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Abstract: Pulmonary nodule is one of the lung diseases and its early diagnosis and treatment are
essential to cure the patient. This paper introduces a deep learning framework to support the auto-
mated detection of lung nodules in computed tomography (CT) images. The proposed framework
employs VGG-SegNet supported nodule mining and pre-trained DL-based classification to support
automated lung nodule detection. The classification of lung CT images is implemented using the
attained deep features, and then these features are serially concatenated with the handcrafted features,
such as the Grey Level Co-Occurrence Matrix (GLCM), Local-Binary-Pattern (LBP) and Pyramid
Histogram of Oriented Gradients (PHOG) to enhance the disease detection accuracy. The images used
for experiments are collected from the LIDC-IDRI and Lung-PET-CT-Dx datasets. The experimental
results attained show that the VGG19 architecture with concatenated deep and handcrafted features
can achieve an accuracy of 97.83% with the SVM-RBF classifier.

Keywords: lung CT images; nodule detection; VGG-SegNet; pre-trained VGG19; deep learning

1. Introduction

Lung cancer/nodule is one of the severe abnormalities in the lung, and a World
Health Organization (WHO) report indicated that around 1.76 million deaths have occurred
globally in 2018 due to lung cancer [1]. Lung cancer/nodule is due to abnormal cell growth
in the lung and, in most cases, the nodule may be cancerous/non-cancerous. The Olson
report [2] confirmed that lung nodules can be categorized into benign/malignant based on
their dimension (5 to 30 mm fall into the benign class and >30 mm is malignant). When
a lung nodule is diagnosed using the radiological approach, a continuous follow-up is
recommended to check its growth rate. The follow-up procedure can continue for up to
two years and, along with non-invasive radiographic imaging procedures, other invasive
methodologies, such as bronchoscopy and/or tissue biopsy, can also be suggested to
confirm the condition and harshness of the lung nodules in a patient [3].

Noninvasive radiological techniques are commonly adopted in initial level lung nod-
ule detection using CT images, and, therefore, several lung nodule detection works are
already proposed in the literature [4–6] which involve the use of traditional signal pro-
cessing and texture analysis techniques combined with machine learning classification [7],
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deep learning models [8,9], neural networks combined with nature-inspired optimization
techniques [10,11] and ensemble learning [12]. The aims of this research are to construct
a Deep Learning (DL) supported scheme to segment the lung nodule segment from the
CT image slice with better accuracy and classify the considered CT scan images into nor-
mal/nodule class with improved accuracy using precisely selected deep and handcrafted
features.

The recent article by Rajinikanth and Kadry [13] proposed a framework with VGG16
neural network model for the automated segmentation and classification of lung nodules
from CT images. In their paper, a threshold filter technique is implemented to remove
artifacts from CT images, and the artifact-eliminated images are then considered to test the
proposed disease detection framework. The proposed scheme is tested using the LIDC-
IDRI database [14–16] and the classification task implemented with the combined deep and
handcrafted features helped to achieve a classification accuracy of 97.67% with a Random
Forest (RF) classifier.

In this paper, we suggest a framework to support automated segmentation and clas-
sification of lung nodules with improved accuracy. The proposed scheme includes the
following stages: (i) image collection and resizing, (ii) implementing the pre-trained VGG
supported segmentation; (iii) deep feature-based classification, (iv) extracting the essential
handcrafted features such as Gray Level Co-occurrence Matrix (GLCM), Local Binary
Pattern (LBP) and Pyramid Histogram of Oriented Gradients (PHOG), (v) implementing a
serial feature concatenation to unite the deep and handcrafted features and (vi) implement-
ing and validating the performance of the classifiers using a 10-fold cross validation.

The images used for the experiments are collected from the LIDC-IDRI [15] and Lung-
PET-CT-Dx [17] datasets. All these works are realized using the MATLAB® (MathWorks,
Inc., Natick, MA, USA), and the attained result is then compared and validated with the
earlier results presented in the literature.

The major contribution of the proposed work is as follows:

i. Implementation of VGG19 to construct the VGG-SegNet scheme to extract lung
nodule.

ii. Deep learning feature extraction based on VGG19.
iii. Combining handcrafted features and deep features to improving nodule detection

accuracy.

