-nutrients (carbohydrates 
and fibers), and vitamins, such as vitamin C (1.22 g/100 g) [6]. 

 

Figure 1. Distribution of Ruspolia species in Africa (maps defined from World Flora Online 
(www.worldfloraonline.org, accessed on 3 January 2025) and selected views of the flowers of three 
Ruspolia species. 

Table 1. Ruspolia species. 

Accepted Names 1 Synonyms 

Ruspolia australis (Milne-Redh.) Vollesen 
Ruspolia hypocrateriformis var. australis 

Milne-Redh. 

Ruspolia decurrens (Hochst. ex Nees) Milne-
Redh. 

Eranthemum decurrens Nees  
Eranthemum senense Klotzsch  

Pseuderanthemum decurrens (Nees) Radlk.  
Pseuderanthemum senense (Klotzsch) Radlk. 

Ruspolia hypocrateriformis (Vahl) Milne-
Redh. 

Ruspolia pseuderanthemoides Lindau 
Justicia hypocrateriformis Vahl. 

Eranthemum affine Spreng. 
Eranthemum hypocrateriforme (Vahl) Sol. ex 

Roem. & Schult. 
Ruspolia paniculata Benoist  

Ruspolia seticalyx (C.B.Clarke) Milne-Redh. Eranthemum seticalyx C.B.Clarke 
1 from World Flora Online (www.worldfloraonline.org, accessed on 3 January 2025). 

Figure 1. Distribution of Ruspolia species in Africa (maps defined from World Flora Online
(www.worldfloraonline.org, accessed on 3 January 2025) and selected views of the flowers of three
Ruspolia species.

The Ruspolia genus includes five little-known species with an accepted name (Table 1).
The major species is R. decurrens, a subshrub mainly found in central and south-tropical Africa.
It grows primarily in the seasonally dry tropical biome. This vascular plant producing nice
yellow flowers (Figure 1) can be found in riverine forests, shady places in woodland and
rocky hills and on termite mounds, notably in Zambia and Zimbabwe [1,2]. The species
R. hypocrateriformis (Vahl), also known as Justicia hypocrateriformis Vahl, is a medicinal plant
used to prepare a herbal remedy for diarrhea in Cameroon folk medicine [1,2]. In the rural
area of Bui Division of Cameroon, a decoction from the leaves and stems of R. hypocrateriformis
(locally named “kifu ke menseh”) is used in combination with two other plants to treat
anemia, hemiplegia, and neuralgia [3,4]. This fast-growing evergreen plant shows nice
pink to red flowers producing a large amount of nectar largely consumed by butterflies.
Ruspolia hypocrateriformis (Vahl) is not to be confused with the totally distinct species Rivea
hypocrateriformis (Desr.) Choisy, an edible plant found in India [5]. The species R. australis is
native to Tanzania and South Africa. It is a tall shrub known as red mock-plumbago, also
producing scarlet red flowers. The species Ruspolia seticalyx is native to east and south tropical
Africa, whereas Ruspolia paniculata is found essentially in Madagascar. There is also a species
called Ruspolia humbertii Benoist (family: Acanthaceae), also originating in Madagascar, but
it has an unchecked status in the World Flora Online repertoire. The main species in the
genus is R. hypocrateriformis, which also presents a nutritional potential due to its content in
mineral elements, macro-nutrients (carbohydrates and fibers), and vitamins, such as vitamin C
(1.22 g/100 g) [6].

Table 1. Ruspolia species.

Accepted Names 1 Synonyms

Ruspolia australis (Milne-Redh.) Vollesen Ruspolia hypocrateriformis var. australis Milne-Redh.

Ruspolia decurrens (Hochst. ex Nees) Milne-Redh.

Eranthemum decurrens Nees
Eranthemum senense Klotzsch

Pseuderanthemum decurrens (Nees) Radlk.
Pseuderanthemum senense (Klotzsch) Radlk.

Ruspolia hypocrateriformis (Vahl) Milne-Redh.

Ruspolia pseuderanthemoides Lindau
Justicia hypocrateriformis Vahl.

Eranthemum affine Spreng.
Eranthemum hypocrateriforme (Vahl) Sol. ex Roem. & Schult.

