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Abstract: This prospective study investigated the effects of fold-over oversampling on phase-offset
background errors with 2D-Cine phase contrast (Cine-PC) magnetic resonance imaging (MRI). It was
performed on brain MRI and compared to conventional Full-field of view FOV coverage and it was
tested with two different velocity encoding (Venc) values. We chose Venc = 100 mm/s to encode
cerebrospinal fluid (CSF) flows in the aqueduct and 600 mm/s to encode blood flow in the carotid
artery. Cine-PC was carried out on 10 healthy adult volunteers followed simultaneously by an
acquisition on static agar-gel phantom to measure the phase-offset background errors. Pixel-wise
correction of both the CSF and the blood flows was calculated through 32 points of the cardiac-cycle. We
compared the velocity-to-noise ratio, The section area, The absolute and the corrected velocity (peak;
mean and minimum), The net flow, and the stroke volume before and after correction. We performed
the statistical T-test to compare Full-FOV and fold-over and Bland–Altman plots to analyze their
differences. Our results showed that following phase-offset error correction, The blood stroke-volume
was significantly higher with Full-FOV compared to fold-over. We observed a significantly higher
CSF mean velocity and net flow values in the fold-over option. Compared to Full-FOV, fold-over
provides a significantly larger section area and significantly lower peak velocity-offset in the aqueduct.
No significant difference between the two coverages was reported before and after phase-offset in
blood flow measurements. In conclusion, fold-over oversampling can be chosen as an alternative to
increase spatial resolution and accurate cerebral flow quantification in Cine-PC.
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1. Introduction

Flow-encoding 2D-Cine phase-contrast (Cine-PC) magnetic resonance imaging (MRI) has growing
interest in cerebrospinal fluid (CSF) and blood flow assessment. It has the capability to measure the
peak and mean flow velocities and volumes through the entire cardiac cycle. These underlying flow
information and dynamic parameters can be used to grade the severity of hydrocephalus pathologies
and cerebrovascular artero-venous dysfunctions. CSF and blood flow quantifications have been
successfully performed in the aqueduct [1] and the artero-venous systems [2]. These measurements
allow for a better understanding of the brain hydro/hemo dynamic related to hydrocephalus intracranial
hypo/hypertension [3] and posterior fossa cystic mal-formations [4]. Recent Cine-PC study on healthy
controls has demonstrated a regression of blood flow and velocity with age [2]. It has been successfully
applied to reproduce the distribution of blood flow in the branches of the circle of Willis with age [5].
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The caveat of Cine-PC is that it applies bipolar flow-encoding gradients that generate phase-offset errors
due to eddy-currents (rapid switching from positive maximum to negative maximum), concomitant
magnetic field gradients (Maxwell terms), and gradient field distortions (non-linear gradients) [6].
When combined together and integrated over time, these inherent background errors produced
inaccuracy in the assessment of flow measurements and characteristics and were more prominent in
high-power gradient systems [7,8]. Optimal acquisition sequences involving corrections for Maxwell
terms, gradient amplifier, and eddy-current induced velocity-offset are essential for accurate flow
parameter quantification in small intracranial vessels or in the aqueduct [9]. An acquisition of Cine-PC
images on static phantom might be the ultimate solution to reduce these remnants of phase-offset
errors. This can be achieved through direct pixel-wise subtraction of the measured “static” velocity
from the volunteers’ measures to compensate for induced velocity errors [7]. While substantial
numbers of Cine-PC studies have been applied in cerebrovascular diseases, no investigation has
estimated the phase-offset errors in small intracerebral vessels (arteries, veins and aqueduct) with
low velocity-encoding (Venc) values (<1000 mm/s). This is crucial because of the higher demand
on flow-encoding gradient capabilities to obtain greater velocity-to-noise ratio (VNR). Furthermore,
to achieve a high standard of accuracy and precision in these measurements, a better extraction of the
section area is required to minimize the partial volume effects. This requires the acquisition of a high
spatial resolution image. A reduced field-of-view (FOV) prescription is an option to increase the spatial
resolution, but it might generate wrap-around artifacts and phase discontinuity in the parametric flow
maps. The results of such artifacts are large fitting errors that amplify the phase-offset errors around
the region of interest.

