Diagnostic Modalities in Critical Care: Point-of-Care Approach
Abstract
:1. Introduction
2. Point-of-Care Diagnostic
Advantages and Dissadvantages of POC
3. Point-of-Care Diagnostics in Haematology and Biochemistry
3.1. Arterial Blood Gas Analysis
3.2. Co-Oximetry and Haematology
3.3. Electrolytes
3.4. Lactate
3.5. Glucose
3.6. Coagulation
3.6.1. Viscoelastic Methods
3.6.2. Platelets Function Monitoring
3.6.3. Plasmatic Coagulation Analysis
3.6.4. Emergency
3.7. Cardiac Markers
3.8. Acute Infections
4. Point-of-Care Imaging Procedures
5. COVID-19 Point-of-Care Diagnostic
6. Future Development and Outlook
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, F.E.; Fong, K.; Hirsch, N.; Nolan, J.P. Intensive care medicine is 60 years old: The history and future of the intensive care unit. Clin. Med. 2014, 14, 376–379. [Google Scholar] [CrossRef]
- Tang, W.; Sun, S. Resuscitation great. Max Harry (Hal) Weil—A leader, mentor, friend, and wonderful colleague. Resuscitation 2011, 82, 1481–1482. [Google Scholar] [CrossRef] [PubMed]
- Dasta, J.F.; McLaughlin, T.P.; Mody, S.H.; Piech, C.T. Daily cost of an intensive care unit day: The contribution of mechanical ventilation. Crit. Care Med. 2005, 33, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.L.; Peisach, A.R.; Solomon, P.J.; Martin, J. Cost calculation and prediction in adult intensive care: A ground-up utilization study. Anaesth. Intensive Care 2004, 32, 787–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reardon, P.M.; Fernando, S.M.; Van Katwyk, S.; Thavorn, K.; Kobewka, D.; Tanuseputro, P.; Rosenberg, E.; Wan, C.; Vanderspank-Wright, B.; Kubelik, D.; et al. Characteristics, Outcomes, and Cost Patterns of High-Cost Patients in the Intensive Care Unit. Crit. Care Res. Pract. 2018, 2018, 5452683. [Google Scholar] [CrossRef]
- Blakeman, T.C.; Branson, R.D. Inter- and intra-hospital transport of the critically ill. Respir. Care 2013, 58, 1008–1023. [Google Scholar] [CrossRef]
- ISO22870:2016. In Point-of-Care Testing (POCT)—Requirements for Quality and Competence; The International Organization for Standardization: Geneva, Switzerland, 2016.
- Kost, G.J. Principles & Practice of Point-of-Care Testing; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2002. [Google Scholar]
- Kost, G.J.; Tran, N.K.; Louie, R.F. Point-of-Care Testing: Principles, Practice, and Critical-Emergency-Disaster Medicine. In Encyclopedia of Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Rooney, K.D.; Schilling, U.M. Point-of-care testing in the overcrowded emergency department—Can it make a difference? Crit. Care 2014, 18, 692. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A.F.; Khan, D. Point of care testing: Improving pediatric outcomes. Clin. Biochem. 2004, 37, 456–461. [Google Scholar] [CrossRef]
- Everitt, M.L.; Tillery, A.; David, M.G.; Singh, N.; Borison, A.; White, I.M. A critical review of point-of-care diagnostic technologies to combat viral pandemics. Anal. Chim. Acta 2021, 1146, 184–199. [Google Scholar] [CrossRef]
- Ferreira, C.; Guerra, J.; Slhessarenko, N.; Scartezini, M.; França, C.N.; Colombini, M.; Berlitz, F.; Machado, A.; Campana, G.; Faulhaber, A.; et al. Point-of-Care Testing: General Aspects. Clin. Lab. 2018, 64, 1–9. [Google Scholar] [CrossRef]
- Giuliano, K.K.; Grant, M.E. Blood analysis at the point of care: Issues in application for use in critically ill patients. AACN Clin. Issues 2002, 13, 204–220. [Google Scholar] [CrossRef]
- Guevarra, K.; Greenstein, Y. Ultrasonography in the Critical Care Unit. Curr. Cardiol. Rep. 2020, 22, 145. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.J.; Li, Y.H.; Gragg, L.A.; Jubran, F.; Stoller, J.K. Reduction of blood loss from diagnostic sampling in critically ill patients using a blood-conserving arterial line system. Chest 1993, 104, 1711–1715. [Google Scholar] [CrossRef]
- Nguyen, B.V.; Bota, D.P.; Mélot, C.; Vincent, J.L. Time course of hemoglobin concentrations in nonbleeding intensive care unit patients. Crit. Care Med. 2003, 31, 406–410. [Google Scholar]
- Chornenki, N.L.J.; James, T.E.; Barty, R.; Liu, Y.; Rochwerg, B.; Heddle, N.M.; Siegal, D.M. Blood loss from laboratory testing, anemia, and red blood cell transfusion in the intensive care unit: A retrospective study. Transfusion 2020, 60, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Giron, F.; Alvarez-Mora, F. Reduction of blood loss from laboratory testing in hospitalized adult patients using small-volume (pediatric) tubes. Arch. Pathol. Lab. Med. 2008, 132, 1916–1919. [Google Scholar] [CrossRef] [PubMed]
- Camille, C.J.J.; Tine, F. Du Pont-Thibodeau Geneviève Anemia in Pediatric Critical Care. Int. J. Clin. Transfus. Med. 2020, 8, 23–33. [Google Scholar]
- Soar, J.; Böttiger, B.W.; Carli, P.; Couper, K.; Deakin, C.D.; Djärv, T.; Lott, C.; Olasveengen, T.; Paal, P.; Pellis, T.; et al. European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation 2021, 161, 115–151. [Google Scholar] [CrossRef]
- Rackley, C.R. Monitoring During Mechanical Ventilation. Respir. Care 2020, 65, 832–846. [Google Scholar] [CrossRef]
- Al Ashry, H.S.; Richards, J.B.; Fisher, D.F.; Sankoff, J.; Seigel, T.A.; Angotti, L.B.; Wilcox, S.R. Emergency Department Blood Gas Utilization and Changes in Ventilator Settings. Respir. Care 2018, 63, 36–42. [Google Scholar] [CrossRef] [Green Version]
- DaRocha, T.; Kosiński, S.; Jarosz, A.; Podsiadło, P.; Ziętkiewicz, M.; Sanak, T.; Gałązkowski, R.; Piątek, J.; Konstanty-Kalandyk, J.; Drwiła, R. Should capnography be used as a guide for choosing a ventilation strategy in circulatory shock caused by severe hypothermia? Observational case-series study. Scand. J. Trauma Resusc. Emerg. Med. 2017, 25, 15. [Google Scholar] [CrossRef] [Green Version]