Ruspolia paniculata Benoist
Ruspolia seticalyx (C.B.Clarke) Milne-Redh. Eranthemum seticalyx C.B.Clarke

1 from World Flora Online (www.worldfloraonline.org, accessed on 3 January 2025).

It is worth noting that the name Ruspolia refers also to a genus of insects (family:
Tettigoniidae; order: Orthoptera) including the two species R. differens and R. nitidula. The
former is an edible grasshopper, very popular as a food supplement in central and eastern
Africa [7]. The fortification of sorghum and wheat with longhorn R. differens powder (RDP)
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is considered for use as a supplementary food used to prevent protein-energy malnutrition
in children. RDP-fortified biscuits are being commercialized [8]. The latter is also an edible
grasshopper, used as a protein source in Uganda [9,10]. The grasshopper Ruspolia nitidula
has expanded its area of distribution in western and central Europe in recent decades [11].
The Ruspolia species of insects can also be seen in India (Kashmir) [12]. Bioactive compounds
can be found in edible insects, including for example antioxidant compounds isolated from
R. differens [13]. There are a few others insect species (e.g., R. dubia, R. Yunnana) [14,15] but
here the analysis will focus on the Ruspolia plant species only.

Among Ruspolia plant species, R. hypocrateriformis is the most important species from
a medicinal viewpoint. In Cameroon, a decoction of the leaves of this plant is used for
the treatment of anemia and fever associated with malaria, and for the management of
diarrhea [16]. As mentioned above, R. hypocrateriformis is used also in combination with
other plants to treat hemiplegia and neuralgia [3,4]. Ethnobotanical practices have been
rarely reported with the other Ruspolia species. Nevertheless, several bioactive natural
products have been discovered from these plants. The present analysis discusses the
pharmacological properties of Ruspolia plant extracts to highlight their potential as a
valuable source of natural remedies. The primary objective of the review is to provide
an overview of the various phytochemicals isolated from Ruspolia plants, the associated
chemistry, and their bioactive properties. The major objective of the research is to fill
knowledge gaps in Ruspolia phytochemistry and pharmacology, to encourage further
studies of these families of neglected medicinal plants.

2. Flavone Glycosides from Ruspolia
An ethanol leaf extract of R. hypocrateriformis has been shown to contain common

phenolic compounds such as gallic acid and ferulic acid, and a few flavonoids such as
quercetin. These chemicals contribute to the antioxidant properties of the plant extract [17].
This plant also contains flavonoid O-glycosides, such as the two glycosylated luteolin
derivatives: luteolin 7-O-β-D-apiofuranosyl-(1→2)-β-D-xylopyranoside and luteolin 7-O-[-
βD-glucopyranosyl-(1→2)-α-L-rhamnosyl-(1→6)]-βD-glucopyranoside. In addition, two
specific glycosides have been isolated from the plant leaves and named justicialosides A
and B. They bear a luteolin or a chrysoeriol flavonoid core linked to a disaccharide unit
(7-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside) (Figure 2). Their names derive
from Justicia hypocrateriformis, the synonym for R. hypocrateriformis [18].
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Figure 2. Structures of two flavone glycosides isolated from Ruspolia hypocrateriformis.

These different flavonoids contribute to the antioxidant activity of the plant extract, and
possibly to anti-anemia and antidiarrheal properties as well [2,6,19]. The glycoside moiety
of the flavonoid contributes to its antioxidant action. Chrysoeriol is a multipotent flavone
with anticancer, anti-inflammatory, antibacterial, antifungal, anti-osteoporosis, insecticide,
and neuroprotective activities [20]. Chrysoeriol glycoside has been shown to inhibit the
production superoxide anion by the xanthine/xanthine oxidase system more effectively
than the aglycone. Similarly, the glycoside is a more efficient scavenger of 1,1-diphenyl-
2-trinitrophenylhydrazine (DPPH) free radicals than the aglycone (chrysoeriol) itself [21].
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A methanolic fraction of R. hypocrateriformis has revealed a modest antimalarial activity
associated with inhibition of β-hematin formation (IC50 = 170 µg/mL) [22]. Justicialosides
are phytochemicals specific to R. hypocrateriformis. Nevertheless, justicialoside A has been
identified also from the leaves and stem bark of the African medicinal plant Pseudospondias
microcarpa (A. Rich.) Engl. (Anacardiaceae) [23]. The pharmacological properties of the
two justicialosides have not been specifically investigated. It would be useful to study
their stress-reducing properties because a very similar flavone (acacetin) bearing exactly
the same diglycoside moiety has been shown to reduce stress response and to promote
longevity in a Caenorhabditis elegans model system. Notably, the product enhanced the
levels of the antioxidant enzymes superoxide dismutase and catalase [24].