The wrap-around artifact arises when the prescribed image acquisition FOV covers part of the
anatomy to be scanned instead of the whole object. The result is a reproduction of the tissues outside
the FOV at the opposite edge of the scan. This artifact (i.e., aliasing) occurs mainly in the phase-encode
direction and it generates when the sampling frequency violates the Nyquist law (sampling rate must
be at least twice the maximum signal frequency). The “fold-over” suppression option [8], also known
as no-phase-wrap, is an anti-aliasing technique that eliminates fold-over artifacts in the magnitude
images by increasing the distance over which objects may fold back on both sides of the small FOV
while maintaining the same bandwidth (BW) values. On one hand, this requires doubling the number
of phase-encoding matrix size, and on the other hand, one has to halve the number of excitation so that
the acquisition time and the signal-to-noise ratio (SNR) remain unchanged.

The purpose of this study was to investigate the potential advantage of the “fold-over”
oversampling option (i.e., no phase-wrap) compared to Full-FOV coverage in the acquisition of
Cine-PC MRI. To achieve this aim, first, we measured the phase-offset errors in both coverage methods
with two different velocity encoding values using a static gel phantom, and second, we compared the
dynamic of acqueductal CSF and arterial blood of the two coverage modes in heathy subjects before
and after phase-offset correction.

2. Materials and Methods

2.1. Theory

The signal intensity of the effective magnetization that satisfies the Nyquist theorem equals the
complex sum of the magnetization of all spins [10]. For Y phase encoding lines that are recorded
sequentially, The signal intensity S, at certain step m, reads

S(m) =
Y−1∑
y=0

MT(y.∆k).exp
(
−2πiym

Y

)
.exp

(
−πiy(Y − 1)

NY

)
(1)
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where MT is the magnetization in the transverse plane

∆k is the pixel size, and m = 0, 1, . . . , Y − 1

For magnitude image reconstruction (Figure 1), The term ϕ(y) = exp[-i.π.y.(Y − 1)/Y] is simply
removed because it is part of the signal phase and does not contribute to the amplitude of the signal.
Thus, after m steps, The magnitude images are reconstructed with the amplitude of the modified
Equation (1) that reads

S(m) =
N−1∑
y=0

MT(y.∆k).exp
(
−2πiym

Y

)
(2)
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Figure 1. Sagittal image scout (A) to localize the aqueduct and to prescribe a perpendicular 2D
Cine-phase MRI slice. This provides a magnitude image (B) suited to visualize and select the aqueduct
(red arrow) and a phase-difference image to map the CSF flow (C). (B) and (C) represent one phase of
the cardiac cycle.

Flow mapping images or phase-differences (Figure 1C) result from the subtraction of two
datasets. The first dataset is acquired with bipolar phase-encoding gradients in a specific direction
(inferior–superior, left–right, or anterior–posterior) and the second is obtained by toggling these bipolar
gradients to acquire the same image in the opposite direction (respectively, superior–inferior, right–left,
posterior–anterior). The axis of the bipolar direction is user defined, and it can be chosen in any of the
three physical axes or all combined together. In this phase-difference technique, The term ϕ(n) cannot
be merely neglected and must be accounted for. In fact, The unpredictable behavioral of phase-shift in
each acquired image might affect the flow mapping dataset.

2.2. Image Acquisition

The study was performed on a 3T Achieva dStream scanner (Philips Healthcare, Best, The Netherlands)
equipped with a gradient strength G0 = 40 mT/m and a slew-rate SR = 200 T/m/s. The imaging parameters
were: Cine-PC fast-field-echo (FFE) sequence, Cartesian filling with flow-compensation, Sense = 1.5,
flip angle = 30◦, and a 2 mm slice thickness. A comparative list of the imaging parameters between the
two schemes is given in Table 1. An axial oblique slice was prescribed perpendicular to the aqueduct
with a through plane Venc value of 100 mm/s to encode CSF flow velocity (Figure 1). For blood flow
analysis, we chose the internal carotid artery (ICA) and Venc = 600 mm/s. The slice was prescribed
perpendicular to the ICA at the level of the cervical spine C2–C3. Choosing either the jugular vein or
the vertebral artery would answer the questions raised by this investigation. Since the main purpose
of this study was to mimic the phase-offset errors on blood flow, there was no need to assess the total
cerebral blood flow. The coverage-based comparison involved: (1) a full coverage of the whole head,
referred as Full-FOV, and (2) a small FOV referred to as fold-over oversampling to remedy for aliasing.
The experiments were performed on ten healthy volunteers with informed consent. The group included
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ten controls (25–55 years of age, five females) recruited in our university hospital. The inclusion criteria
were no history of any neurologic disorder, or neurological development, or head trauma, and could
hold still in the scanner. For the purpose of our study, a static phantom was filled with 3 L of water
solidified with commercial 16 g of agar powder and 1 kg of sugar. Simultaneously after each acquisition
from the volunteers, The phantom was scanned using the same imaging parameters and slice positions
to measure the static phase-offset errors.