- Doppmann, P.; Meuli, L.; Sollid, S.J.M.; Filipovic, M.; Knapp, J.; Exadaktylos, A.; Albrecht, R.; Pietsch, U. End-tidal to arterial carbon dioxide gradient is associated with increased mortality in patients with traumatic brain injury: A retrospective observational study. Sci. Rep. 2021, 11, 10391. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Hwang, S.O.; Kang, H.S.; Cha, K.C. The gradient between arterial and end-tidal carbon dioxide predicts in-hospital mortality in post-cardiac arrest patient. Am. J. Emerg. Med. 2019, 37, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, J.; Sandbach, D.D.; Ercole, A.; Wilson, A.; Barnard, E.B.G. End-tidal and arterial carbon dioxide gradient in serious traumatic brain injury after prehospital emergency anaesthesia: A retrospective observational study. Emerg. Med. J. EMJ 2020, 37, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Forsman, R.W. Why is the laboratory an afterthought for managed care organizations? Clin. Chem. 1996, 42, 813–816. [Google Scholar] [CrossRef] [Green Version]
- Boran, G.; O’Gorman, P.; Jackson, B.; O’Kelly, R.; O’Shea, P.; Keogan, M. Guidelines for Safe and Effective Near-Patient Testing (NPT); Group NN-PTNC, Ed.; Academy of Clinical Science and Laboratory Medicine: Dublin, Ireland, 2020. [Google Scholar]
- Castro, D.; Patil, S.M.; Keenaghan, M. Arterial Blood Gas; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Gattinoni, L.; Pesenti, A.; Matthay, M. Understanding blood gas analysis. Intensive Care Med. 2018, 44, 91–93. [Google Scholar] [CrossRef]
- Rossi, A.F.; Khan, D.M.; Hannan, R.; Bolivar, J.; Zaidenweber, M.; Burke, R. Goal-directed medical therapy and point-of-care testing improve outcomes after congenital heart surgery. Intensive Care Med. 2005, 31, 98–104. [Google Scholar] [CrossRef]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, D.; Srivastava, M.; Singh, P. Point of care blood gases with electrolytes and lactates in adult emergencies. Int. J. Crit. Illn. Inj. Sci. 2014, 4, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J.H.; Christenson, R.H.; Clarke, W.; Gronowski, A.; Hammett-Stabler, C.A.; Jacobs, E.; Kazmierczak, S.; Lewandrowski, K.; Price, C.; Sacks, D.B.; et al. Executive summary. The National Academy of Clinical Biochemistry Laboratory Medicine Practice Guideline: Evidence-based practice for point-of-care testing. Clin. Chim. Acta Int. J. Clin. Chem. 2007, 379, 14–28. [Google Scholar] [CrossRef]
- Ganter, M.; Zollinger, A. Continuous intravascular blood gas monitoring: Development, current techniques, and clinical use of a commercial device. Br. J. Anaesth. 2003, 91, 397–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Villar, S.; Poza-Hernández, P.; Freigang, S.; Zubizarreta-Ormazabal, I.; Paz-Martín, D.; Holl, E.; Pérez-Pardo, O.C.; Tovar-Doncel, M.S.; Wissa, S.M.; Cimadevilla-Calvo, B.; et al. Automatic real-time analysis and interpretation of arterial blood gas sample for Point-of-care testing: Clinical validation. PLoS ONE 2021, 16, e0248264. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Levy, M.M.; Carlet, J.M.; Bion, J.; Parker, M.M.; Jaeschke, R.; Reinhart, K.; Angus, D.C.; Brun-Buisson, C.; Beale, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 2008, 36, 296–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Textoris, J.; Fouché, L.; Wiramus, S.; Antonini, F.; Tho, S.; Martin, C.; Leone, M. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit. Care 2011, 15, R176. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, K.; Yukioka, H.; Hayashi, M.; Asada, A. Elevated methemoglobin in patients with sepsis. Acta Anaesthesiol. Scand. 1998, 42, 713–716. [Google Scholar] [CrossRef]
- Guay, J. Methemoglobinemia Related to Local Anesthetics: A Summary of 242 Episodes. Anesth. Analg. 2009, 108, 837–845. [Google Scholar] [CrossRef]
- Hampson, N.B. Carboxyhemoglobin: A primer for clinicians. Undersea Hyperb. Med. J. Undersea Hyperb. Med Soc. 2018, 45, 165–171. [Google Scholar] [CrossRef]
- Steinfelder-Visscher, J.; Weerwind, P.W.; Teerenstra, S.; Pop, G.A.; Brouwer, R.M. Conductivity-based hematocrit measurement during cardiopulmonary bypass. J. Clin. Monit. Comput. 2007, 21, 7–12. [Google Scholar] [CrossRef]
- Myers, G.J.; Browne, J. Point of care hematocrit and hemoglobin in cardiac surgery: A review. Perfusion 2007, 22, 179–183. [Google Scholar] [CrossRef]
- Herman, J.; Park, B.; Awsare, B.; West, F.; Crittendon, D.; Evans, L.; Harach, M.; Karp, J.; Peedin, A.; LaNoue, M.; et al. Point-of-care versus central testing of hemoglobin during large volume blood transfusion. BMC Anesthesiol. 2019, 19, 240. [Google Scholar] [CrossRef]
- Shapiro, B.; Peruzzi, W.; Kozelowski-Templin, R. Clinical Application of Blood Gases, 5th ed.; Mosby: Chicago, IL, USA, 1975; 427p. [Google Scholar]
- Rafat, C.; Flamant, M.; Gaudry, S.; Vidal-Petiot, E.; Ricard, J.D.; Dreyfuss, D. Hyponatremia in the intensive care unit: How to avoid a Zugzwang situation? Ann. Intensive Care 2015, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Tongyoo, S.; Viarasilpa, T.; Permpikul, C. Serum potassium levels and outcomes in critically ill patients in the medical intensive care unit. J. Int. Med Res. 2018, 46, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Palmer, B.F.; Clegg, D.J. Diagnosis and treatment of hyperkalemia. Clevel. Clin. J. Med. 2017, 84, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Benirschke, R.C.; Gniadek, T.J. Detection of Falsely Elevated Point-of-Care Potassium Results Due to Hemolysis Using Predictive Analytics. Am. J. Clin. Pathol. 2020, 154, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Yunos, N.M.; Bellomo, R.; Story, D.; Kellum, J. Bench-to-bedside review: Chloride in critical illness. Crit. Care 2010, 14, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Robertis, E.; Kozek-Langenecker, S.A.; Tufano, R.; Romano, G.M.; Piazza, O.; Zito Marinosci, G. Coagulopathy induced by acidosis, hypothermia and hypocalcaemia in severe bleeding. Minerva Anestesiol. 2015, 81, 65–75. [Google Scholar] [PubMed]
- Hansen, B.A.; Bruserud, Ø. Hypomagnesemia in critically ill patients. J. Intensive Care 2018, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Bakker, J.; Nijsten, M.W.; Jansen, T.C. Clinical use of lactate monitoring in critically ill patients. Ann. Intensive Care 2013, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Bakker, J.; Vincent, J.-L. The oxygen supply dependency phenomenon is associated with increased blood lactate levels. J. Crit. Care 1991, 6, 152–159. [Google Scholar] [CrossRef]
- Vink, E.E.; Bakker, J. Practical Use of Lactate Levels in the Intensive Care. J. Intensive Care Med. 2018, 33, 159–165. [Google Scholar] [CrossRef]