3. Pyrrolidine Alkaloids from Ruspolia
3.1. Isolation of the Natural Products

Ruspolinone, norruspolinone, and norruspoline are three pyrrolidine alkaloids isolated
from R. hypocrateriformis [25]. There are also derivatives, such as N-methylruspolinone [26,27].
The pyrrolidinyl moiety of (nor)ruspolinone is reminiscent of that of the coca leaf alkaloids
(nor)hygrine and the related alkaloids hygroline and pseudohygroline from the plants Carallia
brachiata, Erythroxylum coca, Schizanthus hookeri, and Schizanthus tricolor [28–31]. They belong
to a group of naturally occurring 2-(acylmethylene)pyrrolidine alkaloids which also includes
dehydrodarlinine and dehydrodarlingianine derived from the plant Darlingia darlingiana
found in Queensland (Australia) [26,32,33]. Phyllosterone (also named phyllostone) is a
pyrrolidinyl-acetophenone derivative from Crytopcarya phyllostemon and is very similar to
norruspoline [34]. This is also the case for the alkaloid ficuseptamine C isolated from the
leaves of Ficus septica [35] (Figure 3). Norruspoline is structurally close to the pyrrolidine
alkaloid anisotaline A (N-methyl norruspoline) isolated from the roots of the Chinese plant
Anisodus tanguticus (Maxim.) Pascher. This compound has shown a very modest effect
on the viability of human umbilical vein endothelial cells (HUVECs) in vitro [36]. These
different pyrrolidine alkaloids have been described but they have been neglected from a
pharmacological standpoint.
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Figure 3. Structures of pyrrolidine alkaloids related to ruspolinone.

Ruspolinone was initially isolated from the Ruspolia species but later the alkaloid
was found in a few other plants, notably the fruits of the Vietnamese plant Boehmeria
holosericea Blume (Urticaceae) [37], the leaves of Tephrosia pentaphylla (Roxb.) G.Don.
(Fabaceae) [38], and the aerial parts of the invasive vine Vincetoxicum rossicum Kelopow [39].
This phenacylpyrrolidine has also been identified from endophytic fungi: (i) from a cul-
ture of Fusarium equiseti, initially isolated from the leaves of Ocimum gratissimum L. (clove
basil, Lamiaceae) [40] and (ii) an endophytic fungus isolated from leaves of Newbouldia lae-
vis [41]. Ruspolinone is generally considered as an intermediate in the biosynthesis of more
complex alkaloids.
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3.2. Total Synthesis of Ruspolinone and Analogues

Different methods have been proposed for the synthesis of ruspolinone and related
pyrrolidine alkaloids. The chemistry of this group of pyrrolidine alkaloids has been
well studied, in particular for (nor)hygrine-type natural products [42,43]. The synthe-
sis of ruspolinone analogues has been less developed but, nevertheless, different access
routes have been described. A total synthesis of both ruspolinone and norruspoline
from 2-phenysulfonyl-piperidine derivatives has been proposed (Scheme 1). Norrus-
poline was obtained from the sulphonyl derivative (1) in the presence of β-bromo-3,4-
dimethoxystyrene (2) and butyl lithium. The reaction afforded the ethenyl-pyrrolidine
derivative (3) with a yield of 86% and the subsequent two-step deprotection of this in-
termediate with Na thiomethoxide in dry DMF followed with a treatment with aqueous
sodium hydroxide (NaOH) afforded norruspoline as a major product with a yield of 53%
and its isomer (4) (Scheme 1a). The synthesis of ruspolinone proceeded similarly from
the intermediate (6), itself obtained from (1) in the presence of 1,2-dimethoxy-4-[1-[(1,2-
dimethylethyl)silyloxy]ethenylbenzene (5) and magnesium bromide etherate at 0 ◦C. In
this case, the final treatment of (6) with aqueous NaOH at reflux afforded ruspolinone with
a yield of 80% (Scheme 1b) [44,45].