Table 1. Imaging parameters. The table shows the similarities and the differences in terms of image
acquisition parameters for both options (Full-FOV and fold-over) using the 2 Venc values.

Venc = 600 mm/s Venc = 100 mm/s
Full-FOV Fold-Over Full-FOV Fold-Over

TR/TE [ms] 10/6.2 10/6.2 14/8.8 15/8.1
FOV [mm2] 120 × 120 90 × 80 90 × 80 40 × 40

Acquisition Matrix 120 × 120 80 × 80 180 × 160 80 × 72
Acquisition Pixel [mm2] 1 × 1 1 × 1 0.5 × 0.5 0.5 × 0.5
Reconstruction Matrix 240 × 240 128 × 128 288 × 288 128 × 128

Reconstruction Pixel [mm2] 0.5 × 0.5 0.3 × 0.3 0.3 × 0.3 0.3 × 0.3
Oversampling [mm x mm] No 35 × 35 No 70 × 70

BW/pixel [Hz] 191 191 145 144
Acquisition time 1′ 17” 1′ 27” 1′ 43” 3′ 49”

2.3. Image Processing and Analysis

We analyzed the VNR, The mean, The peak, and the minimum velocity-offset measured on the
static phantom (Vpeak

offset, Vmean
offset, Vmin

offset). On each of the ten volunteers, we quantified the
mean, peak, and minimum absolute (i.e., uncorrected) velocities (Vpeak, Vmean, Vmin). We extracted the
aqueduct and the ICA section areas (mm2), The absolute net flows (QNet), and the stroke volume (SVol).
The final step aimed to correct the variables measured on the volunteers through baseline subtraction
of the phase-offset errors measured on the static phantom. We calculated Vpeak

corr, Vmean
corr, Vmin

corr

QNet
corr, and SVolcorr as follows:

Xcorr
R = XR −Xo f f set

R (3)

where R stands for peak, mean, min, or Net; X stands for Velocity (V), net flow (Q), or stroke
volume SVol.

These flow measures were processed with a semi-automatic delineation of the section areas
through the entire cardiac cycle.

The paired 2-tailed T-test statistical test was carried out to analyze the differences between
Full-FOV and Fold-Over for each dynamic variable. The Pearson bivariate test (SPSS v22, IBM Chicago,
IL) was performed to assess the correlations of these variables measured with the two coverage options.
Bland–Altman plots were generated to test the lower and upper limit of differences and agreements
between Full-FOV and fold-over. These statistical analyses were performed for the 2 prescribed Venc.

3. Results

Similar patterns of corrected mean velocity values (Vmean
corr) were observed in both coverage

modes (Full-FOV and fold-over) with the two Venc values (Figure 2). Following phase-offset error
correction, there were significant differences in the CSF flow mean velocity (Vmean, p = 0.009) and the
CSF net flow volume (QNet, p = 0.02) with a fold-over option. These differences were not significant
with Full-FOV coverage. No difference was recorded in the ICA blood flow (Table 2). The main
significant results and most important findings are detailed in Table 2.
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Figure 2. The top graph shows the curves of mean blood flow velocity in the internal carotid artery
(Venc = 600 mm/s) after subtraction of the velocity offset (X-axis represents the 32 cardiac phases).
The lower graph shows the curve pattern of mean aqueductal CSF flow velocity (Venc = 100 mm/s)
through the 32 cardiac phases after subtraction of the velocity offset recorded in the phantom for both
coverage modes (Full FOV and fold-over). These two graphs are the results of the same volunteer.

Table 2. Effects of phase-offset phantom correction. Results of the measurements achieved before
and after phase-offset correction. These were performed separately on both coverage options and
are obtained in the aqueduct (Venc = 100 mm/s) and the internal carotid artery (Venc = 600 mm/s).
The values are displayed by their mean and standard deviation. Bilateral paired statistical t-test was
performed to compare the variables separately for each coverage option with a threshold of p < 0.05.
The bold means p < 0.05.