- van den Berghe, G.; Wouters, P.; Weekers, F.; Verwaest, C.; Bruyninckx, F.; Schetz, M.; Vlasselaers, D.; Ferdinande, P.; Lauwers, P.; Bouillon, R. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 2001, 345, 1359–1367. [Google Scholar] [CrossRef]
- The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobi, J.; Bircher, N.; Krinsley, J.; Agus, M.; Braithwaite, S.S.; Deutschman, C.; Freire, A.; Geehan, D.; Kohl, B.; Nasraway, S.A.; et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit. Care Med. 2012, 40, 3251–3276. [Google Scholar] [CrossRef]
- Nichols, J.H.; Brandler, E.S.; Fantz, C.R.; Fisher, K.; Goodman, M.D.; Headden, G.; Hoppensteadt, D.; Matika, R.; Peacock, W.F.; Rodrigo, J.; et al. A Multicenter Evaluation of a Point-of-Care Blood Glucose Meter System in Critically Ill Patients. J. Appl. Lab. Med. 2021, 6, 820–833. [Google Scholar] [CrossRef]
- ISO. International Organization for Standardization: In Vitro Diagnostic Test Systems—Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. ISO/TC 212 Clinical Laboratory Testing and In Vitro Diagnostic Test Systems; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- Tang, Z.; Louie, R.F.; Lee, J.H.; Lee, D.M.; Miller, E.E.; Kost, G.J. Oxygen effects on glucose meter measurements with glucose dehydrogenase- and oxidase-based test strips for point-of-care testing. Crit. Care Med. 2001, 29, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Lee, J.H.; Louie, R.F.; Kost, G.J. Effects of different hematocrit levels on glucose measurements with handheld meters for point-of-care testing. Arch. Pathol. Lab. Med. 2000, 124, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Du, X.; Louie, R.F.; Kost, G.J. Effects of drugs on glucose measurements with handheld glucose meters and a portable glucose analyzer. Am. J. Clin. Pathol. 2000, 113, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krinsley, J.S.; Chase, J.G.; Gunst, J.; Martensson, J.; Schultz, M.J.; Taccone, F.S.; Wernerman, J.; Bohe, J.; De Block, C.; Desaive, T.; et al. Continuous glucose monitoring in the ICU: Clinical considerations and consensus. Crit. Care 2017, 21, 197. [Google Scholar] [CrossRef] [Green Version]
- Wallia, A.; Umpierrez, G.E.; Rushakoff, R.J.; Klonoff, D.C.; Rubin, D.J.; Golden, S.H.; Cook, C.B.; Thompson, B. The DTS Continuous Glucose Monitoring in the Hospital Panel. Consensus Statement on Inpatient Use of Continuous Glucose Monitoring. J. Diabetes Sci. Technol. 2017, 11, 1036–1044. [Google Scholar] [CrossRef]
- Scrimgeour, L.A.; Potz, B.A.; Sellke, F.W.; Abid, M.R. Continuous Glucose Monitoring in the Cardiac ICU: Current Use and Future Directions. Clin. Med. Res. 2017, 6, 173–176. [Google Scholar] [CrossRef]
- van Steen, S.C.; Rijkenberg, S.; Limpens, J.; van der Voort, P.H.; Hermanides, J.; DeVries, J.H. The Clinical Benefits and Accuracy of Continuous Glucose Monitoring Systems in Critically Ill Patients—A Systematic Scoping Review. Sensors 2017, 17, 146. [Google Scholar] [CrossRef] [Green Version]
- Sadhu, A.R.; Serrano, I.A.; Xu, J.; Nisar, T.; Lucier, J.; Pandya, A.R.; Patham, B. Continuous Glucose Monitoring in Critically Ill Patients with COVID-19: Results of an Emergent Pilot Study. J. Diabetes Sci. Technol. 2020, 14, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Cooksley, T.; Rose, S.; Holland, M. A systematic approach to the unconscious patient. Clin. Med. 2018, 18, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Görlinger, K.; Pérez-Ferrer, A.; Dirkmann, D.; Saner, F.; Maegele, M.; Calatayud, Á.A.P.; Kim, T.-Y. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J. Anesthesiol. 2019, 72, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Child, L.J. Clinical utility of viscoelastic testing in chronic liver disease: A systematic review. World J. Hepatol. 2020, 12, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.; Al, M.J.; Westwood, M.; Ramos, I.C.; Ryder, S.; Armstrong, N.; Misso, K.; Ross, J.; Severens, J.L.; Kleijnen, J. Viscoelastic point-of-care testing to assist with the diagnosis, management and monitoring of haemostasis: A systematic review and cost-effectiveness analysis. Health Technol. Assess. 2015, 19, 1–228. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, C.; Chinna, S.; Um, J.; Dias, J.; Hartmann, J.; Bradley, J.; Brooks, A. Site-of-Care Viscoelastic Assay in Major Trauma Improves Outcomes and Is Cost Neutral Compared with Standard Coagulation Tests. Diagnostics 2020, 10, 486. [Google Scholar] [CrossRef]
- Chow, J.H.; Richards, J.E.; Morrison, J.; Galvagno, S.M.; Tanaka, K.A.; Madurska, M.J.; Rock, P.; Scalea, T.M.; Mazzeffi, M.A. Viscoelastic Signals for Optimal Resuscitation in Trauma: Kaolin Thrombelastography Cutoffs for Diagnosing Hypofibrinogenemia (VISOR Study). Anesth. Analg. 2019, 129, 1482–1491. [Google Scholar] [CrossRef]
- Oberladstätter, D.; Voelckel, W.; Schlimp, C.; Zipperle, J.; Ziegler, B.; Grottke, O.; Schöchl, H. A prospective observational study of the rapid detection of clinically-relevant plasma direct oral anticoagulant levels following acute traumatic injury. Anaesthesia 2021, 76, 373–380. [Google Scholar] [CrossRef]
- Groene, P.; Wagner, D.; Kammerer, T.; Kellert, L.; Giebl, A.; Massberg, S.; Schäfer, S.T. Viscoelastometry for detecting oral anticoagulants. Thromb. J. 2021, 19, 18. [Google Scholar] [CrossRef]
- Brown, W.; Lunati, M.; Maceroli, M.; Ernst, A.; Staley, C.; Johnson, R.; Schenker, M. Ability of Thromboelastography to Detect Hypercoagulability: A Systematic Review and Meta-Analysis. J. Orthop. Trauma 2020, 34, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Roh, D.J.; Eiseman, K.; Kirsch, H.; Yoh, N.; Boehme, A.; Agarwal, S.; Park, S.; Connolly, E.S.; Claassen, J.; Wagener, G. Hypercoagulable viscoelastic blood clot characteristics in critically ill coronavirus disease 2019 patients and associations with thrombotic complications. J. Trauma Acute Care Surg. 2021, 90, e7–e12. [Google Scholar] [CrossRef]
- Collett, L.W.; Gluck, S.; Strickland, R.M.; Reddi, B.J. Evaluation of coagulation status using viscoelastic testing in intensive care patients with coronavirus disease 2019 (COVID-19): An observational point prevalence cohort study. Aust. Crit. Care 2021, 34, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Brenner, T.; Schmidt, K.; Delang, M.; Mehrabi, A.; Bruckner, T.; Lichtenstern, C.; Martin, E.; Weigand, M.A.; Hofer, S. Viscoelastic and aggregometric point-of-care testing in patients with septic shock-cross-links between inflammation and haemostasis. Acta Anaesthesiol. Scand. 2012, 56, 1277–1290. [Google Scholar] [CrossRef]
