Comparison of Vitamin D Levels, Bone Metabolic Marker Levels, and Bone Mineral Density among Patients with Thyroid Disease: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics of the Participants According to Group
3.2. Assessment of Serum 25(OH)D Levels and Comparison of Serum 25(OH)D, Calcium, and Phosphate Levels among the Hyperthyroid, Hypothyroid, Euthyroid, and Control Groups
3.2.1. Serum 25(OH)D Levels
3.2.2. Serum Calcium Levels
3.2.3. Serum Phosphate Level
3.3. Comparison between Serum Bone Turnover Marker Levels among the Hyperthyroid, Hypothyroid, Euthyroid, and Control Groups
3.3.1. Serum CTX) Levels
3.3.2. Serum P1NP Level
3.4. Comparison of BMD among the Hyperthyroid, Hypothyroid, Euthyroid, and Control Groups
Z-Score/Bone Density (g/cm2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shahar, M.A.; Ghani, L.; Omar, A.M.; Loh, H.H.; Ooi, C.P.; My, Y.; Ibrahim, L.; Ab Wahab, N.; Sukor, N.; Md Zain, R.; et al. Prevalence of thyroid disorders and thyroid autoantibodies among coastal communities of Malaysia (part of nationwide study of thyroid disorders in Malaysia). J. ASEAN Fed. Endocr. Soc. 2015, 30, 220. [Google Scholar]
- Tuchendler, D.; Bolanowski, M. The influence of thyroid dysfunction on bone metabolism. Thyroid Res. 2014, 7, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacCagnano, G.; Notarnicola, A.; Pesce, V.; Mudoni, S.; Tafuri, S.; Moretti, B. The Prevalence of Fragility Fractures in a Population of a Region of Southern Italy Affected by Thyroid Disorders. Biomed. Res. Int. 2016, 2016, 6017165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhanwal, D.K.; Kochupillai, N.; Gupta, N.; Cooper, C.; Dennison, E.M. Hypovitaminosis D and bone mineral metabolism and bone density in hyperthyroidism. J. Clin. Densitom. 2010, 13, 462–466. [Google Scholar] [CrossRef]
- Ho-Pham, L.T.; Nguyen, N.D.; Lai, T.Q.; Eisman, J.A.; Nguyen, T.V. Vitamin D status and parathyroid hormone in a urban population in Vietnam. Osteoporos Int. 2011, 22, 241–248. [Google Scholar] [CrossRef]
- Moy, F.M.; Bulgiba, A. High prevalence of vitamin D insufficiency and its association with obesity and metabolic syndrome among Malay adults in Kuala Lumpur, Malaysia. BMC Public Health. 2011, 11, 735. [Google Scholar] [CrossRef] [Green Version]
- Khor, G.L.; Chee, W.S.; Shariff, Z.M.; Poh, B.K.; Arumugam, M.; Rahman, J.A.; Theobald, H.E. High prevalence of vitamin D insufficiency and its association with BMI-for-age among primary school children in Kuala Lumpur, Malaysia. BMC Public Health 2011, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Green, T.J.; Skeaff, C.M.; Rockell, J.E.P.; Venn, B.J.; Lambert, A.; Todd, J.; Khor, G.L.; Loh, S.P.; Muslimatun, S.; Agustina, R.; et al. Vitamin D status and its association with parathyroid hormone concentrations in women of child-bearing age living in Jakarta and Kuala Lumpur. Eur. J. Clin. Nutr. 2008, 62, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.A.; Chee, W.S.S.; Yassin, Z.; Chan, S.P. Vitamin D status among postmenopausal Malaysian women. Asia Pac. J. Clin. Nutr. 2004, 13, 255–260. [Google Scholar]
