Two Reliable Methodical Approaches for Non-Invasive RHD Genotyping of a Fetus from Maternal Plasma
Abstract
:1. Introduction
- (1)
- Commonly used real-time PCR (determining fetal RHD genotype via TaqMan real-time PCR using internal amplification control).
- (2)
- Endpoint QF PCR (determining fetal RHD genotype using endpoint QF PCR using internal amplification control with capillary electrophoresis).
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection
2.3. Sample Preparation and DNA Isolation
2.4. Determination of Fetal RHD Genotype by TaqMan Real-Time PCR Using Internal Amplification Control
- Criterion 1—Positive if all four plasmas were positive, negative if all four plasmas were negative.
- Criterion 2—Positive if three or more plasmas were positive, negative if two or more plasmas were negative.
- Criterion 3—Positive if three or more plasmas are positive, negative if three or more plasmas were negative.
- Criterion 4—Positive if two or more plasmas were positive, negative if three or more plasmas were negative.
2.5. Determination of Fetal RHD Genotype with Endpoint QF PCR Using Internal Amplification Control with Capillary Electrophoresis
- Criterion 1—Positive if two plasmas were positive, negative if two plasmas were negative.
- Criterion 2—Positive if one plasma was positive, negative if two plasmas were negative.
2.6. Data Collection
2.7. Study Limitation
2.8. Statistical Evaluation
3. Results
3.1. TaqMan Real-Time PCR
3.2. End-Point QF PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Avent, N.D.; Reid, M.E. The Rh blood group system: A review. Blood 2000, 95, 375–387. [Google Scholar] [CrossRef] [PubMed]
- de Haas, M.; Finning, K.; Massey, E.; Roberts, D.J. Anti-D prophylaxis: Past, present and future. Transfus. Med. 2014, 24, 1–7. [Google Scholar] [CrossRef] [PubMed]
- de Haas, M.; Thurik, F.F.; Koelewijn, J.M.; van der Schoot, C.E. Haemolytic disease of the fetus and newborn. Vox Sang. 2015, 109, 99–113. [Google Scholar] [CrossRef] [PubMed]
- van der Schoot, C.E.; de Haas, M.; Clausen, F.B. Genotyping to prevent Rh disease: Has the time come? Curr. Opin. Hematol 2017, 24, 544–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kent, J.; Farrell, A.-M.; Soothill, P. Routine administration of Anti-D: The ethical case for offering pregnant women fetal RHD genotyping and a review of policy and practice. BMC Pregnancy Childbirth 2014, 14, 87. [Google Scholar] [CrossRef] [Green Version]
- Kratochvílová, T.; Holusková, I.; Durdová, V.; Strašilová, P.; Ľubušký, M. Klinický význam neinvazivního stanovení RHD a RHCE genotypu plodu v managementu těhotenství s rizikem rozvoje hemolytické nemoci plodu a novorozence [The clinical significance of the non-invasive fetal RHD and RHCE genotype assessment in the management of pregnancies at risk of hemolytic disease of the fetus and newborn]. J. Postgrad. Med. 2016, 18, 362–369. [Google Scholar]
- Innan, H. A two-locus gene conversion model with selection and its application to the human RHCE and RHD genes. Proc. Natl. Acad. Sci. USA 2003, 100, 8793–8798. [Google Scholar] [CrossRef] [Green Version]