- Wright, F.; Vogler, T.O.; Moore, E.E.; Moore, H.B.; Wohlauer, M.V.; Urban, S.; Nydam, T.L.; Moore, P.K.; McIntyre, R.C., Jr. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J. Am. Coll. Surg. 2020, 231, 193–203.e1. [Google Scholar] [CrossRef] [PubMed]
- Creel-Bulos, C.; Auld, S.C.; Caridi-Scheible, M.; Barker, N.; Friend, S.; Gaddh, M.; Kempton, C.L.; Maier, C.L.; Nahab, F.; Sniecinski, R. Fibrinolysis Shutdown and Thrombosis in a COVID-19 ICU. Shock 2021, 55, 316–320. [Google Scholar] [CrossRef]
- Kruse, J.M.; Magomedov, A.; Kurreck, A.; Münch, F.H.; Koerner, R.; Kamhieh-Milz, J.; Kahl, A.; Gotthardt, I.; Piper, S.K.; Eckardt, K.-U.; et al. Thromboembolic complications in critically ill COVID-19 patients are associated with impaired fibrinolysis. Crit. Care 2020, 24, 676. [Google Scholar] [CrossRef]
- Nagashima, H. Studies on the different modes of action of the anticoagulant protease inhibitors DX-9065a and Argatroban. II. Effects on fibrinolysis. J. Biol. Chem. 2002, 277, 50445–50449. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Blombäck, M.; Bark, N.; Johnsson, H.; Wallén, N.H. The direct thrombin inhibitors (argatroban, bivalirudin and lepirudin) and the indirect Xa-inhibitor (danaparoid) increase fibrin network porosity and thus facilitate fibrinolysis. Thromb. Haemost. 2010, 103, 1076–1084. [Google Scholar]
- Mohammadi Aria, M.; Erten, A.; Yalcin, O. Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Front. Bioeng. Biotechnol. 2019, 7, 395. [Google Scholar] [CrossRef]
- Harrison, P.; Mackie, I.; Mumford, A.; Briggs, C.; Liesner, R.; Winter, M.; Machin, S. British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br. J. Haematol. 2011, 155, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Peplow, C.; Assfalg, R.; Beyerlein, A.; Hasford, J.; Bonifacio, E.; Ziegler, A.G. Blood draws up to 3% of blood volume in clinical trials are safe in children. Acta Paediatr. 2019, 108, 940–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Maegele, M.; Nardi, G.; Riddez, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma. Crit. Care 2019, 23, 98. [Google Scholar] [CrossRef] [Green Version]
- Sahli, S.D.; Rössler, J.; Tscholl, D.W.; Studt, J.-D.; Spahn, D.R.; Kaserer, A. Point-of-Care Diagnostics in Coagulation Management. Sensors 2020, 20, 4254. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, R.; Priora, R.; Liotta, A.A.; Abbate, R. Platelet function tests: A comparative review. Vasc. Health Risk Manag. 2015, 11, 133–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, P.F. Platelet hyperreactivity: Predictive and intrinsic properties. Hematol. Oncol. Clin. N. Am. 2007, 21, 633–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.G.; Suh, J.-W.; Park, J.J.; Oh, I.-Y.; Yoon, C.-H.; Cho, Y.-S.; Youn, T.-J.; Chae, I.-H.; Choi, D.J. Different influences of hematocrit on the results of two Point-of-Care platelet function tests, the VerifyNow assay and multiple electrode platelet aggregometry. PLoS ONE 2014, 9, e114053. [Google Scholar]
- Lorenzen, H.; Frøstrup, A.; Larsen, A.S.; Fenger, M.S.; Dahdouh, S.; Zoel-Ghina, R.; Nielsen, L.K. Pneumatic tube transport of blood samples affects global hemostasis and platelet function assays. Int. J. Lab. Hematol. 2021, 43, 1207–1215. [Google Scholar] [CrossRef]
- Fitch, J.C.; Mirto, G.P.; Geary, K.L.; Byrne, D.W.; Hines, R.L. Point-of-care and standard laboratory coagulation testing during cardiovascular surgery: Balancing reliability and timeliness. J. Clin. Monit. Comput. 1999, 15, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Boldt, J.; Walz, G.; Triem, J.; Suttner, S.; Kumle, B. Point-of-care (POC) measurement of coagulation after cardiac surgery. Intensive Care Med. 1998, 24, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Despotis, G.J.; Santoro, S.A.; Spitznagel, E.; Kater, K.M.; Cox, J.L.; Barnes, P.; Lappas, D.G. Prospective evaluation and clinical utility of on-site monitoring of coagulation in patients undergoing cardiac operation. J. Thorac. Cardiovasc. Surg. 1994, 107, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Niederdöckl, J.; Dempfle, C.-E.; Schönherr, H.-R.; Bartsch, A.; Miles, G.; Laggner, A.; Pathil, A. Point-of-care PT and aPTT in patients with suspected deficiencies of coagulation factors. Int. J. Lab. Hematol. 2016, 38, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Meesters, M.I.; Kuiper, G.; Vonk, A.B.A.; Loer, S.A.; Boer, C. Validation of a point-of-care prothrombin time test after cardiopulmonary bypass in cardiac surgery. Anaesthesia 2016, 71, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Hunt, B.J. A critical appraisal of point-of-care coagulation testing in critically ill patients. J. Thromb. Haemost. JTH 2015, 13, 1960–1967. [Google Scholar] [CrossRef] [PubMed]
- Berk, Z.B.K.; Shah, A.; Sun, W.; Griffith, B.P.; Wu, Z.J. An ex vivo comparison of partial thromboplastin time and activated clotting time for heparin anticoagulation in an ovine model. Artif. Organs 2021. [Google Scholar] [CrossRef]
- Villalba, C.A.F.; Brogan, T.V.; McMullan, D.M.; Yalon, L.; Jordan, D.I.; Chandler, W.L. Conversion From Activated Clotting Time to Anti-Xa Heparin Activity Assay for Heparin Monitoring During Extracorporeal Membrane Oxygenation. Crit. Care Med. 2020, 48, e1179–e1184. [Google Scholar] [CrossRef]
- Bolliger, D.; Tanaka, K.A. Point-of-Care Coagulation Testing in Cardiac Surgery. Semin. Thromb. Hemost. 2017, 43, 386–396. [Google Scholar]
- Barnes, G.D.; Lucas, E.; Alexander, G.C.; Goldberger, Z.D. National Trends in Ambulatory Oral Anticoagulant Use. Am. J. Med. 2015, 128, 1300–1305.e2. [Google Scholar] [CrossRef] [Green Version]
