The Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Medium Preparation
2.2. Experimental Design to Determine Impact of Medium Composition on PDO Production
2.3. Fractional Factorial Design of Experiments to Determine Impact of Medium Composition on PDO Production
2.4. Optimization Tests Procedure
3. Results
3.1. Screening Tests and HPLC
3.2. Effect Tests
4. Discussion
Summary of the Optimized Media Conditions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anand, P.; Saxena, R.K. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnol. 2012, 29, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hanna, M.A.; Sun, R. Value-added uses for crude glycerol—A byproduct of biodiesel production. Biotechnol. Biofuels 2012, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.F.; Hernandez, A.; Mullan, B.P.; Moore, K.; Trezona-Murray, M.; King, R.H.; Pluske, J.R. A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing-finishing pigs on performance, plasma metabolites and meat quality at slaughter. Anim. Prod. Sci. 2009, 49, 154–161. [Google Scholar] [CrossRef]
- Lancrenon, X.; Fedders, J. An innovation in glycerin purification. Biodiesel Magazine. Available online: http://www.biodieselmagazine.com/articles/2388/an-innovation-in-glycerin-purification (accessed on 22 June 2016).
- Zeng, A.P.; Biebl, H. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol. 2002, 74, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Menzel, K.; Zeng, A.-P.; Deckwer, W.-D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol. 1997, 20, 82–86. [Google Scholar] [CrossRef]
- Cheng, K.K.; Liu, D.H.; Sun, Y.; Liu, W.B. 1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnol. Lett. 2004, 26, 911–915. [Google Scholar] [CrossRef] [PubMed]
- Chatzifragkou, A.; Papanikolaou, S.; Dietz, D.; Doulgeraki, A.; Nychas, G.-J.; Zeng, A.-P. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl. Microbiol. Biotechnol. 2011, 91, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Metsoviti, M.; Zeng, A.P.; Koutinas, A.A.; Papanikolaou, S. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 2013, 163, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Kivistö, A.; Santala, V.; Karp, M. 1,3-Propanediol production and tolerance of a halophilic fermentative bacterium, Halanaerobium saccharolyticum subsp. Saccharolyticum. J. Biotechnol. 2012, 158, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Mormile, M.R. Going from microbial ecology to genome data and back: studies on a haloalkaliphilic bacterium isolated from Soap Lake, Washington State. Front. Microbiol. 2014, 5, 628. [Google Scholar] [CrossRef] [PubMed]
- Begemann, M.B.; Mormile, M.R.; Sitton, O.C.; Wall, J.D.; Elias, D.A. A streamlined strategy for biohydrogen production with Halanaerobium hydrogeniformans, an alkiliphilic bacterium. Front. Microbiol. 2012, 3, 93. [Google Scholar] [CrossRef] [PubMed]
- Zeng, A.-P. Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess Eng. 1996, 14, 169–175. [Google Scholar] [CrossRef]
- Roush, D.W. Production of 1,3-Propanediol from Glycerol under Haloalkaline Conditions by Halanaerobium Hydrogeniformans. Masters Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2013. [Google Scholar]