- Palomaki, G.E.; Kloza, E.M.; Lambert-Messerlian, G.M.; Haddow, J.E.; Neveux, L.M.; Ehrich, M.; van den Boom, D.; Bombard, A.T.; Deciu, C.; Grody, W.W.; et al. DNA sequencing of maternal plasma to detect Down syndrome: An international clinical validation study. J. Genet. Med. 2011, 13, 913–920. [Google Scholar] [CrossRef]
- de Haas, M.; Thurik, F.F.; van der Ploeg, C.P.B.; Veldhuisen, B.; Hirschberg, H.; Soussan, A.A.; Woortmeijer, H.; Abbink, F.; Page-Christiaens, G.C.M.L.; Scheffer, P.G.; et al. Sensitivity of fetal RHD screening for safe guidance of targeted anti-D immunoglobulin prophylaxis: Prospective cohort study of a nationwide programme in the Netherlands. BMJ 2016, 355. [Google Scholar] [CrossRef]
- Haimila, K.; Sulin, K.; Kuosmanen, M.; Sareneva, I.; Korhonen, A.; Natunen, S.; Tuimala, J.; Sainio, S. Targeted antenatal anti-D prophylaxis program for RhD - negative pregnant women: Outcome of the first two years of a national program in Finland. Acta Obstet. Gynecol. Scand. 2017, 96, 1228–1233. [Google Scholar] [CrossRef]
- Hyland, C.A.; Millard, G.M.; O’Brien, H.; Schoeman, E.M.; Lopez, G.H.; McGowan, E.; Tremellen, A.; Puddephatt, R.; Gaerty, K.; Flower, R.L.; et al. Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: Comparative accuracy using two blood collection tube types. Pathology 2017, 49, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Clausen, F.B.; Barrett, A.N.; Noninvasive Fetal RHD Genotyping EQA2017 Working Group. Noninvasive fetal RHD genotyping to guide targeted anti-D prophylaxis-an external quality assessment workshop. Vox Sang. 2019, 114, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Moezzi, L.; Keshavarz, Z.; Ranjbaran, R.; Aboualizadeh, F.; Behzad-Behbahani, A.; Abdullahi, M.; Ramezani, A.; Samsami, A.; Sharifzadeh, S. Fetal RHD genotyping using real-time polymerase chain reaction analysis of cell-free fetal DNA in pregnancy of RhD negative women in South of Iran. Int. J. Fertil. Steril. 2016, 10, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Wikman, A.T.; Tiblad, E.; Karlsson, A.; Olsson, M.L.; Westgren, M.; Reilly, M. Noninvasive single-exon fetal RHD determination in a routine screening program in early pregnancy. Obstet. Gynecol. 2012, 120, 227–234. [Google Scholar] [CrossRef]
- Clausen, F.B.; Christiansen, M.; Steffensen, R.; Jørgensen, S.; Nielsen, C.; Jakobsen, M.A.; Madsen, R.D.; Jensen, K.; Krog, G.R.; Rieneck, K.; et al. Report of the first nationally implemented clinical routine screening for fetal RHD in D- pregnant women to ascertain the requirement for antenatal RhD prophylaxis. Transfusion 2012, 52, 752–758. [Google Scholar] [CrossRef]
- Böhmová, J.; Vodička, R.; Ľubušký, M.; Studničková, M.; Holusková, I.; Vrtěl, R.; Kratochvílová, R.; Frydrychová, M.; Krejčiříková, E.; Filipová, H. Stanovení RHD genotypu plodu z plazmy periferní krve těhotné ženy a posouzení citlivosti nových diagnostických postupů pro zavedení do klinické praxe [RHD genotyping from cell-free fetal DNA circulating in pregnant women peripheral blood and sensitivity assessment of innovated diagnostic approaches for introduction into the clinical practice]. Ces. Gynek. 2013, 78, 32–40. [Google Scholar]