The proposed work is organized as follows. Section 2 presents and discusses earlier
related research. Section 3 presents the implemented methodology. Section 4 shows the
experimental results and discussions and, finally, the conclusions of the present research
study are given in Section 5.

2. Related Work

Due to its impact, a significant amount of lung nodule detection from CT images is
proposed using a variety of image databases, and summarizing the presented schemes
will help to obtain an idea of the advantages and limitations of the existing lung nodule
detection procedures. Traditional methods of machine learning (ML) and deep learning
(DL) were proposed to examine lung nodules using CT image slices, and the summary of the
selected DL-based lung nodule detection systems is presented in Table 1; all the considered
works in this table discuss the lung nodule detection technique using a chosen methodology.
Furthermore, all these works considered the LIDC-IDRI database for examination.
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Table 1. Summary of existing lung nodule detection system with LIDC-IDRI database.

Reference Lung Nodule Detection Technique Accuracy (%) Sensitivity (%) Specificity (%)

Bhandary et al. [4] A modified AlexNet with the Support Vector Machine (SVM) based binary classification helped
to achieve improved result. 97.27 97.80 98.09

Choi and Choi [5] An automated Computer-Aided-Detection scheme is proposed to examine the lung nodules
using CT images. 97.60 95.20 96.20

Tran et al. [6] A novel 15-layer DL architecture is implemented by considering the cross entropy/focal as the
loss functions. 97.20 96.00 97.30

Rajinikanth and Kadry [13] Implemented VGG16 DL scheme to segment and classify the lung nodules using deep and
handcrafted features. 97.67 96.67 98.67

Kuruvilla and Gunavathi [18] This research implemented Neural-Network (NN) supported recognition of lung nodules in
CT images. 93.30 91.40 100

Nascimento et al. [19] This work implemented a lung nodule classification based on Shannon and Simpson-Diversity
Indices and SVM classifier. 92.78 85.64 97.89

Khehrah et al. [20] Improved lung nodule detection is achieved with the help of statistical and shape features. 92.00 93.75 91.18

Wang et al. [21] Deep NN (DNN) and 6G communication network supported lung nodule detection is proposed
and implemented in this work using the CT images. 91.70 92.23 91.17

Li et al. [22] This work implements a Convolutional-Neural-Network (CNN) supported lung nodule detection
using the lung CT images. 86.40 87.10 n/a

Kaya and Can [23] The lung nodule classification is implemented in this work and the ensemble random-forest
classifier provided enhanced classification result. 84.89 83.11 92.09

Song et al. [24] This work implemented a DNN scheme to classify the cropped lung nodule sections from the CT
image slices. 82.37 80.66 83.90
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The summary (see Table 1) presents a few similar methods implemented using CT
images of the LIDC-IDRI database, and the highest categorization accuracy achieved is
97.67% [13].

In addition, a detailed evaluation of various lung nodule recognition practices existing
in the literature is available in the following references [25–27]. Some of the works discussed
in Table 1 recommended the need for a competent lung nodule detection system that
can support both segmentation of the nodule section and classification of lung nodules
from normal (healthy) CT images. The works discussed in Table 1 implemented either
a segmentation or classification technique using deep features only. Obtaining better
detection accuracy is difficult with existing techniques and, hence, the combination of
deep features (extracted by a trained neural network model) and handcrafted features is
necessary.

In this paper, the pre-trained VGG-16 supported segmentation (VGG-SegNet) is
initially executed to extract the lung nodule section from CT images, and then the CT image
classification is executed using deep features as well as combined deep and handcrafted
features. A detailed assessment among various two-class classifiers, such as SoftMax,
Decision-Tree (DT), RF, K-Nearest Neighbor (KNN) and SVM-RBF are also presented using
a 10-fold cross-validation to validate the proposed scheme.

3. Methodology

In the literature, several lung abnormality detection systems based on DL are pro-
posed and implemented using clinical-level two-dimensional (2D) CT images as well as
benchmark images. Figure 1 shows the proposed system to segment and classify the lung
nodule section of the CT images. Initially, the CT images are collected from the benchmark
data set and, later, the conversion from 3D to 2D is implemented using ITK-Snap [28]. The
ITK-Snap converts the 3D images into 2D slices of planes, such as axial, coronal and sagittal
and, in this work, only the axial plane is considered for the assessment. Finally, all test
images are resized to 224 × 224 × 3 and then used for the segmentation and classification
task. The resized 2D CT images are initially considered for the segmentation task; where
the lung nodule segment is mined using the VGG-SegNet scheme implemented with the
VGG19 architecture. Later, the essential features are extracted with GLCM, LBP and PHOG,
and then these features are combined with the learned features of the pre-trained DL
scheme. Finally, the serially concatenated deep features (DF) and handcrafted features
(HCF) are used to train, test and confirm the classifier. Based on the attained performance
values, the performance of the proposed system is validated.