Aqueduct CSF (Venc = 100 mm/s) ICA Blood (Venc = 600 mm/s)
Native Corrected p Native Corrected p

Full-FOV
Mean Velocity (mm.s−1) −0.86 ± 6.89 −2.03 ± 5.14 0.59 214 ± 30 223 ± 24 0.05
Peak Velocity (mm.s−1) 57.38 ± 20.15 54.42 ± 17.89 0.45 356 ± 45 366 ± 35 0.12

Minimum Velocity (mm.s−1) −33.31 ± 58.24 −62.88 ± 21.36 0.11 135 ± 23 141 ± 18 0.16
Net Flow volume (µL.s−1) −10.98 ± 16 −2.48 ± 12.24 0.07 4200 ± 562 4321 ± 537 0.07

Stroke Volume (mL) 6.36 ± 29.65 8.24 ± 28.97 0.26 1631 ± 837 1684 ± 847 0.05
Fold-Over

Mean Velocity (mm.s−1) −3.13 ± 4.19 −0.74 ± 5.49 0.009 208 ± 28 214 ± 22 0.31
Peak Velocity (mm.s−1) 33.35 ± 31.81 43.68 ± 15.74 0.22 346 ± 34 355 ± 28 0.17

Minimum Velocity (mm.s−1) −42.78 ± 32.21 −47.96 ± 19.36 0.50 131 ± 23 134 ± 24 0.64
Net Flow volume (µL.s−1) −10.48 ± 14.73 5.85 ± 17.50 0.02 4103 ± 500 4196 ± 560 0.31

Stroke Volume (mL) 38.66 ± 25.62 36.94 ± 26.90 0.30 1526 ± 340 1553 ± 340 0.45

3.1. Section Area

The ICA section area was not significantly different between the two coverage options (Full-FOV
vs. fold-over). The aqueduct section area was significantly higher (p < 0.01) using fold-over
(3.74 ± 1.30 mm2) compared to Full-FOV (2.86 ± 0.98 mm2) (Table 3). There were strong correlations
between the two coverage options in the ICA section areas (r = 0.80, p = 0.006) and the aqueduct section
area (r = 0.91, p < 0.001) (Table 4).
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Table 3. Differences between Full-FOV and fold-over. Results of the measurements achieved to
compare Full-FOV and fold-over. Bilateral paired statistical t-test was performed to compare the
two coverage options (threshold p < 0.05). The bold means p < 0.05. These are performed in the
aqueduct (Venc = 100 mm/s) and the internal carotid artery (Venc = 600 mm/s) and are displayed by
their mean and standard deviation values. The variables are: velocity-to-noise ratio (VNR), section area
of the aqueduct and the internal carotid artery, phase-offset on phantom (mean velocity = Vmean

offset,
peak or maximum velocity = Vpeak

offset, minimum velocity = Vmin
offset), volunteers’ native measures

(mean = Vmean, peak = Vpeak, minimum = Vmin, net flow = QNet, stroke volume = SVol), volunteers’
measures following phase-offset phantom correction (mean velocity = Vmean

corr, peak or maximum
velocity = Vpeak

corr, minimum velocity = Vmin
corr, net flow = QNet

corr
, stroke volume = SVolcorr).

Aqueduct CSF (Venc = 100 mm/s) ICA Blood (Venc = 600 mm/s)
Full-FOV Fold-Over p Full-FOV Fold-Over p

VNR 1.54 ± 1.99 2.58 ± 1.94 0.25 1.78 ± 0.82 2.49 ± 0.96 0.09
Vmean

offset (mm.s−1) −2.01 ± 3.17 −3.33 ± 3.03 0.36 −8.6 ± 12.4 −5.6 ± 17.1 0.66
Vpeak

offset (mm.s−1) 3.08 ± 2.65 0.4 ± 2.4 <0.01 9.5 ± 12.0 8.8 ± 14.2 0.91
Vmin

Off (mm.s−1) −7.03 ± 4.95 −6.75 ± 4.31 0.82 −22.5 ± 13.7 −22.3 ± 20.3 0.84
Vmean (mm.s−1) −0.9 ± 6.9 −3.1 ± 4.2 0.39 214 ± 30 209 ± 29 0.66
Vpeak (mm.s−1) 57.4 ± 20.2 33.4 ± 31.8 0.06 357 ± 46 346 ± 34 0.58
Vmin (mm.s−1) −33.31 ± 58.24 −42.78 ± 32.21 0.64 135 ± 23 131 ± 23 0.47

Vmean
corr (mm.s−1) −2.0 ± 5.1 −0.7 ± 5.5 0.58 223 ± 24 214 ± 22 0.41

Vpeak
corr (mm.s−1) 54.4 ± 17.9 43.7 ± 15.7 0.17 365 ± 35 355 ± 28 0.47

Vmin
corr (mm.s−1) −62.88 ± 21.36 −47.96 ± 19.35 0.08 141 ± 18 134 ± 24 0.15

QNet (µL.s−1) −10.98 ± 16.00 −10.48 ± 14.73 0.94 4200 ± 562 4104 ± 500 0.69
QNet

corr (µL.s−1) −2.48 ± 12.24 5.85 ± 17.50 0.23 4321 ± 538 4196 ± 560 0.62
Section Area (mm2) 2.86 ± 0.98 3.47 ± 1.30 <0.01 19.78 ± 2.73 19.90 ± 2.86 0.83