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.-H.; McAnulty, J.H., Jr.; Zheng, Z.-J.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Ebner, M.; Birschmann, I.; Peter, A.; Spencer, C.; Härtig, F.; Kuhn, J.; Blumenstock, G.; Zuern, C.S.; Ziemann, U.; Poli, S. Point-of-care testing for emergency assessment of coagulation in patients treated with direct oral anticoagulants. Crit. Care 2017, 21, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebner, M.; Peter, A.; Spencer, C.; Härtig, F.; Birschmann, I.; Kuhn, J.; Wolf, M.; Winter, N.; Russo, F.; Zuern, C.S.; et al. Point-of-Care Testing of Coagulation in Patients Treated with Non-Vitamin K Antagonist Oral Anticoagulants. Stroke 2015, 46, 2741–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, S.P.; Banzato, A.; Carraro, P.; Haleh, A.; Rossi, K.; Nante, G.; Denas, G.; Zoppellaro, G.; Pengo, V. Point of Care Testing (POCT) to assess drug concentration in patients treated with non-vitamin K antagonist oral anticoagulants (NOACs). Thromb. Res. 2018, 163, 100–104. [Google Scholar] [CrossRef]
- Seyve, L.; Richarme, C.; Polack, B.; Marlu, R. Impact of four direct oral anticoagulants on rotational thromboelastometry (ROTEM). Int. J. Lab. Hematol. 2018, 40, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Härtig, F.; Birschmann, I.; Peter, A.; Hörber, S.; Ebner, M.; Sonnleitner, M.; Spencer, C.; Bombach, P.; Stefanou, M.-I.; Kuhn, J.; et al. Point-of-care testing of coagulation in patients treated with edoxaban. J. Thromb. Thrombolysis 2020, 50, 632–639. [Google Scholar] [CrossRef]
- Quick, A.J. The prothrombin in hemophilia and in obstructive jaundice. J. Biol. Chem. 1935, 109, 73–74. [Google Scholar]
- World Health Organization. Requirements for Thromboplastins and Plasma Used to Control Oral Anticoagulant Therapy (Requirements for Biological Substances no.30, Revised 1982)—WHO Expert Committee on Biological Standardization; Thirty-Third Report. Annex 3; WHO Technical Report Series; No. 687; World Health Organization: Geneva, Switzerland, 1983. [Google Scholar]
- Rizos, T.; Herweh, C.; Jenetzky, E.; Lichy, C.; Ringleb, P.A.; Hacke, W.; Veltkamp, R. Point-of-care international normalized ratio testing accelerates thrombolysis in patients with acute ischemic stroke using oral anticoagulants. Stroke 2009, 40, 3547–3551. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.F.; Görlinger, K.; Meininger, D.; Herrmann, E.; Bingold, T.; Moritz, A.; Cohn, L.H.; Zacharowski, K. Point-of-care testing: A prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology 2012, 117, 531–547. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; ESC Scientific Document Group. Fourth Universal Definition of Myocardial Infarction. Glob. Heart 2018, 13, 305–338. [Google Scholar] [CrossRef]
- Giannitsis, E.; Gopi, V. Biomarkers for infarct diagnosis and rapid rule-out/rule-in of acute myocardial infarction. Herz 2020, 45, 509–519. [Google Scholar] [CrossRef]
- Cawdery, M.; Burg, M.D. Emergency medicine career paths less traveled: Cruise ship medicine, Indian health, and critical care medicine. Ann. Emerg. Med. 2004, 44, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Storrow, A.B.; Apple, F.S.; Wu, A.H.; Jesse, R.L.; Francis, G.S.; Christenson, R.H.; Cannon, C.P.; Morrow, D.A.; Newby, L.K.; Ravkilde, J.; et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Point of Care Testing, Oversight and Administration of Cardiac Biomarkers for Acute Coronary Syndromes. Clin. Chem. 2007, 53, 552–574. [Google Scholar] [CrossRef]
- Goodacre, S.; Bradburn, M.; Fitzgerald, P.; Cross, E.; Collinson, P.; Gray, A.; Hall, A. The RATPAC (Randomised Assessment of Treatment using Panel Assay of Cardiac markers) trial: A randomised controlled trial of point-of-care cardiac markers in the emergency department. Health Technol. Assess. 2011, 15, 1–102. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.; Bleeze, G.; Storey, S.; Cairns, A.; Taylor, A.; Holmes, C.; Hart, S.; Lawrance, N.; Oldfield, W.G.; Baker, C.S. The impact of an acute chest pain pathway on the investigation and management of cardiac chest pain. Future Healthc. J. 2020, 7, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Apple, F.S.; Christenson, R.H.; Valdes, R.; Andriak, A.J.; Berg, A.; Duh, S.-H.; Feng, Y.-J.; Jortani, S.A.; Johnson, N.A.; Koplen, B.; et al. Simultaneous rapid measurement of whole blood myoglobin, creatine kinase MB, and cardiac troponin I by the triage cardiac panel for detection of myocardial infarction. Clin. Chem. 1999, 45, 199–205. [Google Scholar] [CrossRef]
- McCord, J.; Nowak, R.M.; McCullough, P.A.; Foreback, C.; Borzak, S.; Tokarski, G.; Tomlanovich, M.C.; Jacobsen, G.; Weaver, W.D. Ninety-minute exclusion of acute myocardial infarction by use of quantitative point-of-care testing of myoglobin and troponin I. Circulation 2001, 104, 1483–1488. [Google Scholar] [CrossRef] [Green Version]
- Di Serio, F.; Antonelli, G.; Trerotoli, P.; Tampoia, M.; Matarrese, A.; Pansini, N. Appropriateness of point-of-care testing (POCT) in an emergency department. Clin. Chim. Acta Int. J. Clin. Chem. 2003, 333, 185–189. [Google Scholar] [CrossRef]
- Alan, H.B. Recent Advances in Point-of-Care Diagnostics for Cardiac Markers. EJIFCC 2014, 25, 170–177. [Google Scholar]
- Melanson, S.E.; Morrow, D.A.; Jarolim, P. Earlier detection of myocardial injury in a preliminary evaluation using a new troponin I assay with improved sensitivity. Am. J. Clin. Pathol. 2007, 128, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Collinson, P. Cardiac biomarker measurement by point of care testing—Development, rationale, current state and future developments. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 508, 234–239. [Google Scholar] [CrossRef]
- Collinson, P.; John, C.; Lynch, S.; Rao, A.; Canepa-Anson, R.; Carson, E.; Cramp, D. A prospective randomized controlled trial of point-of-care testing on the coronary care unit. Ann. Clin. Biochem. 2004, 41 Pt 5, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.J.; Lindsell, C.J.; Hollander, J.E.; O’Neil, B.; Jackson, R.; Schreiber, D.; Christenson, R.; Gibler, W.B. A multicenter randomized controlled trial comparing central laboratory and point-of-care cardiac marker testing strategies: The Disposition Impacted by Serial Point of Care Markers in Acute Coronary Syndromes (DISPO-ACS) trial. Ann. Emerg. Med. 2009, 53, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Renaud, B.; Maison, P.; Ngako, A.; Cunin, P.; Santin, A.; Hervé, J.; Salloum, M.; Calmettes, M.-J.; Boraud, C.; Lemiale, V.; et al. Impact of point-of-care testing in the emergency department evaluation and treatment of patients with suspected acute coronary syndromes. Acad. Emerg. Med. 2008, 15, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Straface, A.L.; Myers, J.H.; Kirchick, H.J.; Blick, K.E. A rapid point-of-care cardiac marker testing strategy facilitates the rapid diagnosis and management of chest pain patients in the emergency department. Am. J. Clin. Pathol. 2008, 129, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Loten, C.; Attia, J.; Hullick, C.; Marley, J.; McElduff, P. Point of care troponin decreases time in the emergency department for patients with possible acute coronary syndrome: A randomised controlled trial. Emerg. Med. J. EMJ 2010, 27, 194–198. [Google Scholar] [CrossRef]