Life 2025, 15, x FOR PEER REVIEW 5 of 14 
 

 

phenacylpyrrolidine has also been identified from endophytic fungi: (i) from a culture of 
Fusarium equiseti, initially isolated from the leaves of Ocimum gratissimum L. (clove basil, 
Lamiaceae) [40] and (ii) an endophytic fungus isolated from leaves of Newbouldia laevis 
[41]. Ruspolinone is generally considered as an intermediate in the biosynthesis of more 
complex alkaloids. 

3.2. Total Synthesis of Ruspolinone and Analogues 

Different methods have been proposed for the synthesis of ruspolinone and related 
pyrrolidine alkaloids. The chemistry of this group of pyrrolidine alkaloids has been well 
studied, in particular for (nor)hygrine-type natural products [42,43]. The synthesis of rus-
polinone analogues has been less developed but, nevertheless, different access routes have 
been described. A total synthesis of both ruspolinone and norruspoline from 2-phenysul-
fonyl-piperidine derivatives has been proposed (Scheme 1). Norruspoline was obtained 
from the sulphonyl derivative (1) in the presence of β-bromo-3,4-dimethoxystyrene (2) 
and butyl lithium. The reaction afforded the ethenyl-pyrrolidine derivative (3) with a 
yield of 86% and the subsequent two-step deprotection of this intermediate with Na thi-
omethoxide in dry DMF followed with a treatment with aqueous sodium hydroxide 
(NaOH) afforded norruspoline as a major product with a yield of 53% and its isomer (4) 
(Scheme 1a). The synthesis of ruspolinone proceeded similarly from the intermediate (6), 
itself obtained from (1) in the presence of 1,2-dimethoxy-4-[1-[(1,2-dimethylethyl)si-
lyloxy]ethenylbenzene (5) and magnesium bromide etherate at 0 °C. In this case, the final 
treatment of (6) with aqueous NaOH at reflux afforded ruspolinone with a yield of 80% 
(Scheme 1b) [44,45]. 

 

Scheme 1. Synthetic routes to (a) norruspoline and (b) ruspolinone. Adapted from [43,44]. 

An alternative procedure was reported for the synthesis of ruspolinone starting from 
L-proline methyl ester (7), as depicted in Scheme 2. This seven-step procedure afforded 
the product with an overall yield of 26%, together with the related natural product phyl-
losterone (phyllostone) [46]. Compound (7) is converted into N-Boc prolinol (8) and then 
the O-tosylated derivative (9). Coupling of (9) with 2-(3′,4′-dimethoxyphenyl)-1,3-dithiane 
(10) in cold tetrahydrofuran (THF, −21 °C) in the presence of n-butyllithium in hexane 
afforded compound (11), purified by flash chromatography. The reaction of the dithiane 
(11) with N-chlorosuccinimoide (NCS) and silver nitrate in aqueous acetonitrile afforded 
the carbamate N-Boc-ruspolinone (12). Finally, the removal of the Boc protecting with tri-
fluoroacetic acid (TFA) gave ruspolinone (Scheme 2a). 

An alternative process to obtain ruspolinone consists in synthesizing an enamino-
ketone intermediate which is then selectively reduced in the presence of sodium tri-
acetoxyborohydride (NaBH(OAc)3, also known as sodium triacetoxyhydroborate or 
STAB). The pyrrolidine enaminoketone moiety combines the nucleophilicity of the 

Scheme 1. Synthetic routes to (a) norruspoline and (b) ruspolinone. Adapted from [43,44].

An alternative procedure was reported for the synthesis of ruspolinone starting from
L-proline methyl ester (7), as depicted in Scheme 2. This seven-step procedure afforded
the product with an overall yield of 26%, together with the related natural product phyl-
losterone (phyllostone) [46]. Compound (7) is converted into N-Boc prolinol (8) and then
the O-tosylated derivative (9). Coupling of (9) with 2-(3′,4′-dimethoxyphenyl)-1,3-dithiane
(10) in cold tetrahydrofuran (THF, −21 ◦C) in the presence of n-butyllithium in hexane
afforded compound (11), purified by flash chromatography. The reaction of the dithiane
(11) with N-chlorosuccinimoide (NCS) and silver nitrate in aqueous acetonitrile afforded
the carbamate N-Boc-ruspolinone (12). Finally, the removal of the Boc protecting with
trifluoroacetic acid (TFA) gave ruspolinone (Scheme 2a).