- Kirchman, D.L.; Wheeler, P.A. Uptake of ammonium and nitrate by heterotrophic bacteria and phytoplankton in the sub-Arctic Pacific. Deep-Sea Res. 1998, 45, 347–365. [Google Scholar] [CrossRef]
- Zheng, Z.-M.; Xu, Y.-Z.; Wang, T.-P.; Dong, C.-Q.; Yang, Y.-P.; Liu, D.-H. Ammonium and phosphate limitation in 1,3-propanediol production by Klebsiella pneumoniae. Biotechnol. Lett. 2010, 32, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Clomburg, J.M.; Gonzalez, R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol. 2013, 31, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youngleson, J.S.; Santangelo, J.D.; Jones, D.T.; Woods, D.R. Cloning and expression of a Clostridium acetobutylicum alcohol dehydrogenase gene in Escherichia coli. Appl. Environ. Microbiol. 1988, 54, 676–682. [Google Scholar] [PubMed]
Number | Factor | Name | Variable | Std. Media | Low Value (−1) | High Value (+1) |
---|---|---|---|---|---|---|
1 | A | GLYC | Glycerol | 542,947 µM | 500,000 µM | 2,000,000 µM |
2 | B | B12 | Vitamin B12 | 100 µg/L | 0 µM, 0.0M | 500 µg/L, 0.3689 µM |
3 | C | pH | pH | 10.85 | 9.0 | 10.85 |
4 | D | NH4 | Ammonium ion | 624 µM | 0 µM | 3000 µM |
5 | E | NO3 | Nitrate ion | 624 µM | 0 µM | 3000 µM |
6 | F | SO4 | Sulfate ion | 160 µM | 160 µM | 800 µM |
7 | G | PO4 | Phosphate ion | 36,169 µM | 40,000 µM | 200,000 µM |
8 | H | NaK | Sodium:potassium ratio | 27 | 12.5 | 50.0 |
9 | J | NaS | Sodium sulfide | 104 µM | 50 µM | 200 µM |
10 | K | Cys | Cysteine | 142 µM | 75 µM | 300 µM |
11 | L | Cl | Chloride | 1,198,371 µM | 600,000 µM | 2,400,000 µM |
12 | M | Ca | Calcium | 35 µM | 0 µM | 500 µM |
13 | N | Mg | Magnesium | 164 µM | 0 µM | 1000 µM |
14 | O | Si | Silicon | 125 µM | 0 µM | 500 µM |
15 | P | Mn | Manganese | 59 µM | 0 µM | 500 µM |
16 | Q | Zn | Zinc | 9.5 µM | 0 µM | 100 µM |
17 | R | Fe | Iron | 10.0 µM | 0 µM | 100 µM |
18 | S | Co | Cobalt | 4.2 µM | 0 µM | 100 µM |
19 | T | BO3 | Borate | 1.6 µM | 0 µM | 10 µM |
20 | U | Ni | Nickel | 1.1 µM | 0 µM | 10 µM |
21 | V | MoO4 | Molybdenum | 1.0 µM | 0 µM | 10 µM |
22 | W | WO4 | Tungstate | 0.8 µM | 0 µM | 10 µM |
23 | X | Cu | Copper | 0.4 µM | 0 µM | 5 µM |
24 | Y | Al | Aluminum | 0.2 µM | 0 µM | 2 µM |
Test | Pattern | Block | Average PDO Yield (Percentage of Initial Glycerol Converted to PDO) | Std. Dev. |
---|---|---|---|---|
1,37,71 | −−++−−++−−++−−++−−+++−−+ | 1,5,9 | 15.36 | ±0.62 |
2,40,68 | −−−++−++−+−−+−++−+−−−++− | 1,5,9 | 17.64 | ±0.78 |
3,34,66 | +++−+−−−−−−−−+++++++−−−− | 1,5,9 | 19.73 | ±1.27 |
4,36,72 | +++−−++++++++−−−−−−−−−−− | 1,5,9 | 19.90 | ±1.27 |
5,33,67 | ++−−−−−−−++++++++−−−++++ | 1,5,9 | 18.87 | ±0.65 |
6,39,65 | ++−−+++++−−−−−−−−+++++++ | 1,5,9 | 20.10 | ±0.23 |
7,38,69 | −−−+−+−−+−++−+−−+−++−++− | 1,5,9 | 17.80 | ±0.67 |
8,35,70 | −−++++−−++−−++−−++−−+−−+ | 1,5,9 | 20.34 | ±0.93 |
9,46,76 | +−+−+++−−++−−−−++−−+++−− | 2,6,10 | 17.72 | ±0.83 |
10,43,79 | −+−+++−+−−+−++−+−−+−+−+− | 2,6,10 | 16.06 | ±0.97 |
11,42,75 | +−−−+−−++++−−++−−−−+−−++ | 2,6,10 | 16.82 | ±0.17 |
12,41,80 | −+−+−−+−++−+−−+−++−++−+− | 2,6,10 | 22.42 | ±0.89 |
13,47,78 | +−+−−−−++−−++++−−++−++−− | 2,6,10 | 18.12 | ±0.65 |
14,45,73 | −++++−+−+−+−+−+−+−+−−+−+ | 2,6,10 | 19.64 | ±0.51 |
15,44,77 | +−−−−++−−−−++−−++++−−−++ | 2,6,10 | 17.19 | ±1.01 |