- Svobodová, I.; Pazourková, E.; Hořínek, A.; Novotná, M.; Calda, P.; Korabečná, M. Performance of Droplet Digital PCR in non-invasive fetal RHD genotyping-comparison with a routine real-time PCR based approach. PLoS ONE 2015, 10, e0142572. [Google Scholar] [CrossRef]
- Sillence, K.A.; Roberts, L.A.; Hollands, H.J.; Thompson, H.P.; Kiernan, M.; Madgett, T.E.; Welch, C.R.; Avent, N.D. Fetal sex and RHD genotyping with digital PCR demonstrates greater sensitivity than real-time PCR. Clin. Chem. 2015, 61, 1399–1407. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Sato, C.; Hara, M.; Ishihara, O.; Ikebuchi, K. Noninvasive fetal RHD genotyping by maternal plasma with capillary electrophoresis. Transfusion 2008, 48, 1156–1163. [Google Scholar] [CrossRef]
- Wienzek-Lischka, S.; Bachmann, S.; Fröhner, V.; Bein, G. Potential of next-generation sequencing in noninvasive fetal molecular blood group genotyping. Transfus. Med. Hemother. 2020, 47, 14–22. [Google Scholar] [CrossRef]
- Wienzek-Lischka, S.; Krautwurst, A.; Fröhner, V.; Hackstein, H.; Gattenlöhner, S.; Bräuninger, A.; Axt-Fliedner, R.; Degenhardt, J.; Deisting, C.; Santoso, S.; et al. Noninvasive fetal genotyping of human platelet antigen-1a using targeted massively parallel sequencing. Transfusion 2015, 55, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Orzińska, A.; Guz, K.; Mikula, M.; Kluska, A.; Balabas, A.; Ostrowski, J.; Uhrynowska, M.; Kopeć, I.; Debska, M.; Luterek, K.; et al. Prediction of fetal blood group and platelet antigens from maternal plasma using next-generation sequencing. Transfusion 2020, 60, 884. [Google Scholar] [CrossRef] [PubMed]
- Vodička, R.; Vrtěl, R.; Scheinost, O.; Zapletalová, J.; Dušek, L.; Geierová, M.; Šantavý, J. Refined quantitative fluorescent PCR of Y-chromosome DNA sequences mosaics in Turner’s syndrome patients--alternative to real-time PCR. J. Biochem. Biophys. Methods 2004, 60, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Vodička, R.; Vrtěl, R.; Procházka, M.; Šantavá, A.; Dušek, L.; Vrbická, D.; Singh, R.; Krejčiříková, E.; Schneiderová, E.; Šantavý, J. Analýza volné fetální DNA v maternální plazme s vyuźitím STR lokusů [Analysis of free foetal DNA in maternal plasma using STR loci]. Cas. Lek. Cesk. 2006, 145, 133–137. [Google Scholar] [PubMed]
- Page, K.; Hava, N.; Ward, B.; Brown, J.; Guttery, D.S.; Ruangpratheep, C.; Blighe, K.; Sharma, A.; Walker, R.A.; Coombes, R.C.; et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br. J. Cancer 2011, 104, 1342–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, A.; Zimmermann, B.G.; Rusterholz, C.; Birri, D.; Kolla, V.; Lapaire, O.; Hoesli, I.; Kiefer, V.; Jackson, L.; Hahn, S. Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin. Chem. 2010, 56, 136–138. [Google Scholar] [CrossRef] [Green Version]
- Nygren, A.O.H.; Dean, J.; Jensen, T.J.; Kruse, S.; Kwong, W.; van den Boom, D.; Ehrich, W. Quantification of fetal DNA by use of methylation-based DNA discrimination. Clin. Chem. 2010, 56, 1627–1635. [Google Scholar] [CrossRef]
- Fan, H.C.; Blumenfeld, Y.J.; Chitkara, U.; Hudgins, L.; Quake, S.R. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. Clin. Chem. 2010, 56, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Lun, F.M.F.; Chiu, R.W.K.; Chan, K.C.A.; Leung, T.Y.; Lau, T.K.; Lo, Y.M.D. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin. Chem. 2008, 54, 1664–1672. [Google Scholar] [CrossRef] [Green Version]