- Lemeshow, S.; Hosmer, D.W., Jr.; Klar, J.; Lwanga, S.K. Adequacy of Sample Size Determination in Health Studies. In Adequacy of Sample Size in Health Studies; Wiley: Hoboken, NJ, USA, 1990; Published on behalf of the World Health Organization. [Google Scholar]
- Stepman, H.C.M.; Vanderroost, A.; Van Uytfanghe, K.; Thienpont, L.M. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3and 25-hydroxyvitamin D2by using isotope-dilution liquid chromatography-tandem mass spectrometry. Clin. Chem. 2011, 57, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Thienpont, L.M.; Stepman, H.C.M.; Vesper, H.W. Standardization of measurements of 25-Hydroxyvitamin D3 and D2. Scand. J. Clin. Lab. Invest. 2012, 72, 41–49. [Google Scholar]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metabolism. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global consensus recommendations on prevention and management of nutritional rickets. Horm. Res. Paediatr. 2016, 85, 83–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, M.; Kharb, S. Dual energy X-ray absorptiometry: Pitfalls in measurement and interpretation of bone mineral density. Indian J. Endocrinol. Metab. 2013, 17, 203. [Google Scholar] [CrossRef]
- Greenlund, L.J.S.; Nair, K.S.; Brennan, M.D. Changes in body composition in women following treatment of overt and subclinical hyperthyroidism. Endocr. Pract. 2008, 14, 973–978. [Google Scholar] [CrossRef]
- Lee, W.Y.; Oh, K.W.; Rhee, E.J.; Jung, C.H.; Kim, S.W.; Yun, E.J.; Tae, H.J.; Baek, K.H.; Kang, M.I.; Choi, M.G.; et al. Relationship between Subclinical Thyroid Dysfunction and Femoral Neck Bone Mineral Density in Women. Arch. Med. Res. 2006, 7, 511–516. [Google Scholar] [CrossRef]
- Wacker, M.; Holiack, M.F. Vitamin D-effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 2013, 5, 111–148. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.C. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr. 2011, 14, 938–939. [Google Scholar] [CrossRef] [Green Version]
- Jones, G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008, 88, 582S–586S. [Google Scholar] [CrossRef] [Green Version]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Chailurkit, L.O.; Kruavit, A.; Rajatanavin, R. Vitamin D status and bone health in healthy Thai elderly women. Nutrition 2011, 27, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Setiati, S. Vitamin D status among Indonesian elderly women living in institutionalized care units. Acta Med. Indones 2008, 40, 78–83. [Google Scholar] [PubMed]
- Quah, S.W.; Majid, H.A.; Al-Sadat, N.; Yahya, A.; Su, T.T.; Jalaludin, M.Y. Risk factors of Vitamin D deficiency among 15-year-old adolescents participating in the Malaysian health and adolescents longitudinal research team study (MyHeARTs). PLoS ONE 2018, 13, e0200736. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Yamashita, H.; Noguchi, S. High prevalence of secondary hyperparathyroidism due to vitamin D insufficiency in Graves’ disease. Clin. Calcium. 2005, 15, 68–70. [Google Scholar]
- Arjumand, S.; Tabassum, H.; Ali, M.N.; Al-Jameil, N. Seasonal variation in status of vitamin-D, serum bone profile and thyroid function in adult population of Saudi Arabia. Biomed. Res. 2016, 27, 1385–1389. [Google Scholar]