- Tomonaga, Y.; Gutzwiller, F.; Lüscher, T.F.; Riesen, W.F.; Hug, M.; Diemand, A.; Schwenkglenks, M.; Szucs, T.D. Diagnostic accuracy of point-of-care testing for acute coronary syndromes, heart failure and thromboembolic events in primary care: A cluster-randomised controlled trial. BMC Fam. Pract. 2011, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Asha, S.E.; Cooke, A.; Walter, E.; Weaver, J. Three-month outcome of patients with suspected acute coronary syndrome using point-of-care cardiac troponin-T testing compared with laboratory-based cardiac troponin-T testing: A randomised trial. Emerg. Med. J. EMJ 2015, 32, 601–607. [Google Scholar] [CrossRef]
- Collinson, P.; Goodacre, S.; Gaze, D.; Gray, A. Very early diagnosis of chest pain by point-of-care testing: Comparison of the diagnostic efficiency of a panel of cardiac biomarkers compared with troponin measurement alone in the RATPAC trial. Heart 2012, 98, 312–318. [Google Scholar] [CrossRef]
- Body, R. High-Sensitivity Troponin Tests for the Early Rule out of NSTEMI; Team DacmaNp, Ed.; NICE—The National Institute for Health and Care Excellence: London, UK, 2020. [Google Scholar]
- Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuators B Chem. 2021, 330, 129336. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Improving the Prevention, Diagnosis and Clinical Management of Sepsis [Resolution]. World Health Organisation: Geneva, Switzerland, 2017. Updated 29 May 2017. Available online: http://apps.who.int/gb/ebwha/pdf_files/WHA70/A70_R7-en.pdf (accessed on 1 September 2021).
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Teggert, A.; Datta, H.; Ali, Z. Biomarkers for Point-of-Care Diagnosis of Sepsis. Micromachines 2020, 11, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, B.; Hassan, U.; Seymour, C.; Angus, D.C.; Isbell, T.S.; White, K.; Weir, W.; Yeh, L.; Vincent, A.; Bashir, R. Point-of-care sensors for the management of sepsis. Nat. Biomed. Eng. 2018, 2, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Stephani, C.; Choi, A.H.K.; Moerer, O. Point-of-care detection of lactate in cerebrospinal fluid. Intensive Care Med. Exp. 2021, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Adamzik, M.; Eggmann, M.; Frey, U.H.; Gorlinger, K.; Brocker-PreuSZ, M.; Marggraf, G.; Saner, F.; Eggebrecht, H.; Peters, J.; Hartmann, M. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit. Care 2010, 14, R178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuan, T.A.; Ha, N.T.T.; Xoay, T.D.; My, T.T.K. Fibrinolytic Impairment and Mortality in Pediatric Septic Shock: A Single-Center Prospective Observational Study. Pediatric Crit. Care Med. A J. Soc. Crit. Care Med. World Fed. Pediatric Intensive Crit. Care Soc. 2021, 22, 969–977. [Google Scholar] [CrossRef]
- Oeschger, T.; McCloskey, D.; Kopparthy, V.; Singh, A.; Erickson, D. Point of care technologies for sepsis diagnosis and treatment. Lab Chip 2019, 19, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Waite, S.; Napolitano, A. Restricting Daily Chest Radiography in the Intensive Care Unit: Implementing Evidence-Based Medicine to Decrease Utilizationt. J. Am. Coll. Radiol. JACR 2021, 18, 354–360. [Google Scholar] [CrossRef]
- Hejblum, G.; Chalumeau-Lemoine, L.; Ioos, V.; Boelle, P.-Y.; Salomon, L.; Simon, T.; Vibert, J.-F.; Guidet, B. Comparison of routine and on-demand prescription of chest radiographs in mechanically ventilated adults: A multicentre, cluster-randomised, two-period crossover study. Lancet 2009, 374, 1687–1693. [Google Scholar] [CrossRef]
- Corwin, H.L.; McDonald, J.; Cargile, C.S. Reducing Routine Chest Radiographs in the Intensive Care Unit. J. Thorac. Imaging 2019, 34, W127–W128. [Google Scholar] [CrossRef]
- Clec’h, C.C.; Simon, P.; Hamdi, A.; Hamza, L.; Karoubi, P.; Fosse, J.-P.; Gonzalez, F.; Vincent, F.; Cohen, Y. Are daily routine chest radiographs useful in critically ill, mechanically ventilated patients? A randomized study. Intensive Care Med. 2008, 34, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Rose, M.Q.; Freeman, M.L.; Richard-Lany, N.P.; Spaulding, A.C.; Booth, S.C.; Kelly, D.L.; Franco, P.M. Reducing chest radiography utilization in the medical intensive care unit. J. Am. Assoc. Nurse Pract. 2020, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, R.M.; Kurth, D.A.; Waldrip, C.A.; Rybicki, F.J. American College of Radiology Appropriateness Criteria: Advancing Evidence-Based Imaging Practice. Semin. Nucl. Med. 2019, 49, 161–165. [Google Scholar] [CrossRef]
- Ganapathy, A.; Adhikari, N.K.J.; Spiegelman, J.; Scales, D.C. Routine chest X-rays in intensive care units: A systematic review and meta-analysis. Crit. Care 2012, 16, R68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zieleskiewicz, L.; Muller, L.; Lakhal, K.; Meresse, Z.; Arbelot, C.; Bertrand, P.-M.; Bouhemad, B.; Cholley, B.; Demory, D.; Duperret, S.; et al. Point-of-care ultrasound in intensive care units: Assessment of 1073 procedures in a multicentric, prospective, observational study. Intensive Care Med. 2015, 41, 1638–1647. [Google Scholar] [CrossRef] [PubMed]
- Mojoli, F.; Bouhemad, B.; Mongodi, S.; Lichtenstein, D. Lung Ultrasound for Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2019, 199, 701–714. [Google Scholar] [CrossRef]
- Mayo, P.H.; Beaulieu, Y.; Doelken, P.; Feller-Kopman, D.; Harrod, C.; Kaplan, A.; Oropello, J.; Vieillard-Baron, A.; Axler, O.; Lichtenstein, D.; et al. American College of Chest Physicians/La Société de Réanimation de Langue Française statement on competence in critical care ultrasonography. Chest 2009, 135, 1050–1060. [Google Scholar] [CrossRef]