StVol (mL) 37.79 ± 28.3 40.56 ± 30.95 0.52 1632 ± 837 1526 ± 340 0.67
SVolcorr (mL) 41.58 ± 29.64 40.15 ± 31.18 0.86 1685 ± 848 1554 ± 340 0.59

Table 4. Comparison of the two coverage options Full-FOV and fold-over. The Bland–Altman analysis
and the Pearson correlation test were performed for each measured variable in the aqueductal CSF
and in the internal carotid artery blood flows. M stands for the mean differences between Full-FOV
and fold-over. The upper limit U equals [M +1.96 SD] while the lower limit L equals [M − 1.96 SD].
The bias (B) was calculated as M x (variable differences between the two methods)/(variable)], r stands
for the Pearson correlation coefficient and p refers to the significance threshold vale and was set to 0.05.
The bold means p < 0.05. The variables are: velocity-to-noise ratio (VNR), section area of the aqueduct
and the internal carotid artery, phase-offset on phantom (mean velocity = Vmean

offset, peak or maximum
velocity = Vpeak

offset, minimum velocity = Vmin
offset), volunteers’ native measures (mean = Vmean,

peak = Vpeak, minimum = Vmin, net flow = QNet, stroke volume = SVol), volunteers’ measures following
phase-offset phantom correction (mean velocity = Vmean

corr, peak or maximum velocity = Vpeak
corr,

minimum velocity = Vmin
corr, net flow = QNet

corr
, stroke volume = SVolcorr).

Fold-Over Versus Full-FOV
Aqueduct CSF Internal Carotid Artery Blood

Bland–Altman Pearson Bland–Altman Pearson

M L U B r p M L U B r p

Vmean
offset (mm.s−1) 1.3 −3.0 5.6 −13.3 0.75 0.012 −3.0 −21.5 15.5 0.5 0.84 0.002

Vmean (mm.s−1) 2.3 −15.5 20.0 6.7 −0.29 0.41 5.8 −29.7 41.3 0.2 0.81 0.004
Vmean

corr (mm.s−1) −1.3 −11.45 8.88 0.90 0.52 0.12 8.7 −30.4 47.9 0.3 0.63 0.048
Vpeak

offset (mm.s−1) 2.7 −0.4 5.8 1.8 0.81 0.005 0.7 −20.2 21.6 −0.9 0.68 0.030
Vpeak (mm.s−1) 14.7 −14.2 14.6 4.3 0.52 0.12 10.1 −57.6 77.8 0.3 0.66 0.039

Vpeak
corr (mm.s−1) 10.7 −4.7 26.2 2.4 0.90 <0.001 10.4 −63.2 84.0 0.3 0.31 0.39

Vmin
Off (mm.s−1) −0.3 −8.0 7.5 0.001 0.64 0.045 −0.2 −20.9 20.6 0.1 0.88 <0.001

Vmin (mm.s−1) 15.5 −111 142 71 0.15 0.68 3.2 −23.4 29.8 0.1 0.82 0.003
Vmin

Corr (mm.s−1) −14.9 −61.6 31.8 −3.9 0.32 0.37 7.0 −20.9 34.9 0.4 0.80 0.005
QNet (µL.s−1) −0.5 −26.9 25.9 0.2 0.62 0.06 97 −428 621 2.1 0.85 0.002

QNet
corr (µL.s−1) −8.3 −45.7 29.0 3.7 0.21 0.55 125 −444 693 3.7 0.85 0.002

SVol (mL) 32.3 −30.6 95.2 −3.6 0.90 <0.001 106 −1361 1572 −0.6 0.45 0.19
SVolcorr (mL) −28.7 −89.7 32.3 0.9 0.68 0.030 −131 −1606 1343 1.0 0.47 0.17
Area (mm2) −0.6 −1.7 0.5 0.1 0.91 <0.001 −0.1 −3.61 3.36 0.001 0.80 0.006
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3.2. Velocity-to-Noise Ratio (VNR)

Higher, but non-significant VNR was measured in fold-over compared to Full-FOV with the two
Venc values. The VNR measured in the aqueduct with fold-over correlates significantly with that of
Full-FOV (r = 0.68, p = 0.03) (Table 4).