Diagnostics 2021, 11, x FOR PEER REVIEW 4 of 17 
 

 

and sagittal and, in this work, only the axial plane is considered for the assessment. Fi-
nally, all test images are resized to 224 × 224 × 3 and then used for the segmentation and 
classification task. The resized 2D CT images are initially considered for the segmentation 
task; where the lung nodule segment is mined using the VGG-SegNet scheme imple-
mented with the VGG19 architecture. Later, the essential features are extracted with 
GLCM, LBP and PHOG, and then these features are combined with the learned features 
of the pre-trained DL scheme. Finally, the serially concatenated deep features (DF) and 
handcrafted features (HCF) are used to train, test and confirm the classifier. Based on the 
attained performance values, the performance of the proposed system is validated. 

 
Figure 1. Structure of the proposed lung-nodule segmentation and classification system. 

3.1. Image Database Preparation 
The CT images are collected from LIDC-IDRI [15] and Lung-PET-CT-Dx [17] data-

bases. These data sets have the clinically collected three-dimensional (3D) lung CT im-
ages with the chosen number of slices.  

The assessment of the 3D CT images is quite complex and, hence, 3D to 2D conver-
sion is performed to extract the initial image with a dimension of 512 × 512 × 3 pixels, and 
these images are then resized to 224 × 224 × 3 pixels to decrease the assessment complex-
ity. In this work, only the axial view of 2D slices is used for the estimation and the sample 
test images of the considered image data set are depicted in Figure 2 and the total images 
for investigation are given in Table 2.  

Table 2. The lung CT images analyzed in the experiments. 

Image Class Dimension Total Images Training Images Validation Images
Normal 224 × 224 × 3 1000 750 250 
Nodule 224 × 224 × 3 1000 750 250 

 

Figure 1. Structure of the proposed lung-nodule segmentation and classification system.



Diagnostics 2021, 11, 2208 5 of 16

3.1. Image Database Preparation

The CT images are collected from LIDC-IDRI [15] and Lung-PET-CT-Dx [17] databases.
These data sets have the clinically collected three-dimensional (3D) lung CT images with
the chosen number of slices.

The assessment of the 3D CT images is quite complex and, hence, 3D to 2D conversion
is performed to extract the initial image with a dimension of 512 × 512 × 3 pixels, and
these images are then resized to 224 × 224 × 3 pixels to decrease the assessment complexity.
In this work, only the axial view of 2D slices is used for the estimation and the sample test
images of the considered image data set are depicted in Figure 2 and the total images for
investigation are given in Table 2.

Diagnostics 2021, 11, x FOR PEER REVIEW 5 of 17 
 

 

N
or

m
al

 

    

N
od

ul
e 

    

Figure 2. Sample test images considered in this study. 

3.2. Nodule Segmentation 
Evaluation of the shape and dimension of the abnormality in medical images is 

widely preferred during the image-supported disease diagnosis and treatment imple-
mentation process [29,30]. Automated segmentation is widely used to extract the infected 
section from the test image and the mined fragment is further inspected to verify the 
disease and its severity level. In the assessment of the lung nodule with CT images, the 
dimension of the lung nodule plays a vital role and, therefore, the extraction of the nod-
ule is very essential. In this work, the VGG-SegNet scheme is implemented with the 
VGG19 scheme to extract the CT image nodule. Information on the traditional 
VGG-SegNet model can be found in [29]. 