- Vodička, R.; Vrtěl, R.; Dušek, L.; Procházka, M.; Schneiderová, E.; Vrbická, D.; Krejčiříková, E.; Dhaifalah, I.; Šantavá, A.; Šantavý, J. Refined fluorescent STR quantification of cell-free fetal DNA during pregnancy in physiological and Down syndrome fetuses. Prenat. Diagn. 2008, 28, 425–433. [Google Scholar] [CrossRef]
- Denis, M.G.; Knol, A.-C.; Théoleyre, S.; Vallée, A.; Dréno, B. Efficient detection of BRAF mutation in plasma of patients after long-term storage of blood in cell-free DNA blood collection tubes. Clin. Chem. 2015, 61, 886–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toro, P.V.; Erlanger, B.; Beaver, J.A.; Cochran, R.L.; VanDenBerg, D.A.; Yakim, E.; Cravero, K.; Chu, D.; Zabransky, D.J.; Wong, H.Y.; et al. Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin. Biochem. 2015, 48, 993–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dessel, L.F.; Beije, N.; Helmijr, J.C.A.; Vitale, S.R.; Kraan, J.; Look, M.P.; de Wit, R.; Sleijfer, S.; Jansen, M.P.H.M.; Martens, J.W.M.; et al. Application of circulating tumor DNA in prospective clinical oncology trials-standardization of preanalytical conditions. Mol. Oncol. 2017, 11, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Barrett, A.N.; Zimmermann, B.G.; Wang, D.; Holloway, A.; Chitty, L.S. Implementing prenatal diagnosis based on cell-free fetal DNA: Accurate identification of factors affecting fetal DNA yield. PLoS ONE 2011, 6, e25202. [Google Scholar] [CrossRef] [Green Version]
- Board, R.E.; Williams, V.S.; Knight, L.; Shaw, J.; Greystoke, A.; Ranson, M.; Dive, C.; Blackhall, F.H.; Hughes, A. Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer. Ann. N. Y. Acad. Sci. 2008, 1137, 98–107. [Google Scholar] [CrossRef]
- Kadam, S.K.; Farmen, M.; Brandt, J.T. Quantitative measurement of cell-free plasma DNA and applications for detecting tumor genetic variation and promoter methylation in a clinical setting. J. Mol. Diagn. 2012, 14, 346–356. [Google Scholar] [CrossRef]
- Norton, S.E.; Lechner, J.M.; Williams, T.; Fernando, M.R. A stabilizing reagent prevents cell-free DNA contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital PCR. Clin. Biochem. 2013, 46, 1561–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Ginkel, J.H.; van den Broek, D.A.; van Kuik, J.; Linders, D.; de Weger, R.; Willems, S.M.; Huibers, M.H.M. Preanalytical blood sample workup for cell-free DNA analysis using Droplet Digital PCR for future molecular cancer diagnostics. Cancer Med. 2017, 6, 2297–2307. [Google Scholar] [CrossRef]
- Liggett, T.; Melnikov, A.; Yi, Q.-L.; Replogle, C.; Brand, R.; Kaul, K.; Talamonti, M.; Abrams, R.A.; Levenson, V. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 2010, 116, 1674–1680. [Google Scholar] [CrossRef]
- Christensen, E.; Nordentoft, I.; Vang, S.; Birkenkamp-Demtröder, K.; Jensen, J.B.; Agerbæk, M.; Pedersen, J.S.; Dyrskjøt, L. Optimized targeted sequencing of cell-free plasma DNA from bladder cancer patients. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.G.; Huang, H.-Y.; Chen, Y.-C.; Bristow, R.E.; Kassauei, K.; Cheng, C.-C.; Roden, R.; Sokoll, L.J.; Chan, D.W.; Shih, E.-M. Increased plasma DNA integrity in cancer patients. Cancer Res. 2003, 63, 3966–3968. [Google Scholar]