- Mackawy, A.M.H.; Al-Ayed, B.M.; Al-Rashidi, B.M. Vitamin D Deficiency and Its Association with Thyroid Disease. Int. J. Health Sci. (Qassim.) 2013, 7, 267. [Google Scholar] [CrossRef]
- Lagunova, Z.; Porojnicu, L.C.; Lindberg, F.; Hexeberg, S.; Moan, J. The dependency of vitamin D status on body mass index, gender, age and season. Anticancer Res. 2009, 29, 3713–3720. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Chen, G.; Gao, C.; He, J.; Zhong, H.; Xu, Y. Meta-analysis of the association between vitamin D and autoimmune thyroid disease. Nutrients 2015, 15, 68–70. [Google Scholar] [CrossRef] [Green Version]
- Goswami, R.; Marwaha, R.K.; Gupta, N.; Tandon, N.; Sreenivas, V.; Tomar, N.; Ray, D.; Kanwar, R.; Agarwal, R. Prevalence of vitamin D deficiency and its relationship with thyroid autoimmunity in Asian Indians: A community-based survey. Br. J. Nutr. 2009, 102, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Modi, A.; Sahi, N. Effect of thyroid hormones on serum calcium and phosphorous. Int J. Clin. Biochem Res. 2018, 5, 570–573. [Google Scholar] [CrossRef]
- Sridevi, D.; Dambal, A.A.; Sidrah, A.S.C.; Padaki, S.K. A study of serum magnesium, calcium and phosphorus in hypothyroidism. Age 2016, 35, 35–68. [Google Scholar] [CrossRef]
- Bassett, J.H.D.; Williams, G.R. The molecular actions of thyroid hormone in bone. Trends Endocrinol. Metab. 2003, 14, 356–364. [Google Scholar] [CrossRef]
- Harvey, C.B.; O’Shea, P.J.; Scott, A.J.; Robson, H.; Siebler, T.; Shalet, S.M.; Samarut, J.; Chassande, O.; Williams, G.R. Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol. Genet. Metab. 2002, 75, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.A.; Harvey, C.B.; Scott, A.J.; O’Shea, P.J.; Barnard, J.C.; Williams, A.J.; Brady, G.; Samarut, J.; Chassande, O.; Williams, G.R. Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol. Endocrinol. 2003, 17, 1751–1766. [Google Scholar] [CrossRef] [Green Version]
- Hyppönen, E.; Läärä, E.; Reunanen, A.; Järvelin, M.R.; Virtanen, S.M. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet 2001, 358, 1500–1503. [Google Scholar] [CrossRef]
- Kumeda, Y.; Inaba, M.; Tahara, H.; Kurioka, Y.; Ishikawa, T.; Morii, H.; Nishizawa, Y. Persistent Increase in Bone Turnover in Graves’ Patients with Subclinical Hyperthyroidism. J. Clin. Endocrinol. Metab. 2000, 85, 4157–4161. [Google Scholar]
- Engler, H.; Oettli, R.E.; Riesen, W.F. Biochemical markers of bone turnover in patients with thyroid dysfunctions and in euthyroid controls: A cross-sectional study. Clin. Chim. Acta 1999, 289, 159–172. [Google Scholar] [CrossRef]
- Bauer, D.C.; Sklarin, P.M.; Stone, K.L.; Black, D.M.; Nevitt, M.C.; Ensrud, K.E.; Arnaud, C.D.; Genant, H.K.; Garnero, P.; Delmas, P.D.; et al. Biochemical markers of bone turnover and prediction of hip bone loss in older women: The study of osteoporotic fractures. J. Bone Miner. Res. 1999, 14, 1404–1410. [Google Scholar] [CrossRef]
- Garnero, P.; Delmas, P.D. Biochemical markers of bone turnover: Applications for osteoporosis. Endocrinol. Metab. Clin. N. Am. 1998, 27, 303–323. [Google Scholar] [CrossRef]