An alternative process to obtain ruspolinone consists in synthesizing an enaminoke-
tone intermediate which is then selectively reduced in the presence of sodium triacetoxy-
borohydride (NaBH(OAc)3, also known as sodium triacetoxyhydroborate or STAB). The
pyrrolidine enaminoketone moiety combines the nucleophilicity of the enamine with the
eletrophilicity of the enone moiety [47]. 2-Diphenylphosphinoyl pyrrolidine (13) was
treated with the substituted acyl chloride derivative (14) to afford the phosphorylated
N-acylamine (15) with a yield of 75%. Treatment of phosphorylated amide (15) with
n-butyllithium (n-BuLi) in THF and then with a pre-cooled THF solution of freshly depoly-
merized paraformaldehyde led to the desired pyrrolidine derivative (16) with a moderate
yield of 55%. The irradiation at 254 nm of a deaerated solution of (16) in ether for about
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30 min led to vinylogous amide (17). The final chemoselective reduction of the C=C unit
of this enaminone (17) with sodium triacetoxyborohydride in a 3:1 mixture of acetic acid
(AcOH) and THF at 0 ◦C led efficiently (91% yield) to the desired product ruspolinone. The
same procedure can be adapted to the synthesis of both the corresponding piperidine and
pyrrolidine derivatives [48].
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More recently, Sirvent and coworkers have accomplished the synthesis of (-)-
ruspolinone from N-tert-butanesulfinyl bromoaldimine (18) in the presence of a β-keto
acid (19), affording the β-amino ketone derivative (20) in 82% yield. The imine (18) de-
rived from 4-bromobutanal and (S)-tert-butanesulfinamide in toluene. After removal of
the sulfinyl group of (20) under acidic conditions, the compound was transformed into
(-)-ruspolinone in 92% yield, as represented in Scheme 3a [49]. A totally distinct synthetic
route to (+)-ruspolinone from 4-chlorobutanal (21) and nonafluorobutane-1-sulfinamide
(22) in the presence of titanium(IV) isopropoxide [Ti(OiPr)4] as a dehydrating agent, has
been proposed, as depicted in Scheme 3b. The procedure involves the synthesis of a
fluorous-tagged intermediate, separated via a process known as fluorous solid-phase ex-
traction (F-SPE) which avoids column chromatography over multiple steps. The initial step
leading to the sulfinamide derivative (23) is very efficient (98% yield). A Liebeskind−Srogl
cross-coupling reaction of the thioester (23) with the boronic acid derivative (24) yielded
the β-amino ketone (25) after F-SPE. Finally, the N-sulfinyl deprotection in the presence of
cesium carbonate and intramolecular rearrangement afforded (+)-ruspolinone (Scheme 3b).
A similar activated N-perfluorobutanesulfinamide intermediate was used to synthesize
(+)-ruspolinone and the antibacterial alkaloid (+)-negamycin and the antidiabetic drug
(-)-sitagliptin [50].
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Altogether, these different chemical processes underlined the attractiveness of the
ruspolinone in terms of synthetic chemistry. There are multiple routes to access the prod-
uct and derivatives. The process initially proposed by Brown and coworkers remains
a straightforward and efficient route [44,45]. The (nor)ruspolinone chemistry has been
well developed. Unfortunately, the same cannot be said for the pharmacology of these
compounds, largely neglected until now.

3.3. Other Ruspolia Alkaloids

10H-quindoline (10H-indolo [3,2-b]quinoline), a tetracyclic alkaloid found in the Jus-
ticia species, particularly in J. betonica [51,52], has also been identified and isolated from
the extract of the leaves of R. hypocrateriformis [17]. The pharmacological properties of
10H-quindoline have not been specifically investigated but the compound bears a close
structural analogy with the well-known alkaloid cryptolepine (Figure 4) which exhibits
many types of activities, including anti-bacterial, anti-fungal, anti-hyperglycemic, antidia-
betic, anti-inflammatory, anti-hypotensive, antipyretic, and antimuscarinic properties [53].
Cryptolepine is a cytotoxic DNA-intercalating inhibitor of topoisomerase II [54–56]. It is
therefore conceivable that 10H-quindoline can function also as a topo II poison, although
other cytotoxic 10H-quindoline derivatives have revealed a mechanism of action indepen-
dent from topoisomerase II poisoning [57]. Quindoline and derivatives have been shown
to stabilize quadruplex DNA and to inhibit telomerase [58,59].
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lar model).