3.3. Vpeak, Vpeak
offset, and Vpeak

corr

Compared to Full-FOV, The fold-over option provided significantly lower CSF peak velocity offset
(Vpeak

offset) (p = 0.03) (Figure 3). The absolute peak velocity (Vpeak) measured in the aqueduct and in
the ICA did not differ statistically (Table 3). Similarly, we did not observe any significant difference in
the corrected peak velocity (Vpeak

corr), neither in the CSF nor in the blood flow (Table 3). Vpeak
offset

measured with fold-over correlated significantly (Table 3) with that of Full-FOV in the ICA blood flow
(r = 0.68, p = 0.030) and in the aqueduct CSF flow (r = 0.81, p = 0.005). A strong correlation between the
two coverage options was observed in the Vpeak of the blood flow (r = 0.66, p = 0.039) (Table 3) and
Vpeak

Corr in the CSF flow (r = 0.90, p < 0.001).Diagnostics 2020, 10, 387  8 of 13 
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Figure 3. These comparative plots represent the measures for each volunteer. The graphs demonstrate
the differences between Full-FOV and fold-over when we measured the peak velocity offset in the
aqueductal CSF (A) and the internal carotid artery blood (B). We also show the difference in flow
mean velocity following phase-offset correction in the aqueduct CSF (C) and internal carotid arterial
blood (D).

3.4. Vmean, Vmean
offset, and Vmean

corr

Lower, but non-significant mean velocity offset (Vmean
offset) value was measured with the fold-over

option and the two Venc values. The volunteers’ mean velocity (Vmean) did not statistically differ in
the CSF flow or blood flow. Following phase-offset correction, we did not observe any significant
difference in the corrected mean velocity (Vmean

corr) in the CSF or in blood flow (Table 3). There were
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significant correlations (Table 3) between the two coverage options in the Vmean
offset of ICA blood

(r = 0.84, p = 0.002) and aqueduct CSF (r = 0.75, p = 0.012).

3.5. Vmin, Vmin
offset, and Vmin

corr

Lower, but non-significant minimum velocity offset (Vmin
offset) was measured with fold-over

option using the two Venc values. The volunteers’ minimum velocity (Vmin) did not statistically
differ in CSF flow or in blood flow. Following phase-offset correction, we did not observe any
significant difference in the corrected minimum velocity (Vmin

corr) in CSF flow or in blood flow
(Table 3). There were significant correlations between the two coverage options (Table 4) in Vmin

offset

in both ICA blood flow (r = 0.88, p < 0.001) and aqueduct CSF flow (r = 0.64, p = 0.045). As a
result, The blood flow Vmin

corr and Vmin measured with fold-over correlated significantly with that of
Full-FOV (r = 0.80, p = 0.005; and r = 0.82 p = 0.003).

3.6. QNet and QNet
corr

The comparison between the two coverage modes did not record any significant difference
in the net flow volume (QNet) in CSF or in blood (Table 4). The same observations were reported
following phase-offset correction QNet

corr. The blood flow QNet measured with the two coverage
options correlated significantly (r = 0.85, p = 0.002) unlike the QNet

corr. No correlation was reported in
QNet

corr or QNet of the aqueduct CSF flow (Table 4).

3.7. SVol, and SVolcorr

In the aqueduct CSF flow, The comparison between Full-FOV and fold-over demonstrated that
there was no significant difference in the stroke volume before or after phase-offset correction (SVol,
SVolcorr). The ICA blood SVol and SVolcorr were not significantly different when comparing the two
coverage options. Significant correlations between Full-FOV and fold-over were observed in the ICA
blood flow SVol and SVolcorr (Table 4).

3.8. Bland–Altman

Bland–Altman analysis [11] showed a small systemic difference between Full-FOV and fold-over
when measuring Vmean

corr and Vpeak
corr (Figure 4). In the ICA blood flow, The bias was under 1%

for all variables except for the net flow QNet (2.11%, 2.05 µL.s−1) and the net flow corrected QNet
Corr

(3.78% 4.83 µL.s−1). In the aqueduct CSF flow, The bias fluctuation was more pronounced (Table 4)
and it reached 71% in the Vmin (11.03 mm.s−1) and 3.99% in Vmin

Corr (−0.59 mm.s−1). We measured a
−13.35% bias in the Vmean

Off (0.17 mm.s−1) and a 6.68% in the Vmean (2.27 mm.s−1). The peak velocity
biases were as follows: Vpeak

Off (1.83 %, 0.05 mm.s−1), Vpeak (4.3%, 0.63 mm.s−1), and Vpeak
Corr (2.42%,

0.26 mm.s−1).
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Figure 4. Bland–Altman analysis of Full-FOV versus fold-over performed in the corrected mean
CSF flow velocity Vmean

corr measured at the level of the aqueduct (A) and blood flow in the internal
carotid artery (B). Similar analysis results are shown for stroke volume corrected values SVolcorr in
the CSF (C) and in the blood flows (D). The plain blue lines represent the mean values measured by
the two coverage options, and the red dots represent the mean difference between the two coverages
[Full-FOV—fold-over]. The dashed lines correspond to the higher limit (mean + 1.96 × standard
deviation) and the lower limit (mean − 1.96 × standard deviation). The X-axes refer to the mean values
of the two measures and the Y-axes refer to the mean differences between the two measures.