- Neskovic, A.N.; Hagendorff, A.; Lancellotti, P.; Guarracino, F.; Varga, A.; Cosyns, B.; Flachskampf, F.A.; Popescu, B.A.; Gargani, L.; Zamorano, J.L.; et al. Emergency echocardiography: The European Association of Cardiovascular Imaging recommendations. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Hauser, A.M.; Gangadharan, V.; Ramos, R.G.; Gordon, S.; Timmis, G.C. Sequence of mechanical, electrocardiographic and clinical effects of repeated coronary artery occlusion in human beings: Echocardiographic observations during coronary angioplasty. J. Am. Coll. Cardiol. 1985, 5, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Dieks, J.-K.; Quintel, M.; Moerer, O. Critical Care Echocardiography as a Routine Procedure for the Detection and Early Treatment of Cardiac Pathologies. Diagnostics 2020, 10, 671. [Google Scholar] [CrossRef]
- Beckett, N.; Atkinson, P.; Fraser, J.; Banerjee, A.; French, J.; Talbot, J.-A.; Stoica, G.; Lewis, D. Do combined ultrasound and electrocardiogram-rhythm findings predict survival in emergency department cardiac arrest patients? The Second Sonography in Hypotension and Cardiac Arrest in the Emergency Department (SHoC-ED2) study. Can. J. Emerg. Med. 2019, 21, 739–743. [Google Scholar] [CrossRef]
- Salen, P.; Melniker, L.; Chooljian, C.; Rose-John, S.; Alteveer, J.; Reed, J.; Heller, M. Does the presence or absence of sonographically identified cardiac activity predict resuscitation outcomes of cardiac arrest patients? Am. J. Emerg. Med. 2005, 23, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Salen, P.; O’Connor, R.; Sierzenski, P.; Passarello, B.; Pancu, D.; Melanson, S.; Arcona, S.; Reed, J.; Heller, M. Can cardiac sonography and capnography be used independently and in combination to predict resuscitation outcomes? Acad. Emerg. Med. 2001, 8, 610–615. [Google Scholar] [CrossRef]
- Tsou, P.-Y.; Kurbedin, J.; Chen, Y.-S.; Chou, E.H.; Lee, M.-T.G.; Lee, M.C.-H.; Ma, M.H.-M.; Chen, S.-C.; Lee, C.-C. Accuracy of point-of-care focused echocardiography in predicting outcome of resuscitation in cardiac arrest patients: A systematic review and meta-analysis. Resuscitation 2017, 114, 92–99. [Google Scholar] [CrossRef]
- Zieleskiewicz, L.; Markarian, T.; Lopez, A.; Taguet, C.; Mohammedi, N.; Boucekine, M.; Baumstarck, K.; Besch, G.; Mathon, G.; Duclos, G.; et al. Comparative study of lung ultrasound and chest computed tomography scan in the assessment of severity of confirmed COVID-19 pneumonia. Intensive Care Med. 2020, 46, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, Y.; Gao, F.; Yuan, L.; Wang, Z. Lung ultrasonography versus chest CT in COVID-19 pneumonia: A two-centered retrospective comparison study from China. Intensive Care Med. 2020, 46, 1761–1763. [Google Scholar] [CrossRef] [PubMed]
- Mateos González, M.; García de Casasola Sánchez, G.; Muñoz, F.; Proud, K.; Lourdo, D.; Sander, J.-V.; Jaimes, G.; Mader, M.; Canora Lebrato, J.; Restrepo, M.; et al. Comparison of Lung Ultrasound versus Chest X-ray for Detection of Pulmonary Infiltrates in COVID-19. Diagnostics 2021, 11, 373. [Google Scholar] [CrossRef]
- Gibbons, R.C.; Magee, M.; Goett, H.; Murrett, J.; Genninger, J.; Mendez, K.; Tripod, M.; Tyner, N.; Costantino, T.G. Lung Ultrasound vs. Chest X-Ray Study for the Radiographic Diagnosis of COVID-19 Pneumonia in a High-Prevalence Population. J. Emerg. Med. 2021, 60, 615–625. [Google Scholar] [CrossRef]
- Finance, J.; Zieleskewicz, L.; Habert, P.; Jacquier, A.; Parola, P.; Boussuges, A.; Bregeon, F.; Eldin, C. Low Dose Chest CT and Lung Ultrasound for the Diagnosis and Management of COVID-19. J. Clin. Med. 2021, 10, 2196. [Google Scholar] [CrossRef]
- Redondo, J.M.; Rodríguez, C.C.; Salud, J.P.; Pons, M.C.; Serrano, C.G.; Bravo, M.O.; Peruga, J.P. Higher Accuracy of Lung Ultrasound over Chest X-ray for Early Diagnosis of COVID-19 Pneumonia. Int. J. Environ. Res. Public Health 2021, 18, 3481. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Gardiner, E. Point of care and intensive care lung ultrasound: A reference guide for practitioners during COVID-19. Radiography 2020, 26, e297–e302. [Google Scholar] [CrossRef] [PubMed]
- Mongodi, S.; Orlando, A.; Arisi, E.; Tavazzi, G.; Santangelo, E.; Caneva, L.; Pozzi, M.; Pariani, E.; Bettini, G.; Maggio, G.; et al. Lung Ultrasound in Patients with Acute Respiratory Failure Reduces Conventional Imaging and Health Care Provider Exposure to COVID-19. Ultrasound Med. Biol. 2020, 46, 2090–2093. [Google Scholar] [CrossRef]
- Kulkarni, S.; Down, B.; Jha, S. Point-of-care lung ultrasound in intensive care during the COVID-19 pandemic. Clin. Radiol. 2020, 75, 710.e1–710.e4. [Google Scholar] [CrossRef] [PubMed]
- Rozycki, G.S.; Shackford, S.R. Ultrasound, what every trauma surgeon should know. J. Trauma 1996, 40, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Körner, M.; Krötz, M.M.; Degenhart, C.; Pfeifer, K.J.; Reiser, M.F.; Linsenmaier, U. Current Role of Emergency US in Patients with Major Trauma. Radiographics 2008, 28, 225–242. [Google Scholar] [CrossRef]
- Miller, D.L.; Abo, A.; Abramowicz, J.S.; Bigelow, T.A.; Dalecki, D.; Dickman, E.; Donlon, J.; Harris, G.; Nomura, J. Diagnostic Ultrasound Safety Review for Point-of-Care Ultrasound Practitioners. J. Ultrasound Med. 2020, 39, 1069–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajan, P.; Chawla, S. Bronchoscopy. In Critical Care; Oropello, J.M., Pastores, S.M., Kvetan, V., Eds.; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Yamauchi, S.; Tagore, A.; Ariyaprakai, N.; Geranio, J.V.; Merlin, M.A. Out-of-Hospital Intubation and Bronchoscopy Using a New Disposable Device: The Initial Case. Prehospital Emerg. Care 2020, 24, 857–861. [Google Scholar] [CrossRef]
- Du Rand, I.A.; Blaikley, J.; Booton, R.; Chaudhuri, N.; Gupta, V.; Khalid, S.; Mandal, S.; Martin, J.; Mills, J.; Navani, N.; et al. British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: Accredited by NICE. Thorax 2013, 68 (Suppl. 1), i1–i44. [Google Scholar] [CrossRef] [Green Version]
- Coronavirus Disease (COVID-19)—World Health Organization Geneva: World Health Organization. 2021 [Updated 22 November 2021]. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 22 November 2021).