16,48,74 | −+++−+−+−+−+−+−+−+−+−+−+ | 2,6,10 | 20.45 | ±0.90 |
17,53,84 | +−−+−−−++++−−−−++++−++−− | 3,7,11 | 22.23 | ±1.37 |
18,50,85 | −+−−−+−+−−+−+−+−++−+−+−+ | 3,7,11 | 17.60 | ±1.23 |
19,49,82 | +−+++−−++−−++−−++−−+−−++ | 3,7,11 | 19.30 | ±0.64 |
20,56,87 | −++−++−+−+−+−−+−+−+−+−+− | 3,7,11 | 18.20 | ±1.08 |
21,55,88 | +−++−++−−++−−++−−++−−−++ | 3,7,11 | 19.75 | ±0.96 |
22,52,83 | +−−++++−−−−++++−−−−+++−− | 3,7,11 | 15.61 | ±0.45 |
23,54,86 | −+−−+−+−++−+−+−+−−+−−+−+ | 3,7,11 | 17.73 | ±1.15 |
24,51,81 | −++−−−+−+−+−++−+−+−++−+− | 3,7,11 | 18.16 | ±1.15 |
25,62,90 | ++−++−−−−++++−−−−+++−−−− | 4,8,12 | 21.27 | ±0.82 |
26,58,93 | −−+−−+−−++−−+−++−−++−++− | 4,8,12 | 15.68 | ±0.49 |
27,59,91 | ++++++++++++++++++++++++ | 4,8,12 | 25.24 | ±1.56 |
28,60,94 | ++−+−++++−−−−++++−−−−−−− | 4,8,12 | 20.77 | ±1.14 |
29,64,95 | −−−−−−++−+−−++−−+−+++−−+ | 4,8,12 | 15.84 | ±0.62 |
30,57,92 | −−−−++−−+−++−−++−+−−+−−+ | 4,8,12 | 16.74 | ±0.45 |
31,61,96 | ++++−−−−−−−−−−−−−−−−++++ | 4,8,12 | 17.86 | ±1.03 |
32,63,89 | −−+−+−++−−++−+−−++−−−++− | 4,8,12 | 16.52 | ±0.38 |
Factor | Number of Parameters | Degrees of Freedom | Sum of Squares | F Ratio | Prob > F |
---|---|---|---|---|---|
GLYC | 1 | 1 | 55.161176 | 67.9746 | <0.0001 |
B12 | 1 | 1 | 92.022084 | 113.3979 | <0.0001 |
pH | 1 | 1 | 4.964051 | 6.1172 | 0.0164 |
NH4 | 1 | 1 | 67.318251 | 82.9556 | <0.0001 |
NO3 | 1 | 1 | 0.040426 | 0.0498 | 0.8242 |
SO4 | 1 | 1 | 0.259376 | 0.3196 | 0.5741 |
PO4 | 1 | 1 | 0.587501 | 0.724 | 0.3985 |
NAK | 1 | 1 | 1.226276 | 1.5111 | 0.2241 |
NAS | 1 | 1 | 60.055884 | 74.0063 | <0.0001 |
CYS | 1 | 1 | 51.993984 | 64.0717 | <0.0001 |
CL | 1 | 1 | 0.681751 | 0.8401 | 0.3633 |
CA | 1 | 1 | 2.145026 | 2.6433 | 0.1096 |
MG | 1 | 1 | 1.318359 | 1.6246 | 0.2077 |
SI | 1 | 1 | 0.100751 | 0.1242 | 0.7259 |
MN | 1 | 1 | 0.008626 | 0.0106 | 0.9183 |
ZN | 1 | 1 | 0.106001 | 0.1306 | 0.7191 |
FE | 1 | 1 | 46.078959 | 56.7826 | <0.0001 |
CO | 1 | 1 | 86.165651 | 106.1811 | <0.0001 |
BO3 | 1 | 1 | 0.958001 | 1.1805 | 0.2819 |
NI | 1 | 1 | 0.221376 | 0.2728 | 0.6035 |
MOO4 | 1 | 1 | 0.111384 | 0.1373 | 0.7124 |
WO4 | 1 | 1 | 0.090651 | 0.1117 | 0.7395 |
CU | 1 | 1 | 0.197109 | 0.2429 | 0.624 |
AL | 1 | 1 | 0.094376 | 0.1163 | 0.7344 |
Block | 11 | 11 | 7.465253 | 0.8363 | 0.6052 |
GLYC * pH | 1 | 1 | 0.469001 | 0.5779 | 0.4503 |
B12 * pH | 1 | 1 | 0.198926 | 0.2451 | 0.6225 |
pH * MOO4 | 1 | 1 | 0.098176 | 0.121 | 0.7293 |
NH4 * MOO4 | 1 | 1 | 1.547876 | 1.9074 | 0.1727 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalia, S.; Trager, J.; Sitton, O.C.; Mormile, M.R. The Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans. Life 2016, 6, 35. https://doi.org/10.3390/life6030035
Kalia S, Trager J, Sitton OC, Mormile MR. The Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans. Life. 2016; 6(3):35. https://doi.org/10.3390/life6030035
Chicago/Turabian StyleKalia, Shivani, Jordan Trager, Oliver C. Sitton, and Melanie R. Mormile. 2016. "The Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans" Life 6, no. 3: 35. https://doi.org/10.3390/life6030035
APA StyleKalia, S., Trager, J., Sitton, O. C., & Mormile, M. R. (2016). The Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans. Life, 6(3), 35. https://doi.org/10.3390/life6030035