- Cosman, F.; Nieves, J.; Wilkinson, C.; Schnering, D.; Shen, V.; Lindsay, R. Bone density change and biochemical indices of skeletal turnover. Calcif. Tissue Int. 1996, 58, 236–243. [Google Scholar] [CrossRef]
- Garnero, P.; Sornay-Rendu, E.; Chapuy, M.C.; Delmas, P.D. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone Miner. Res. 1996, 11, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Rosario, P.W. Bone and heart abnormalities of subclinical hyperthyroidism in women below the age of 65 years. Arq. Bras. Endocrinol. Metabol. 2008, 52, 1448–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauchmanovà, L.; Nuzzo, V.; Del Puente, A.; Fonderico, F.; Esposito-Del Puente, A.; Padulla, S.; Rossi, A.; Bifulco, G.; Lupoli, G.; Lombardi, G. Reduced bone mass detected by bone quantitative ultrasonometry and DEXA in pre- and postmenopausal women with endogenous subclinical hyperthyroidism. Maturitas 2004, 48, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Tuchendler, D.; Bolanowski, M. Assessment of bone metabolism in premenopausal females with hyperthyroidism and hypothyroidism. Endokrynol. Pol. 2013, 64, 40–44. [Google Scholar] [PubMed]
- Hanna, F.W.F.; Pettit, R.J.; Ammari, F.; Evans, W.D.; Sandeman, D.; Lazarus, J.H. Effect of replacement doses of thyroxine on bone mineral density. Clin. Endocrinol. (Oxf.) 1998, 48, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P.; Mosekilde, L. Fractures in patients with hyperthyroidism and hypothyroidism: A nationwide follow-up study in 16, 249 patients. Thyroid 2002, 12, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Boelaert, K.; Franklyn, J.A. Thyroid hormone in health and disease. J. Endocrinol. 2005, 187, 1–5. [Google Scholar] [CrossRef]
Variables | Hyperthyroid | Hypothyroid | Euthyroid | Control | Test Stat (df) | p-Value |
---|---|---|---|---|---|---|
Frequency | 64 (32.0) | 18 (9.0) | 53 (27.0) | 64 (32.0) | ||
Age, years | 29.69 (5.95) | 28.89 (5.90) | 31.77 (5.27) | 28.55 (6.17) | 3.14 (3,195) | 0.026 a |
Gender | ||||||
Male | 16 (25.0) | 5 (27.8) | 11 (20.8) | 27 (42.2) | 7.53 (3) | 0.057 b |
Female | 48 (75.0) | 13 (72.2) | 42 (79.2) | 37 (57.8) | ||
Race | ||||||
Malay | 61 (95.3) | 17 (94.4) | 49 (92.5) | 60 (93.7) | - | 0.124 c |
Non Malay | 3 (4.7) | 1 (5.6) | 4 (7.5) | 4 (6.3) | ||
BMI, kg/m2 | 23.69 (3.92) | 24.43 (6.08) | 25.79 (5.61) | 24.44 (4.60) | 1.84 (3,195) | 0.141 a |
Duration of Thyroid Disease, Months | 25.50 (42.00) | 49.00 (70.00) | 42.00 (63.00) | - | 7.16 (2) | 0.028 d |
TSH, mIU/L | 0.005 (0.001) | 31.97 (86.01) | 1.60 (2.50) | 1.57 (1.08) | 113.36 (3) | <0.001 d |
fT4, pmol/L | 28.52 (14.92) | 8.64 (12.12) | 16.91 (4.13) | 15.82 (2.61) | 75.58 (3) | <0.001 d |
Serum 25(OH)D | ||||||
Sufficient | 20 (31.3) | 5 (27.8) | 19 (35.8) | 10 (15.6) | 16.40 (6) | 0.012 b |
Insufficiency | 23 (35.9) | 11(61.1) | 27 (50.9) | 30 (46.9) | ||
Deficiency | 21 (32.8) | 2 (11.1) | 7 (13.3) | 24 (37.5) |
Variables | Hyperthyroid | Hypothyroid | Euthyroid |
---|---|---|---|
Diagnosis | |||
Graves’ Disease | 51 (80) | 11 (61) | 38 (72) |