4. Discussion

This study aimed to investigate the effects of fold-over oversampling compared to Full-FOV
coverage in the assessment of CSF and blood flow dynamics with Cine-PC MRI. We demonstrated that
the VNR, The mean velocities, The net flows, and the stroke volumes were not significantly different.
This was observed with two different Venc values (100 and 600 mm/s) prescribed respectively at the
level of the aqueduct and the internal carotid artery. Following phase-offset corrections, we recorded
significantly higher blood flow stroke volume with Full-FOV mode. In the CSF flow, we noticed that
following phase-offset correction, The net flow volume and the mean flow velocity were significantly
higher. The fold-over option provides a significantly lower Vpeak

offset in the aqueduct CSF flow.
However, Vpeak and Vpeak

corr were not significantly different. Given the important contribution of
concomitant gradient fields and eddy-current induced offsets to overall phase errors, particularly with
low Venc and oversampling coverage, there is a need to explicitly subtract these from Cine-PC data.
In cardiovascular MRI, phantom corrections of blood flow measurements often resulted in clinically
significant changes. Following phase-offset correction, The flow measurements in patients with
known or suspected congenital heart disease have shown that up to 12% of Fallot patients have been
reclassified according to the severity of the pulmonary regurgitation [12]. Another study pointed out
that 13% to 48% of flow measurements were sufficiently affected by phantom correction, enough to
potentially alter clinical management [13]. Intracranial blood and CSF flow velocities were lower
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than those of cardiovascular systems and they require reduced velocity sensitivity compared to that
prescribed in CMR (>2000 mm/s), hence stronger flow encoding gradients are needed. This involves
more contribution of eddy-currents and Maxwell-effects in the inaccuracy and the oscillation of the
measured values. It has been shown that velocities measured with lower Venc are more susceptible
to errors from intra-voxel dephasing and are of concern when quantifying CSF or cerebrovascular
flows [14–16]. The lower values reported by non-corrected measures resulted from an increased
noise, which led to erroneous velocity measurements, particularly in regions of slow flow. This is in
line with previous studies showing that an automatic phase unwrapping often failed to correct for
phase errors with a low Venc [13,17]. Compared to Full-FOV, fold-over oversampling significantly
increased CSF Vpeak

offset. The impact of velocity-offset correction led to higher CSF and blood net
flow values (QNet

corr > QNet). This highlights the importance of such correction to better rate patients
with altered cerebral hydrodynamic and/or hemodynamic. Recent studies on idiopathic normal
pressure hydrocephalus have shown that there was a reversed QNet direction compared to the healthy
controls [18], or patient following surgical shunt [19]. Other studies have shown no difference in terms
of QNet magnitude and directions [20]. An error of approximately ±10% in QNet in aqueductal flow
rate was reported as acceptable [21], nevertheless a decrease of such errors is mandatory. The outcome
is a better evaluation of complex cerebrovascular diseases such as arteriovenous malformations and
alteration of the CSF hydrodynamic seen in hydrocephalus. Overall, The measurements of blood and
CSF QNet showed a good correlation between Full-FOV and fold-over and the values were within
acceptable limits of agreements.

Many errors influence the quantification of Cine-PC parameters. These could be generated by any
of the following: VNR, inflow effects, changes in the pulsatility, physiological factors, and partial volume
effects. A caveat of these quantifications is that inter-variability might be larger than intra-variability
in both patients and healthy control subjects [22]. Higher spatio-temporal resolution is critical for
such applications to better delineate the ROI and to enhance the accuracy of these measurements
over the entire cardiac cycle [19,20]. The trade-off is an increase of eddy-currents effects and gradient
non-linearities that result from gradient field inhomogeneity. These small systematic inaccuracies
seen in individual cardiac phase might be of concern when they propagate to the entire cardiac cycle.
The fold-over option might be a compromise between higher spatial resolution and phase-offset errors.
When Cine-PC is performed to measure CSF flow in the aqueduct (diameter ~2 mm), The fold-over
oversampling option provides significantly a larger section area compared to Full-FOV. A better
delineation of the aqueduct section area achieves accurate CSF measurements through a reduction
in the partial volume effects, while inaccurate delineation of the aqueductal section area might lead
to ±23.1% variations in QNet using high spatial resolution [23]. For cerebrovascular blood flow
assessment, The fold-over option is similar to Full-FOV with regard to the section area and does not
impact the delineation.