- Ren, C.C.; Miao, X.H.; Yang, B.; Zhao, L.; Sun, R.; Song, W.Q. Methylation status of the fragile histidine triad and E-cadherin genes in plasma of cervical cancer patients. Int. J. Gynecol. Cancer 2006, 16, 1862–1867. [Google Scholar] [CrossRef]
- Pinzani, P.; Salvianti, F.; Zaccara, S.; Massi, D.; De Giorgi, V.; Pazzagli, M.; Orlando, C. Circulating cell-free DNA in plasma of melanoma patients: Qualitative and quantitative considerations. Clin. Chim. Acta 2011, 412, 2141–2145. [Google Scholar] [CrossRef] [PubMed]
- Kamel, A.M.; Teama, S.; Fawzy, A.; El Deftar, M. Plasma DNA integrity index as a potential molecular diagnostic marker for breast cancer. Tumour Biol. 2016, 37, 7565–7572. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.; Zheng, J.; Jin, Y.; Zhang, H.; Zhu, Y.; Wu, J.; Xu, Y.; Zhang, P. Plasma cell-free DNA level and its integrity as biomarkers to distinguish non-small cell lung cancer from tuberculosis. Clin. Chim. Acta 2018, 477, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Liang, D.; Chen, Y.; Lin, Y.; Qiao, F.; Li, H.; Wang, T.; Peng, C.; Luo, D.; Liu, H.; et al. An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: A feasibility study. J. Transl. Med. 2019, 17. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Balatsky, A.V.; Revina, D.B.; Samokhodskaya, L.M. Direct comparison of QIAamp DSP Virus Kit and QIAamp Circulating Nucleic Acid Kit regarding cell-free fetal DNA isolation from maternal peripheral blood. Mol. Cell Probes. 2019, 43, 13–19. [Google Scholar] [CrossRef]
- Wagner, F.F.; Gassner, C.; Müller, T.H.; Schönitzer, D.; Schunter, F.; Flegel, W.A. Molecular basis of weak D phenotypes. Blood 1999, 93, 385–393. [Google Scholar] [CrossRef]
- Flegel, W.A. Molecular genetics and clinical applications for RH. Transfus. Apher. Sci. 2011, 44, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Colin, Y.; Chérif-Zahar, B.; Le van Kim, C.; Raynal, V.; Van Huffel, V.; Cartron, J.P. Genetic basis of the RhD-positive and RhD - negative blood group polymorphism as determined by Southern analysis. Blood 1991, 78, 2747–2752. [Google Scholar] [CrossRef] [Green Version]
- Wagner, F.F.; Flegel, W.A. RHD gene deletion occurred in the Rhesus box. Blood 2000, 95, 3662–3668. [Google Scholar] [CrossRef] [PubMed]
- Pirelli, K.J.; Pietz, B.C.; Johnson, S.T.; Pinder, H.L.; Bellissimo, D.B. Molecular determination of RHD zygosity: Predicting risk of hemolytic disease of the fetus and newborn related to anti-D. Prenat. Diagn. 2010, 30, 1207–1212. [Google Scholar] [CrossRef]
- Daniels, G. Human Blood Groups, 2nd ed.; Blackwell Science: Oxford, UK, 2002. [Google Scholar]