Toxic Goiter | 13 (20) | 1 (6) | 10 (19) |
Congenital Hypothyroid | - | - | 1 (2) |
Thyroiditis | - | 6 (33) | 4 (7) |
Treatment | |||
ATD | 53 (83) | - | 29 (55) |
RAI + ATD | 11 (17) | - | 5 (9) |
Thyroidectomy + Thyroxine | - | 2 (11) | 2 (4) |
RAI + Thyroxine | - | 10 (56) | 12 (23) |
RAI | - | - | 1 (2) |
Thyroxine | - | 6 (33) | 4 (7) |
Group | N | Mean (SD) (nmol/L) | Mean Difference (95% CI) | t-Stats (df) | p-Value | |
---|---|---|---|---|---|---|
Hyperthyroid | Male | 16 | 57.35 (28.02) | 18.33 (2.88, 33.78) | 2.49 (18.22) | 0.023 |
Female | 48 | 39.02 (15.66) | ||||
Hypothyroid | Male | 5 | 63.48 (16.93) | 24.57 (3.84, 45.3) | 3.14 (4.53) | 0.029 |
Female | 13 | 38.91 (6.98) | ||||
Euthyroid | Male | 11 | 63.6 (17.63) | 17.73 (6, 29.46) | 3.03 (51) | 0.004 |
Female | 42 | 45.87 (17.16) | ||||
Control | Male | 27 | 44.82 (17.61) | 12.85 (4.7, 21) | 3.07 (50.39) | 0.003 |
Female | 37 | 31.96 (14.93) |
Variables (n) | Hyperthyroid (64) | Hypothyroid (18) | Euthyroid (53) | Control (64) | F-Stat (df) | p Value |
---|---|---|---|---|---|---|
25 (OH) D (nmol/L) | 43.6 (20.83) | 45.74 (15.17) | 49.55 (18.57) | 37.38 (17.21) | 4.24 (3,195) | 0.006 |
Serum Calcium (mmol/L) | 2.20 (0.16) | 2.21 (0.11) | 2.21 (0.16) | 2.32 (0.83) | 10.64 (3,195) | <0.001 |
Serum Phosphate (mmol/L) | 1.12 (0.24) | 1.05 (0.18) | 1.09 (0.25) | 1.21 (0.24) | 3.21 (3,195) | 0.024 |
Group Comparison | Adjusted Mean Difference (95% CI) | p-Value |
---|---|---|
Serum 25(OH)D | ||
Hyperthyroid vs. Hypothyroid | −2.14 (−15.4, 11.12) | >0.95 |
Hyperthyroid vs. Euthyroid | −5.95 (−15.18, 3.28) | 0.524 |
Hyperthyroid vs. Control | 6.22 (−2.57, 15.00) | 0.365 |
Hypothyroid vs. Euthyroid | −3.81 (−17.38, 9.75) | >0.95 |
Hypothyroid vs. Control | 8.35 (−4.91, 21.62) | 0.569 |
Euthyroid vs. Control | 12.17 (2.94, 21.40) | 0.003 |
Serum Calcium | ||
Hyperthyroid vs. Hypothyroid | −0.01 (−0.10, 0.08) | 0.974 |
Hyperthyroid vs. Euthyroid | −0.01 (−0.09, 0.71) | 0.994 |
Hyperthyroid vs. Control | −0.12 (−0.18, −0.06) | <0.001 |
Hypothyroid vs. Euthyroid | 0.01 (−0.09, 0.10) | 0.998 |
Hypothyroid vs. Control | −0.11 (−0.19, −0.03) | 0.005 |
Euthyroid vs. Control | −0.11 (−0.18, −0.50) | <0.001 |
Serum Phosphate | ||
Hyperthyroid vs. Hypothyroid | 0.08 (−0.09, 0.25) | >0.95 |
Hyperthyroid vs. Euthyroid | 0.03 (−0.09, 0.15) | >0.95 |
Hyperthyroid vs. Control | −0.08 (−0.19, 0.03) | 0.335 |
Hypothyroid vs. Euthyroid | −0.05 (−0.22, 0.13) | >0.95 |
Hypothyroid vs. Control | −0.16 (−0.33, 0.01) | 0.082 |
Euthyroid vs. Control | −0.11 (−0.23, 0.01) | 0.081 |
Variables | Hyperthyroid (64) | Hypothyroid (18) | Euthyroid (53) | Control (64) | F-Stat (df) | p Value |
---|---|---|---|---|---|---|
25(OH) D (nmol/L) | 43.67 (39.16, 58.19) | 46.32 (37.8, 54.58) | 48.3 (43.26, 53.33) | 38.19 (33.64, 42.74) | 3.04 (3,194) | 0.030 |
Serum Calcium (mmol/L) | 2.21 (2.17, 2.24) | 2.24 (2.16, 2.31) | 2.22 (2.18, 2.27) | 2.33 (2.29, 2.36) | 8.322 (3,190) | <0.001 |
Serum Phosphate (mmol/L) | 1.12 (1.06, 1.18) | 1.04 (0.93, 1.15) | 1.11 (1.04, 1.17) | 1.2 (1.14, 1.25) | 2.64 (3,194) | 0.051 |
Group Comparison | Adjusted Mean Difference (95% CI) | p-Value |