VNR is inversely proportional to the magnitude of Venc, hence when Cine-PC is performed to
measure flow with a low velocity dynamic range (cerebrovascular blood or CSF), The prescribed Venc
produces relatively high VNR in the targeted flow region [24]. In this investigation, The two different
coverages demonstrated that there was no statistical difference in VNR, thus fold-over should not be
selected solely for the purpose of increasing VNR value.

The higher CSF SVolcorr recorded with fold-over in the aqueduct resulted from an increase in
both the section area and the Vmean

corr. Previous study by Yoshida et al. (2009) pointed out that
low spatial resolution overestimated SVol due to partial volume effects and larger section area [21].
Other investigators stipulated that aqueductal SVol was more sensitive to inaccuracies from the
calculation of Vmean, rather than manual delineation of the section area [19]. In our study, we showed
that the fold-over option provided a larger (respectively smaller) section area, and SVol was higher
(respectively lower).

Our results demonstrated that fold-over overcomes wrap-around artifact and decreases
inaccuracy [23], thus it can be activated with the need for background phase-offset compensation.
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The trade-off is a slight increase in both TE and TR. The difference reported between fold-over and
Full-FOV is mainly related to the acquisition mode and not the imaging parameters. The activation of
this mode is questionable for Cine-PC, even if a specific protocol optimization is required to increase
SNR and VNR.

Our results showed a complex behavior of phase-offsets depending on Venc, scan time, first order
moments, gradient amplitude, and slew-rate. As such, velocities measured with lower Vencs are more
susceptible to errors from intra-voxel dephasing [14]. Knowing the interaction between hemodynamics
and hydrodynamics, a modification of any variable generates a derivative change in intracranial volume
that leads to a temporal modification of intracranial pressure [25]. These small variabilities might
draw a line between low-to-mild, or mild-to-severe alteration in idiopathic intracranial hypertension,
Chiari malformation, normal pressure hydrocephalus, or cerebrovascular stenosis [26]. Future clinical
works are required to determine the effect of phantom corrections on these pathologies. Future research
directions might be an extension of this study to involve other centers to include all major vendors and
different gradient strengths. By achieving this, we will have a broader approach to phase-wraparound
artifact and the effects on the quantification of brain hemodynamics with PC-MRI.

The present study has few limitations. First, we assumed constant SNR value over the cardiac
cycle, hence the effect of the phase dispersion and noise level in the measurement of VNR was neglected,
which is a potential limitation. Our aims were to assess the differences between Full-FOV coverage
and fold-over using two Venc values to encode the CSF and the blood flow dynamics and not to study
the overall cerebrovascular system. For this reason, we included the background phase correction for
a single artery and not for all of them. We only included a group of 10 healthy controls. Statistical
analysis of the fold-over effect using two Venc values requires a larger cohort. Finally, The lack of a
gold standard technique to measure true flow values on healthy control subjects, to which the Cine-PC
values with and without phantom correction could be compared, is another significant limitation to
this study.

5. Conclusions

We showed that spatiotemporal phase differences vary significantly depending on structure
area and Venc values. This underlies the needs for protocol-specific calibration measurements and
phase-offset correction. The clinically available gradient mode runs with standard derating of gradient
performance in order to decrease inaccuracies, and both coverage options still suffer from spatially
varying background phase-offset due to eddy-currents and concomitant magnetic field that deteriorate
the quantification of cerebral flow in Cine-PC. Compared to full coverage, fold-over oversampling
is an alternative to increase spatial resolution and provides comparable flow quantification values.
This option can be selected with Cine-PC phase-difference reconstruction when low Venc values are
prescribed for the assessment of cerebral brain flows.
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Abbreviations

Cine-PC Cine Phase Contrast
CSF Cerebrospinal Fluid
Venc Velocity Encoding
VNR Velocity-to-Noise Ratio
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Vmean mean flow velocity
Vmean

corr corrected Vmean

QNet Net Flow
QNet

corr corrected QNet;
SVol Stroke Volume
SVolcorr corrected SVol;
ICA Internal Carotid Artery;
FOV Field-Of-View.
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