Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Datasets
2.2. Data Pre-Processing
2.3. Attention Module
2.4. Cross Entropy—Log Hyperbolic Cosine (CE-LogCosh) Loss
2.5. Network Architecture
2.6. Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spaeth, E.; Starlard-Davenport, A.; Allman, R. Bridging the Data Gap in Breast Cancer Risk Assessment to Enable Widespread Clinical Implementation across the Multiethnic Landscape of the US. J. Cancer Treat. Diagn. 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Joshi, R.; Basu, A. The Involvement of S6 Kinase-2 in Breast Cancer; The University of North Texas Health Science Centre: Fort Worth, TX, USA, 6 April 2018. [Google Scholar]
- Nor, N.A.M.; Taib, N.A.; Saad, M.; Zaini, H.S.; Ahmad, Z.; Ahmad, Y.; Dhillon, S.K. Development of electronic medical records for clinical and research purposes: The breast cancer module using an implementation framework in a middle income country- Malaysia. BMC Bioinform. 2019, 19, 402. [Google Scholar] [CrossRef] [Green Version]
- Ganggayah, M.D.; Taib, N.A.; Har, Y.C.; Lio, P.; Dhillon, S.K. Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med. Inform. Decis. Mak. 2019, 19, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalafi, E.Y.; Nor, N.A.M.; Taib, N.A.; Ganggayah, M.D.; Town, C.; Dhillon, S.K. Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data. Folia Biol. 2019, 65, 212–220. [Google Scholar]
- Tabar, L.; Gad, A.; Holmberg, L.H.; Ljungquist, U.; Group, K.C.P.; Fagerberg, C.J.G.; Baldetorp, L.; Gröntoft, O.; Lundström, B.; Månson, J.C.; et al. Reduction in mortality from breast cancer after mass screening with mammography. Randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare. Lancet Lond. Engl. 1985, 1, 829–832. [Google Scholar] [CrossRef]
- Houssami, N.; Abraham, L.A.; Kerlikowske, K.; Buist, D.S.; Irwig, L.; Lee, J.; Miglioretti, D.L. Risk Factors for Second Screen-Detected or Interval Breast Cancers in Women with a Personal History of Breast Cancer Participating in Mammography Screening. Cancer Epidemiol. Biomark. Prev. 2013, 22, 946–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerlikowske, K.; Zhu, M.W.; Tosteson, S.A.N.; Sprague, B.L.; Tice, J.A.; Lehman, C.D.; Miglioretti, D.L. Identifying Women with Dense Breasts at High Risk for Interval Cancer: A cohort study. Ann. Intern. Med. 2015, 162, 673–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, V.A. Breast Density and Parenchymal Patterns as Markers of Breast Cancer Risk: A Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1159–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sickles, E.A. The Use of Breast Imaging to Screen Women at High Risk for Cancer. Radiol. Clin. N. Am. 2010, 48, 859–878. [Google Scholar] [CrossRef] [PubMed]
- Jackson, V.P. The role of US in breast imaging. Radiology 1990, 177, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Rebolj, M.; Assi, V.; Brentnall, A.; Parmar, D.; Duffy, S.W. Addition of ultrasound to mammography in the case of dense breast tissue: Systematic review and meta-analysis. Br. J. Cancer 2018, 118, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Giger, M.L.; Al-Hallaq, H.; Huo, Z.; Moran, C.; Wolverton, D.E.; Chan, C.W.; Zhong, W. Computerized analysis of lesions in US images of the breast. Acad. Radiol. 1999, 6, 665–674. [Google Scholar] [CrossRef]
- Sivaramakrishna, R.; Powell, K.A.; Lieber, M.L.; Chilcote, W.A.; Shekhar, R. Texture analysis of lesions in breast ultrasound images. Comput. Med Imaging Graph. 2002, 26, 303–307. [Google Scholar] [CrossRef]
- Xiao, Y.; Zeng, J.; Niu, L.; Zeng, Q.; Wu, T.; Wang, C.; Zheng, R.; Zheng, H. Computer-Aided Diagnosis Based on Quantitative Elastographic Features with Supersonic Shear Wave Imaging. Ultrasound Med. Biol. 2014, 40, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xiao, Y.; Chen, S.; Wang, C.; Zheng, H. Quantification of Elastic Heterogeneity Using Contourlet-Based Texture Analysis in Shear-Wave Elastography for Breast Tumor Classification. Ultrasound Med. Biol. 2015, 41, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Brattain, L.J.; Telfer, B.A.; Dhyani, M.; Grajo, J.R.; Samir, A.E. Machine learning for medical ultrasound: Status, methods, and future opportunities. Abdom. Radiol. 2018, 43, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Abdel-Nasser, M.; Akram, F.; Rashwan, H.A.; Sarker, M.K.; Pandey, N.; Romani, S.; Puig, D. Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert Syst. Appl. 2020, 162, 113870. [Google Scholar] [CrossRef]