---|---|---|
Serum 25(OH)D | ||
Hyperthyroid vs. Hypothyroid | −2.10 (−14.13, 9.92) | >0.95 |
Hyperthyroid vs. Euthyroid | −5.57 (−14.02, 2.89) | 0.484 |
Hyperthyroid vs. Control | 8.38 (0.28, 16.47) | 0.038 |
Hypothyroid vs. Euthyroid | −3.47 (−15.87, 8.94) | >0.95 |
Hypothyroid vs. Control | 10.48 (−1.59, 22.54) | 0.130 |
Euthyroid vs. Control | 13.94 (5.22, 22.67) | <0.001 |
Serum Calcium | ||
Hyperthyroid vs. Hypothyroid | −0.03 (−0.14, 0.08) | >0.95 |
Hyperthyroid vs. Euthyroid | −0.02 (−0.10, 0.06) | >0.95 |
Hyperthyroid vs. Control | −0.12 (−0.19, −0.05) | <0.001 |
Hypothyroid vs. Euthyroid | 0.01 (−0.10, 0.13) | >0.95 |
Hypothyroid vs. Control | −0.09 (−0.20, 0.02) | 0.136 |
Euthyroid vs. Control | −0.10 (−0.18, −0.02) | 0.004 |
Serum Phosphate | ||
Hyperthyroid vs. Hypothyroid | 0.08 (−0.09, 0.25) | >0.95 |
Hyperthyroid vs. Euthyroid | 0.01 (−0.1, 0.13) | >0.95 |
Hyperthyroid vs. Control | −0.08 (−0.19, 0.04) | 0.446 |
Hypothyroid vs. Euthyroid | −0.07 (−0.24, 0.11) | >0.95 |
Hypothyroid vs. Control | −0.16 (−0.33, 0.01) | 0.077 |
Euthyroid vs. Control | −0.09 (−0.21, 0.03) | 0.289 |
Variables (n) | Hyperthyroid (64) | Hypothyroid (18) | Euthyroid (53) | Control (64) | F-Stat (df) | p Value |
---|---|---|---|---|---|---|
Serum CTX (ng/ml) | 0.48 (0.37) | 0.19 (0.12) | 0.29 (0.45) | 0.39 (0.19) | 5.53 (3,195) | 0.001 |
Serum P1NP (ng/ml) | 156.54 (114.37) | 41.05 (19.3) | 73.17 (114.39) | 67.53 (34.61) | 15.09 (3,195) | <0.001 |
Variables N | Hyperthyroid (64) | Hypothyroid (18) | Euthyroid (53) | Control (64) | F-Stat (df) | p Value |
---|---|---|---|---|---|---|
Serum CTX (ng/ml) | 0.48 (0.4, 0.56) | 0.18 (0.03, 0.33) | 0.3 (0.21, 0.39) | 0.38 (0.29, 0.46) | 5.25 (3,193) | 0.002 |
Serum P1NP (ng/ml) | 156.32 (134.19,178.45) | 39.35 (−2.43, 81.12) | 76.86 (52.17, 101.55) | 65.18 (42.89, 87.48) | 15.33 (3,194) | <0.001 |
Group Comparison | Adjusted Mean Difference (95% CI) | p-Value |
---|---|---|
Serum CTX | ||
Hyperthyroid vs. Hypothyroid | 0.3 (0.16, 0.44) | <0.001 |
Hyperthyroid vs. Euthyroid | 0.2 (0, 0.4) | 0.054 |
Hyperthyroid vs. Control | 0.1 (−0.04, 0.23) | 0.236 |
Hypothyroid vs. Euthyroid | −0.1 (−0.28, 0.08) | 0.481 |
Hypothyroid vs. Control | −0.2 (−0.3, −0.1) | <0.001 |
Euthyroid vs. Control | −0.1 (−0.28, 0.07) | 0.426 |
Serum P1NP | ||
Hyperthyroid vs. Hypothyroid | 115.48 (76.04, 154.92) | <0.001 |
Hyperthyroid vs. Euthyroid | 83.37 (27.95, 138.78) | 0.001 |
Hyperthyroid vs. Control | 89.01 (49.75, 128.26) | <0.001 |
Hypothyroid vs. Euthyroid | −32.12 (−75.35, 11.11) | 0.213 |
Hypothyroid vs. Control | −26.48 (−43.16, −9.8) | 0.001 |
Euthyroid vs. Control | 5.64 (−37.43, 48.71) | 0.986 |
Group Comparison | Adjusted Mean Difference (95% CI) | p-Value |
---|---|---|
Serum CTX | ||
Hyperthyroid vs. Hypothyroid | 0.31 (0.07, 0.54) | 0.004 |
Hyperthyroid vs. Euthyroid | 0.18 (0.01, 0.34) | 0.028 |
Hyperthyroid vs. Control | 0.12 (−0.04, 0.28) | 0.280 |
Hypothyroid vs. Euthyroid | −0.13 (−0.37, 0.11) | 0.926 |
Hypothyroid vs. Control | −0.19 (−0.42, 0.05) | 0.205 |
Euthyroid vs. Control | −0.06 (−0.23, 0.11) | >0.95 |
Serum P1NP | ||