A rare bispyrrolidine alkaloid named hypercratine (Figure 4) was isolated from the
roots of R. hypocrateriformis [60]. It is a benzodioxin derivative equipped with two pyrro-
lidinyl moieties, also identified in the leaves of the medicinal plant Justicia flava Vahl
(Acanthaceae), possibly contributing to the tocolytic activity of the plant extract [61]. Jus-
ticia flava leaf extracts have been shown to potently inhibit uterine contractility in both
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a pregnant and a non-pregnant mouse uterus [62]. Hypercratine may contribute to the
regulation of myometrial contractility. Its precise mechanism of action remains unknown
at present but a binding to β2-adrenergic receptors (β2AR) is conceivable, by analogy
with structurally related tocolytic agents such as salbutamol, isoproterenol, and terbutaline
acting as β2AR agonists [63,64]. The targeting of the G protein-coupled receptor (GPCR)
β2AR with the partial agonist salbutamol contributes to the successful use of this drug
in treating asthma and chronic obstructive pulmonary disease (COPD). Hypercratine ap-
pears to be well adapted to bind tightly to β2AR, as illustrated in the molecular model
shown in Figure 5. A docking analysis performed with β2AR bound to salbutamol (PDB:
7DHR) [65] revealed that the natural product can fit very well into the large salbutamol-
binding cavity, engaging H-bonds or van der Waals contacts with much the same amino
acid residues. A large set of molecular contacts stabilizes the hypercratine-β2AR complex
and the two pyrrolidine units contribute significantly to its stability. The docking analysis
suggests that the hypercratine-β2AR complex is more stable than that formed with the
known β2AR ligands. The calculated empirical energy of interaction (∆E) is largely more
negative with hypercratine compared with terbutaline, ritodrine, isoproterenol, or salbuta-
mol (Table 2). Hypercratine seems to be a bona fide β2AR ligand but its pharmacological
effects, as an agonist or antagonist, remain to be characterized. Its benzodioxin structure is
also reminiscent to that of the α2-adrenoceptor antagonists idazoxan and the antipsychotic
derivative RX 821002 (2-methoxyidazoxan), which possesses high and selective affinities
for D2-like and 5-HT(1A) receptors [66,67]. Hypercratine is a rare alkaloid totally neglected
at present. This atypical natural product warrants further investigation.
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Figure 5. Molecular model of hypercratine (compound CID: 177183) bound to the β2-adrenergic
receptor (β2AR). (a) A surface of hypercratine bound to β2AR (PDB structure: 7DHR). (b) Close-up
view of the ligand−protein interface. (c) The solvent-accessible surface (SAS) surrounding the drug
binding zone (color code indicated). (d,e) Binding map contacts for salbutamol and hypercratine
bound to β2AR (color code indicated). The docking analysis was performed as previously described
with other protein−drug complexes [68,69].
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Table 2. Calculated potential energy of interaction (∆E) and free energy of hydration (∆G) for the
interaction of hypercratine with the β2-adrenergic receptor (β2AR) *.

Compounds ∆E (kcal/mol) ∆G (kcal/mol)

Hypercratine −73.10 −73.40
Isoproterenol −45.80 −58.60

Ritodrine −51.45 −63.90

Salbutanol −46.60 −52.85
Terbutaline −46.80 −67.25

* Docking models constructed using the cryo-EM structure of β2AR (PDB: 7DHR) with the side chains of the
following amino acids within the binding site were rendered fully flexible: Trp109, Asp113, Val117, Phe193, Tyr199,
Phe208, Trp286, Phe290, Ile309, and Typ316. The docking procedure has been previously described [68,69].

4. Discussion
Acanthaceae is a large plant family with over 2500 species, found primarily in subtrop-

ical and tropical regions. Several species of this family have been used traditionally to treat
a variety of diseases and inflammatory conditions, including gastrointestinal and cardiovas-
cular ailments. The family includes important and well-known genera, such as the genus
Justicia with more than 600 species [1], and the genera Barleria [70], Blepharis [71], and Acan-
thus [72]. The family also comprises little-known genera such as Ruspolia Lindau., which
belongs to Justicieae Dumort., the most taxonomically complex tribe in Acanthaceae [73].
Within the tribe Justicieae, the subtribe Graptophyllinae T. Anderson comprises 27 genera,
including Ruspolia Lindau [74].