- Han, S.; Kang, H.-K.; Jeong, J.-Y.; Park, M.-H.; Kim, W.; Bang, W.-C.; Seong, Y.-K. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys. Med. Biol. 2017, 62, 7714–7728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xiao, Y.; Dai, W.; Suo, J.; Wang, C.; Shi, J.; Zheng, H. Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 2016, 72, 150–157. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, S.; Liu, X.; Zhang, Q.; Lu, M.; Wang, T. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 2016, 194, 87–94. [Google Scholar] [CrossRef]
- Cheng, J.-Z.; Ni, D.; Chou, Y.-H.; Qin, J.; Tiu, C.-M.; Chang, Y.-C.; Huang, C.-S.; Shen, D.; Chen, C.-M. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci. Rep. 2016, 6, 24454. [Google Scholar] [CrossRef] [Green Version]
- Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 2019, 53, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Liu, X.; Yang, Y.; Yu, Y.; Wang, J.; Wang, Z.; Huang, Y.; Huang, C.; Xu, W.; Ramanan, D.; et al. Look and Think Twice: Capturing Top-Down Visual Attention with Feedback Convolutional Neural Networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2956–2964. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv 2014, arXiv:1312.6034. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer. arXiv 2017, arXiv:1612.03928. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Yap, M.H.; Pons, G.; Marti, J.; Ganau, S.; Sentis, M.; Zwiggelaar, R.; Davison, A.K.; Martí, R. Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2018, 22, 1218–1226. [Google Scholar] [CrossRef] [Green Version]
- Abraham, N.; Khan, N.M. A Novel Focal Tversky Loss Function with Improved Attention U-Net for Lesion Segmentation. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 683–687. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Hajiabadi, H.; Molla-Aliod, D.; Monsefi, R. On Extending Neural Networks with Loss Ensembles for Text Classification. In Proceedings of the Australasian Language Technology Association Workshop 2017, Brisbane, Australia, 6–8 December 2017; pp. 98–102. [Google Scholar]
- Murphy, K.P.; Bach, F. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Chen, P.; Chen, G.; Zhang, S. Log Hyperbolic Cosine Loss Improves Variational Auto-Encoder. In Proceedings of the 2018 Sixth International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. 2012, 2, 1097–1105. [Google Scholar] [CrossRef]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 2012, 3, 212–223. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Berg, W.A.; Mendelson, E.B.; Cosgrove, D.O.; Doré, C.J.; Gay, J.; Henry, J.-P.; Cohen-Bacrie, C. Quantitative Maximum Shear-Wave Stiffness of Breast Masses as a Predictor of Histopathologic Severity. Am. J. Roentgenol. 2015, 205, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Models | Loss | Sensitivity | Specificity | Precision | Accuracy | F1 Score | MCC |
---|---|---|---|---|---|---|---|
VGG16 | CE | 0.80 | 0.78 | 0.84 | 0.80 | 0.82 | 0.59 |
VGG16 | LogCosh | 0.84 | 0.80 | 0.84 | 0.82 | 0.84 | 0.62 |
VGG16 | CE-logCosh | 0.95 | 0.82 | 0.84 | 0.89 | 0.89 | 0.79 |
Attention- VGG16 | CE | 0.88 | 0.85 | 0.88 | 0.87 | 0.88 | 0.73 |
Attention- VGG16 | LogCosh | 0.85 | 0.84 | 0.88 | 0.84 | 0.86 | 0.68 |
Attention- VGG16 | CE-logCosh | 0.96 | 0.90 | 0.92 | 0.93 | 0.94 | 0.87 |
References | Dataset | Deep Learning Models | Performance |
---|---|---|---|
[19] | 4254 benign | GoogLeNet | Accuracy: 91.23% |
3154 malignant | Sensitivity: 84.29% | ||
Specificity: 96.07% | |||
[21] | 275 benign | Stacked denoising Autoencoder | Accuracy: 82.4% |
245 malignant | Sensitivity: 78.7% | ||
Specificity: 85.7% | |||
[22] | 100 benign | Deep Polynomial network+SVM | Accuracy: 92.40% |
100 malignant | Sensitivity: 92.67% | ||
Specificity: 91.36% | |||
Current Study | 249 benign | Attention-VGG16 + ensembled loss | Accuracy: 93% |
190 malignant | Sensitivity: 96% | ||
Specificity: 90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalafi, E.Y.; Jodeiri, A.; Setarehdan, S.K.; Lin, N.W.; Rahmat, K.; Taib, N.A.; Ganggayah, M.D.; Dhillon, S.K. Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks. Diagnostics 2021, 11, 1859. https://doi.org/10.3390/diagnostics11101859
Kalafi EY, Jodeiri A, Setarehdan SK, Lin NW, Rahmat K, Taib NA, Ganggayah MD, Dhillon SK. Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks. Diagnostics. 2021; 11(10):1859. https://doi.org/10.3390/diagnostics11101859
Chicago/Turabian StyleKalafi, Elham Yousef, Ata Jodeiri, Seyed Kamaledin Setarehdan, Ng Wei Lin, Kartini Rahmat, Nur Aishah Taib, Mogana Darshini Ganggayah, and Sarinder Kaur Dhillon. 2021. "Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks" Diagnostics 11, no. 10: 1859. https://doi.org/10.3390/diagnostics11101859
APA StyleKalafi, E. Y., Jodeiri, A., Setarehdan, S. K., Lin, N. W., Rahmat, K., Taib, N. A., Ganggayah, M. D., & Dhillon, S. K. (2021). Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks. Diagnostics, 11(10), 1859. https://doi.org/10.3390/diagnostics11101859