Hyperthyroid vs. Hypothyroid | 117.02 (52.97, 181.08) | <0.001 |
Hyperthyroid vs. Euthyroid | 79.38 (34.35, 124.41) | <0.001 |
Hyperthyroid vs. Control | 91.38 (48.29, 134.48) | <0.001 |
Hypothyroid vs. Euthyroid | −37.64 (−103.73, 28.45) | 0.784 |
Hypothyroid vs. Control | −25.64 (−89.9, 38.62) | >0.95 |
Euthyroid vs. Control | 12 (−34.47, 58.47) | >0.95 |
Variables (n) | Hyperthyroid (57) | Hypothyroid (15) | Euthyroid (50) | Control (64) | F-Stat (df) | p Value |
---|---|---|---|---|---|---|
Hip Z score | −0.02 (0.83) | 0.25 (0.95) | 0.27 (1.15) | 0.39 (1.03) | 1.72 (3,182) | 0.164 |
Spine Z score | −0.29 (0.93) | −0.65 (0.79) | −0.18 (1.09) | −0.48 (1.03) | 1.3 (3,182) | 0.275 |
Hip g/cm2 | 0.86 (0.11) | 0.93 (0.14) | 0.91 (0.15) | 0.95 (0.13) | 5.12 (3,182) | 0.002 |
Spine g/cm2 | 0.97 (0.09) | 0.97 (0.09) | 1.01 (0.13) | 1.00 (0.13) | 1.197 (3,182) | 0.312 |
Group Comparison | Adjusted Mean Difference (95% CI) | p-Value |
---|---|---|
Hip (Z Score) | ||
Hyperthyroid vs. Hypothyroid | −0.27 (−1.05, 0.51) | >0.95 |
Hyperthyroid vs. Euthyroid | −0.29 (−0.81, 0.23) | 0.845 |
Hyperthyroid vs. Control | −0.41 (−0.9, 0.08) | 0.162 |
Hypothyroid vs. Euthyroid | −0.02 (−0.81, 0.77) | >0.95 |
Hypothyroid vs. Control | −0.14 (−0.91, 0.63) | >0.95 |
Euthyroid vs. Control | −0.12 (−0.63, 0.39) | >0.95 |
Spine (Z Score) | ||
Hyperthyroid vs. Hypothyroid | 0.36 (−0.42, 1.13) | >0.95 |
Hyperthyroid vs. Euthyroid | −0.11 (−0.62, 0.41) | >0.95 |
Hyperthyroid vs. Control | 0.19 (−0.3, 0.67) | >0.95 |
Hypothyroid vs. Euthyroid | −0.46 (−1.25, 0.32) | 0.713 |
Hypothyroid vs. Control | −0.17 (−0.94, 0.6) | >0.95 |
Euthyroid vs. Control | 0.29 (−0.21, 0.8) | 0.743 |
Hip (g/cm2) | ||
Hyperthyroid vs. Hypothyroid | 0.08 (−0.18, 0.03) | 0.248 |
Hyperthyroid vs. Euthyroid | −0.05 (−0.12, 0.01) | 0.174 |
Hyperthyroid vs. Control | −0.09 (−0.15, −0.03) | <0.001 |
Hypothyroid vs. Euthyroid | 0.02 (−0.09, 0.14) | 0.944 |
Hypothyroid vs. Control | −0.02 (−0.13, 0.10) | 0.974 |
Euthyroid vs. Control | − 0.04 (−0.11, 0.03) | 0.445 |
Spine (g/cm2) | ||
Hyperthyroid vs. Hypothyroid | −0.01 (−0.07, 0.07) | >0.95 |
Hyperthyroid vs. Euthyroid | −0.04 (−0.10, 0.02) | 0.337 |
Hyperthyroid vs. Control | −0.03 (−0.08,0.02) | 0.463 |
Hypothyroid vs. Euthyroid | −0.04 (−0.012, 0.04) | 0.607 |
Hypothyroid vs. Control | −0.03 ( −0.11, 0.55) | 0.731 |
Euthyroid vs. Control | 0.01 (−0.06, 0.07) | 0.992 |
Variables (n) | Hyperthyroid (57) | Hypothyroid (15) | Euthyroid (50) | Control (64) | F-Stat (df) | p Value |
---|---|---|---|---|---|---|
Hip Z score | 0.02 (−0.26, 0.3) | 0.28 (−0.24, 0.79) | 0.24 ( −0.06, 0.55) | 0.43 (0.18, 0.68) | 1.62 (3,180) | 0.187 |
Spine Z score | −0.26 (−0.54, 0.02) | −0.62 (−1.14, −0.11) | −0.17 (−0.47, 0.13) | −0.46 (−0.71, −0.21) | 1.24 (3,180) | 0.588 |
Hip g/cm2 | 0.877 (0.84, 0.92) | 0.95 (0.88, 1.02) | 0.91 (0.88, 0.96) | 0.96 (0.93, 0.99) | 3.81 (3,177) | 0.011 |
Spine g/cm2 | 0.98 (0.94, 1.02) | 0.98 (0.91, 1.05) | 1.01 (0.97, 1.05) | 1.01 (0.98, 1.04) | 0.60 (3,177) | 0.617 |
Group Comparison | Adjusted Mean Difference (95% CI) | p-Value |
---|---|---|
Hip (Z Score) | ||