- Singleton, B.K.; Green, C.A.; Avent, N.D.; Martin, P.G.; Smart, E.; Daka, A.; Narter-Olaga, E.G.; Hawthorne, L.M.; Daniels, G. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in Africans with the Rh D-negative blood group phenotype. Blood 2000, 95, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Faas, B.H.; Beckers, E.A.; Wildoer, P.; Ligthart, P.C.; Overbeeke, M.A.; Zondervan, H.A.; von dem Borne, A.E.; van der Schoot, C.E. Molecular background of vs. and weak C expression in blacks. Transfusion 1997, 37, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Daniels, G.L.; Faas, B.H.; Green, C.A.; Smart, E.; Maaskant-van Wijk, P.A.; Avent, N.D.; Zondervan, H.A.; von dem Borne, A.E.; van der Schoot, C.E. The vs. and V blood group polymorphisms in Africans: A serologic and molecular analysis. Transfusion 1998, 38, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Migita, O.; Sasaki, A.; Nasu, M.; Kawashima, A.; Sekizawa, A.; Sato, T.; Ito, Y.; Sago, H.; Okamoto, A.; et al. Amplicon Sequencing-Based Noninvasive Fetal Genotyping for RHD-Positive D Antigen-Negative Alleles. Clin. Chem. 2019, 65, 1307–1316. [Google Scholar] [CrossRef]
- Hromadníková, I.; Veselá, K.; Benešová, B.; Nekovářová, D.; Dušková, D.; Vlk, R.; Špálová, I.; Gerychová, R.; Hakenová, A.; Rosenbaumová, Z.; et al. Non-invasive fetal RHD and RHCE genotyping from maternal plasma in alloimmunized pregnancies. Prenat. Diagn. 2005, 25, 1079–1083. [Google Scholar] [CrossRef]
RhD-Negative Pregnant Women 1 | n = 337 | Gestation Week | Gestation Week | Age | Age | BMI | BMI | Ethnic Group of Participants | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Median | Mean | Median | Mean | Median | Mean | ||||||
I. Trimester | 271 (80%) | 7–13 | 12 | 12.5 | 18–43 | 29 | 30 | 17–36 | 23 | 24.3 | Caucasian |
II. Trimester | 66 (20%) | 14–23 | 15 | 15.5 |
Criterions | Valid n | AUC (p-Value) | True Negative | False Negative | False Positive | True Positive | Specificity | Sensitivity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
Criterion 1 | n = 217 | 0.985 (<0.001) | 115 (53.0%) | 3 (1.4%) | 0 (0.0%) | 99 (45.6%) | 1.000 | 0.971 | 1.000 | 0.975 | 0.986 |
Criterion 2 | n = 322 | 0.931 (<0.001) | 147 (45.7%) | 24 (7.5%) | 0 (0.0%) | 151 (46.9%) | 1.000 | 0.863 | 1.000 | 0.860 | 0.925 |
Criterion 3 | n = 303 | 0.975 (<0.001) | 144 (47.5%) | 8 (2.6%) | 0 (0.0%) | 151 (49.8%) | 1.000 | 0.950 | 1.000 | 0.947 | 0.974 |
Criterion 4 | n = 327 | 0.971 (<0.001) | 144 (44.0%) | 8 (2.4%) | 2 (0.6%) | 173 (52.9%) | 0.986 | 0.956 | 0.989 | 0.947 | 0.969 |
Ct Differences of RHD7 and Globin | Valid n | AUC (p-Value) | Cut-Off | True Negative | False Negative | False Positive | True Positive | Specificity | Sensitivity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1-Ct RHD7-Ct globin | n = 332 | 0.898 (<0.001) | −15.821 | 140 (42.2%) | 22 (6.6%) | 10 (3.0%) | 160 (48.2%) | 0.933 | 0.879 | 0.941 | 0.864 | 0.904 |
A2-Ct RHD7-Ct globin | n = 332 | 0.902 (<0.001) | −15.378 | 138 (41.6%) | 19 (5.7%) | 12 (3.6%) | 163 (49.1%) | 0.920 | 0.896 | 0.931 | 0.879 | 0.907 |
B1-Ct RHD7-Ct globin | n = 331 | 0.869 (<0.001) | −18.073 | 141 (42.6%) | 32 (9.7%) | 8 (2.4%) | 150 (45.3%) | 0.946 | 0.824 | 0.949 | 0.815 | 0.879 |
B2-Ct RHD7-Ct globin | n = 330 | 0.848 (<0.001) | −15.984 | 141 (42.7%) | 33 (10.0%) | 8 (2.4%) | 148 (44.8%) | 0.946 | 0.818 | 0.949 | 0.810 | 0.876 |
Mean of four parameters | n = 330 | 0.979 (<0.001) | −16.314 | 144 (43.6%) | 8 (2.4%) | 5 (1.5%) | 173 (52.4%) | 0.966 | 0.956 | 0.972 | 0.947 | 0.961 |