- White, D.B.; Lo, B. A Framework for Rationing Ventilators and Critical Care Beds During the COVID-19 Pandemic. JAMA 2020, 323, 1773–1774. [Google Scholar] [CrossRef] [Green Version]
- Möckel, M.; Corman, V.M.; Stegemann, M.S.; Hofmann, J.; Stein, A.; Jones, T.C.; Gastmeier, P.; Seybold, J.; Offermann, R.; Bachmann, U.; et al. SARS-CoV-2 antigen rapid immunoassay for diagnosis of COVID-19 in the emergency department. Biomarkers 2021, 26, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Bazaz, S.R.; Zhand, S.; Sayyadi, N.; Jin, D.; Stewart, M.P.; Warkiani, M.E. Point of Care Diagnostics in the Age of COVID-19. Diagnostics 2020, 11, 9. [Google Scholar] [CrossRef]
- Kubina, R.; Dziedzic, A. Molecular and Serological Tests for COVID-19 a Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics 2020, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Valera, E.; Jankelow, A.; Lim, J.; Kindratenko, V.; Ganguli, A.; White, K.; Kumar, J.; Bashir, R. COVID-19 Point-of-Care Diagnostics: Present and Future. ACS Nano 2021, 15, 7899–7906. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Furst, A.L.; Klapperich, C.M. Strategies for Engineering Affordable Technologies for Point-of-Care Diagnostics of Infectious Diseases. Acc. Chem. Res. 2021, 54, 3772–3779. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. New challenges in point of care electrochemical detection of clinical biomarkers. Sens. Actuators B Chem. 2021, 345, 130349. [Google Scholar] [CrossRef]
- Nelson, P.P.; Rath, B.A.; Fragkou, P.C.; Antalis, E.; Tsiodras, S.; Skevaki, C. Current and Future Point-of-Care Tests for Emerging and New Respiratory Viruses and Future Perspectives. Front. Cell. Infect. Microbiol. 2020, 10, 181. [Google Scholar] [CrossRef]
- Zhu, H.; Podesva, P.; Liu, X.; Zhang, H.; Teply, T.; Xu, Y.; Chang, H.; Qian, A.; Lei, Y.; Li, Y.; et al. IoT PCR for pandemic disease detection and its spread monitoring. Sens. Actuators B Chem. 2020, 303, 127098. [Google Scholar] [CrossRef]
- Tittl, A.; John-Herpin, A.; Leitis, A.; Arvelo, E.R.; Altug, H. Metasurface-Based Molecular Biosensing Aided by Artificial Intelligence. Angew. Chem. 2019, 58, 14810–14822. [Google Scholar] [CrossRef]
- Xie, Q.; Faust, K.; Van Ommeren, R.; Sheikh, A.; Djuric, U.; Diamandis, P. Deep learning for image analysis: Personalizing medicine closer to the point of care. Crit. Rev. Clin. Lab. Sci. 2019, 56, 61–73. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef]
- Hatada, M.; Wilson, E.; Khanwalker, M.; Probst, D.; Okuda-Shimazaki, J.; Sode, K. Current and future prospective of biosensing molecules for point-of-care sensors for diabetes biomarker. Sens. Actuators B Chem. 2022, 351, 130914. [Google Scholar] [CrossRef]
- Sabaté del Río, J.; Henry, O.Y.F.; Jolly, P.; Ingber, D.E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 2019, 14, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, G.; Hein, R.; Liu, N.; Luo, X.; Davis, J.J. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem. Rev. 2020, 120, 3852–3889. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Phang, W.-M.; Hashim, U. Aptamer-based ‘point-of-care testing’. Biotechnol. Adv. 2016, 34, 198–208. [Google Scholar] [CrossRef]
- Shinoda, H.; Taguchi, Y.; Nakagawa, R.; Makino, A.; Okazaki, S.; Nakano, M.; Muramoto, Y.; Takahashi, C.; Takahashi, I.; Ando, J.; et al. Amplification-free RNA detection with CRISPR-Cas13. Commun. Biol. 2021, 4, 476. [Google Scholar] [CrossRef]
- van Dongen, J.E.; Berendsen, J.T.W.; Steenbergen, R.D.M.; Wolthuis, R.M.F.; Eijkel, J.C.T.; Segerink, L.I. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosens. Bioelectron. 2020, 166, 112445. [Google Scholar] [CrossRef]
- Oren, O.; Gersh, B.J.; Bhatt, D.L. Artificial intelligence in medical imaging: Switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit. Health 2020, 2, e486–e488. [Google Scholar] [CrossRef]
Perspective | Advantages | Disadvantages |
---|---|---|
Patient | ||
Fast diagnosis | Cost of POC | |
Reduced treatment delay | Need for additional diagnostics | |
Reduced morbidity and mortality | Quality of results and related risk | |
Reduced length of stay | ||
Smaller sample volume | ||
Improved patient care and treatment outcomes | ||
Avoiding patient and sample misidentification | ||
Avoiding patient relocation | ||
Patient safety | ||
Healthcare workers | ||
Early recognition of life-threatening conditions | Limited diagnostic possibility | |
Immediate and guided treatment of life-threatening conditions | Technical support not immediately accessible | |
Immediately available results | Increased work load for ICU personal | |
Improved staff efficiency | Storage of equipment | |
Eliminated manual transcription of results | Maintenance | |
Reduced turnaround time | Calibration and regular quality check | |
Precise results due to immediate analysis (blood gas) | Training and recertification for POC technology | |
Reduction of need to leave the patient | Results quality | |
Improves efficiency of laboratory staff by reducing work load | Misinterpretation of results due to missing expertise | |
Reduced administrative work | Exposition to radiation hazard | |
Avoiding laboratory work process interruptions due to urgent sample analysis | Handling of biohazard waste | |
Avoiding lost sample scenarios | ||
Avoiding potential technical problems in steps of sample processing | ||
Excluding transport and logistic issues | ||
Excluding laboratory result communication from | ||
portable POC devices | ||
Improved general efficiency and productivity | ||
Government or healthcare funder | ||
Reduced cost of care due to:
| Cost of POC for:
| |
Reduced loss of productivity due to sick leave Lower costs due to faster termination of work cessation | Risk of unnecessary testing and overtesting | |
ICU-Intensive care unit; POC-point-of-care |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajsic, S.; Breitkopf, R.; Bachler, M.; Treml, B. Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics 2021, 11, 2202. https://doi.org/10.3390/diagnostics11122202
Rajsic S, Breitkopf R, Bachler M, Treml B. Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics. 2021; 11(12):2202. https://doi.org/10.3390/diagnostics11122202
Chicago/Turabian StyleRajsic, Sasa, Robert Breitkopf, Mirjam Bachler, and Benedikt Treml. 2021. "Diagnostic Modalities in Critical Care: Point-of-Care Approach" Diagnostics 11, no. 12: 2202. https://doi.org/10.3390/diagnostics11122202
APA StyleRajsic, S., Breitkopf, R., Bachler, M., & Treml, B. (2021). Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics, 11(12), 2202. https://doi.org/10.3390/diagnostics11122202