Hyperthyroid vs. Hypothyroid | −0.26 (−1.03, 0.51) | >0.95 |
Hyperthyroid vs. Euthyroid | −0.23 (−0.75, 0.30) | 0.845 |
Hyperthyroid vs. Control | −0.41 (−0.90, 0.09) | 0.178 |
Hypothyroid vs. Euthyroid | −0.03 (−0.76, 0.82) | >0.95 |
Hypothyroid vs. Control | −0.15 (−0.92, 0.62) | >0.95 |
Euthyroid vs. Control | −0.18 (−0.71, 0.35) | >0.95 |
Spine (Z Score) | ||
Hyperthyroid vs. Hypothyroid | 0.36 (−0.42, 1.14) | >0.95 |
Hyperthyroid vs. Euthyroid | −0.09 (−0.62, 0.44) | >0.95 |
Hyperthyroid vs. Control | 0.20 (−0.30, 0.70) | >0.95 |
Hypothyroid vs. Euthyroid | −0.45 (−1.25, 0.34) | 0.777 |
Hypothyroid vs. Control | −0.16 (−0.94, 0.61) | >0.95 |
Euthyroid vs. Control | 0.29 (−0.24, 0.82) | 0.849 |
Hip (g/cm2) | ||
Hyperthyroid vs. Hypothyroid | −0.07 (−0.15, 0.01) | 0.521 |
Hyperthyroid vs. Euthyroid | −0.04 (−0.12, 0.04) | >0.95 |
Hyperthyroid vs. Control | −0.09 (−0.14, −0.03) | <0.001 |
Hypothyroid vs. Euthyroid | 0.04 (−0.88, 0.15) | >0.95 |
Hypothyroid vs. Control | −0.01 (−0.12, 0.10) | >0.95 |
Euthyroid vs. Control | −0.05 (−0.12, 0.02) | 0.481 |
Spine (g/cm2) | ||
Hyperthyroid vs. Hypothyroid | −0.01( −0.11, 1.00) | >0.95 |
Hyperthyroid vs. Euthyroid | −0.03( −0.10, 0.05) | >0.95 |
Hyperthyroid vs. Control | −0.03 (−0.10,0.04) | >0.95 |
Hypothyroid vs. Euthyroid | −0.02 (−0.13, 0.08) | >0.95 |
Hypothyroid vs. Control | −0.02 ( −0.12, 0.08) | >0.95 |
Euthyroid vs. Control | 0.01 (−0.07, 0.07) | >0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mat Ali, M.H.; Tuan Ismail, T.S.; Wan Azman, W.N.; Yaacob, N.M.; Yahaya, N.; Draman, N.; Wan Mohamed, W.M.I.; Abdullah, M.S.; Ibrahim, H.A.; Wan Nik, W.N.F.H.; et al. Comparison of Vitamin D Levels, Bone Metabolic Marker Levels, and Bone Mineral Density among Patients with Thyroid Disease: A Cross-Sectional Study. Diagnostics 2020, 10, 1075. https://doi.org/10.3390/diagnostics10121075
Mat Ali MH, Tuan Ismail TS, Wan Azman WN, Yaacob NM, Yahaya N, Draman N, Wan Mohamed WMI, Abdullah MS, Ibrahim HA, Wan Nik WNFH, et al. Comparison of Vitamin D Levels, Bone Metabolic Marker Levels, and Bone Mineral Density among Patients with Thyroid Disease: A Cross-Sectional Study. Diagnostics. 2020; 10(12):1075. https://doi.org/10.3390/diagnostics10121075
Chicago/Turabian StyleMat Ali, Masliza Hanuni, Tuan Salwani Tuan Ismail, Wan Norlina Wan Azman, Najib Majdi Yaacob, Norhayati Yahaya, Nani Draman, Wan Mohd Izani Wan Mohamed, Mohd Shafie Abdullah, Hanim Afzan Ibrahim, Wan Nor Fazila Hafizan Wan Nik, and et al. 2020. "Comparison of Vitamin D Levels, Bone Metabolic Marker Levels, and Bone Mineral Density among Patients with Thyroid Disease: A Cross-Sectional Study" Diagnostics 10, no. 12: 1075. https://doi.org/10.3390/diagnostics10121075
APA StyleMat Ali, M. H., Tuan Ismail, T. S., Wan Azman, W. N., Yaacob, N. M., Yahaya, N., Draman, N., Wan Mohamed, W. M. I., Abdullah, M. S., Ibrahim, H. A., Wan Nik, W. N. F. H., & Mohamed, M. (2020). Comparison of Vitamin D Levels, Bone Metabolic Marker Levels, and Bone Mineral Density among Patients with Thyroid Disease: A Cross-Sectional Study. Diagnostics, 10(12), 1075. https://doi.org/10.3390/diagnostics10121075