Plants from the genus Ruspolia have been little investigated thus far. The two main
species R. decurrens and R. hypocrateriformis are emblematic of this family of plants es-
sentially found in Africa. Different alkaloids and flavones have been isolated from these
species, notably the leading product ruspolinone (Table 3). This small pyrrolidine alkaloid
and its diverse analogues have attracted interest from medicinal chemists essentially, but
the associated pharmacology remains largely unknown at present. There are efficient
routes to access ruspoline and (nor)ruspolinone, but little mechanistic and pharmacological
information is available. Ruspolinone is readily accessible and represents an intermediate
in the synthesis of more complex indolizidine alkaloids, notably in the antofine series [75].
Its chemistry has been largely investigated, but the biological properties of this alkaloid
remain to be discovered. It is high time to investigate the pharmacological effects of this
series of pyrrolidine alkaloids.

Table 3. Natural products isolated from Ruspolia hypocrateriformis and their bioactivities.

Natural Products Chemical Type Plant Parts Bioactivities Ref.

Justicialosides A,B Flavone glycosides Leaves Antioxidant activity [18]

Chrysoeriol glycoside Flavone glycoside Leaves Free radicals
scavenging [21]

Ruspolinone
Norruspolinone
Norruspoline
N-methylruspolinone

Alkaloids Whole plant Anticancer and
antimicrobial effects [25–27]

10H-quindoline Alkaloid Leaves Cytotoxic activity [17]

Hypercratine Alkaloid Roots
Potential binding to
β2-adrenergic
receptors (β2AR)

[60]
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Ruspolinone seems to be an intermediate in the biosynthesis of hypercratine, a unique
alkaloid isolated from Ruspolia. This rare benzodioxin alkaloid has been described in a
single study, together with a few acetylated and methoxylated analogues [60]. It bears a
relative similarity with the drug eliglustat, a benzodioxin derivative bearing a pyrrolidinyl
moiety used to treat Gaucher disease type 1. Eliglustat (Cerdelga™) is a ceramide mimic
inhibiting the enzyme UDP-glucose ceramide glucosyltransferase (UCCG) that synthesizes
glucosylceramides. It therefore reduces accumulation of these lipids in the lysosome [76].
The drug has revealed interest for the treatment of cancers, notably in combinations with
immune checkpoint inhibitors [77]. It would be interesting to investigate further the
bioactivity and mechanism of the action of hypercratine in this context as a potential UCCG
inhibitor, in parallel with its possible action as a modulator of β2-adrenergic receptors.
It is to be hoped that the phytochemical survey reported here will help and encourage
phytochemists and pharmacologists to investigate further Ruspolia species and associated
natural products.

Overall, there is a need for a more in-depth exploration of the potential for pharma-
cological evaluation of the compounds isolated from Ruspolia plants, notably from the
neglected medicinal species R. hypocrateriformis. The plant is abundant and accessible. The
main alkaloids, notably ruspolinone and hypercratine, can be obtained via efficient syn-
thetic procedures. These pyrrolidine alkaloids deserve further studies as anti-inflammatory,
anticancer, and/or antimicrobial agents, and they can serve as a template for the design
of novel pyrrolidine derivatives. Pyrrolidine molecules represent an important class of
medicinal products [78–80]. There is a need for new scaffolds and lead molecules in
this family.

5. Conclusions
The phytochemical survey of the Ruspolia plant species has revealed the presence of

bioactive products, mainly from the medicinal species R. hypocrateriformis with several
pyrrolidine alkaloids and a few flavone glycosides. The main products correspond to
ruspolinone and derivatives, for which there are efficient synthetic procedures to obtain the
compounds and analogues. The analysis also sheds light on the alkaloid hypercratine, likely
biosynthesized from ruspolinone, acting as a potential ligand to β2-adrenergic receptors.
This compound and related Ruspolia alkaloids deserve further study to better define their
mechanism of action and molecular targets. The analysis will encourage pharmacological
investigations into the mode of action of Ruspolia-derived natural products.
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