Criterions | Valid n | AUC (p-Value) | True Negative | False Negative | False Positive | True Positive | Specificity | Sensitivity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
Criterion 1 | n = 314 | 0.993 (<0.001) | 140 (44.6%) | 0 (0.0%) | 2 (0.6%) | 172 (54.8%) | 0.986 | 1.000 | 0.989 | 1.000 | 0.994 |
Criterion 2 | n = 329 | 0.976 (<0.001) | 140 (42.6%) | 0 (0.0%) | 7 (2.1%) | 182 (55.3%) | 0.952 | 1.000 | 0.963 | 1.000 | 0.979 |
Ratio of RFU RHD/AMELX | Valid n | AUC (p-Value) | Cut-Off | True Negative | False Negative | False Positive | True Positive | Specificity | Sensitivity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RFU RHD/AMELX A1 | n = 328 | 0.987 (<0.001) | 0.011 | 145 (44.2%) | 2 (0.6%) | 2 (0.6%) | 179 (54.6%) | 0.986 | 0.989 | 0.989 | 0.986 | 0.988 |
RFU RHD/AMELX B1 | n = 327 | 0.972 (<0.001) | 0.001 | 140 (42.8%) | 5 (1.5%) | 7 (2.1%) | 175 (53.5%) | 0.952 | 0.972 | 0.962 | 0.966 | 0.963 |
Mean of two parameters | n = 326 | 0.992 (<0.001) | 0.023 | 143 (43.9%) | 0 (0.0%) | 4 (1.2%) | 179 (54.9%) | 0.973 | 1.000 | 0.978 | 1.000 | 0.988 |
Methods | Study | n | Sensitivity in % (95% CI) * | Specificity in % (95% CI) * |
---|---|---|---|---|
Real-time PCR | De Haas 2016 [9] | 25,789 | 99.9 (99.9, 100) | 97.7 (97.4, 98.0) |
Haimila 2017 [10] | 10,814 | 100 (99.9, 100) | 99.8 (99.6, 99.9) | |
Hyland 2017 [11] | 599 | 100 (99.0, 100) | 99.6 (97.6, 100) | |
Wikman 2012 [14] | 3652 | 97.6 (96.9, 98.2) | 98.9 (98.2, 99.4) | |
Clausen 2012 [15] | 2312 | 99.9 (99.5, 100) | 99.3 (98.7, 100) | |
This study | 337 | 97.1 | 100 | |
Droplet digital PCR | Sillence 2015 [18] | 22 a | 100 | 95.5 |
Sillence 2015 [18] | 24 b | 100 | 100 | |
NGS | Wienzek-Lischka 2015 [21] | 4 | ||
Orzińska 2019 [22] | 13 | |||
End-point QF PCR | Kimura 2008 [19] | 13 | ||
This study | 337 | 100 | 98.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohmova, J.; Lubusky, M.; Holuskova, I.; Studnickova, M.; Kratochvilova, R.; Krejcirikova, E.; Durdova, V.; Kratochvilova, T.; Dusek, L.; Prochazka, M.; et al. Two Reliable Methodical Approaches for Non-Invasive RHD Genotyping of a Fetus from Maternal Plasma. Diagnostics 2020, 10, 564. https://doi.org/10.3390/diagnostics10080564
Bohmova J, Lubusky M, Holuskova I, Studnickova M, Kratochvilova R, Krejcirikova E, Durdova V, Kratochvilova T, Dusek L, Prochazka M, et al. Two Reliable Methodical Approaches for Non-Invasive RHD Genotyping of a Fetus from Maternal Plasma. Diagnostics. 2020; 10(8):564. https://doi.org/10.3390/diagnostics10080564
Chicago/Turabian StyleBohmova, Jana, Marek Lubusky, Iva Holuskova, Martina Studnickova, Romana Kratochvilova, Eva Krejcirikova, Veronika Durdova, Tereza Kratochvilova, Ladislav Dusek, Martin Prochazka, and et al. 2020. "Two Reliable Methodical Approaches for Non-Invasive RHD Genotyping of a Fetus from Maternal Plasma" Diagnostics 10, no. 8: 564. https://doi.org/10.3390/diagnostics10080564
APA StyleBohmova, J., Lubusky, M., Holuskova, I., Studnickova, M., Kratochvilova, R., Krejcirikova, E., Durdova, V., Kratochvilova, T., Dusek, L., Prochazka, M., & Vodicka, R. (2020). Two Reliable Methodical Approaches for Non-Invasive RHD Genotyping of a Fetus from Maternal Plasma. Diagnostics, 10(8), 564. https://doi.org/10.3390/diagnostics10080564