The proposed VGG-SegNet model consists of the following specification; traditional 
VGG19 scheme is considered as the encoder section and its associated structure forms the 
decoder unit. Figure 3 illustrates the construction of the VGG19-based segmentation and 
classification scheme in which the traditional VGG19 scheme (first 5 layers) works as the 
encoder region and the inverted VGG19 with up-sampling facility is then considered as 
the decoder region. The pre-tuning of this scheme for the CT image is performed using 
the test images considered for training along with the essential image enhancement 
process [31]. The preliminary constraints for training the VGG-SegNet are allocated as 
follows: batch size is equal for encoder-decoder section, initialization uses a normal 
weight, learning rate is fixed as 1e-5, Linear Dropout Rate (LDR) is assigned, and Sto-
chastic Gradient-Descent (SGD) optimization is selected. The final SoftMax layer uses a 
sigmoid activation function.  
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Table 2. The lung CT images analyzed in the experiments.

Image Class Dimension Total Images Training Images Validation Images

Normal 224 × 224 × 3 1000 750 250
Nodule 224 × 224 × 3 1000 750 250

3.2. Nodule Segmentation

Evaluation of the shape and dimension of the abnormality in medical images is widely
preferred during the image-supported disease diagnosis and treatment implementation
process [29,30]. Automated segmentation is widely used to extract the infected section
from the test image and the mined fragment is further inspected to verify the disease and
its severity level. In the assessment of the lung nodule with CT images, the dimension
of the lung nodule plays a vital role and, therefore, the extraction of the nodule is very
essential. In this work, the VGG-SegNet scheme is implemented with the VGG19 scheme
to extract the CT image nodule. Information on the traditional VGG-SegNet model can be
found in [29].

The proposed VGG-SegNet model consists of the following specification; traditional
VGG19 scheme is considered as the encoder section and its associated structure forms the
decoder unit. Figure 3 illustrates the construction of the VGG19-based segmentation and
classification scheme in which the traditional VGG19 scheme (first 5 layers) works as the
encoder region and the inverted VGG19 with up-sampling facility is then considered as the
decoder region. The pre-tuning of this scheme for the CT image is performed using the test
images considered for training along with the essential image enhancement process [31].
The preliminary constraints for training the VGG-SegNet are allocated as follows: batch
size is equal for encoder-decoder section, initialization uses a normal weight, learning rate
is fixed as 1e-5, Linear Dropout Rate (LDR) is assigned, and Stochastic Gradient-Descent
(SGD) optimization is selected. The final SoftMax layer uses a sigmoid activation function.
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3.3. Nodule Classification

In the medical domain, automated disease classification plays an important role
during the mass data assessment and a perfectly tuned disease classification system further
reduces the diagnostic burden of physicians and acts as an assisting system during the
decision-making process [32–35]. Therefore, a considerable number of disease detection
systems assisted by DL are proposed and implemented in the literature [36–40]. Recent
DL schemes implemented in the LIDC-IDRI with fused deep and HCF helped achieve a
classification accuracy of >97% [13].

Figure 3 presents the assisted classification of using the VGG19 of lung CT images
(dimension 224 × 224 × 3 pixels) using the DF using the SoftMax classifier, and then the
performance of VGG19 is validated with VGG16, ResNet18, ResNet50 and AlexNet (images
with dimension of 227 × 227 × 3 pixels) [41–46] and the performance is compared and
validated. The performance of the implemented VGG19 is validated using DF, concatenated
DF + HCF and well-established binary classifiers existing in the literature [47–50].

3.3.1. Deep Features

Initially, the proposed scheme is implemented by considering the DF attained at fully
connected layer 3 (FC3). After possible dropout, FC3 helps to provide a feature vector of
dimension 1 × 1024, whose value is mathematically represented as in Equation (1).

FVVGG19 (1×1024) = VGG19(1,1), VGG19(1,2), . . . , VGGgg19(1,1024) (1)

Other essential information on VGG19 and the related issues can be found in [41].

3.3.2. Handcrafted Features

The features extracted from the test image using a chosen image processing method-
ology are known as Machine Learning Features (MLF) or handcrafted features (HCF).
Previous research in the literature already confirmed the need for the precision of HCF
to progress the categorization accuracy in a class of ML and DL-based disease detection
systems [46,50,51]. In the proposed work, the essential HCF from the considered test
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images is extracted using well-known methods such as GLCM [13,36,42], LBP [13,46] and
PHOG [48].

The GLCM features are commonly used due to their high performance and, in this
paper, the GLCM features are extorted from the lung nodule section segmented with the
VGG-SegNet. The entire feature used in this work can be found in Equation (2).

FV1GLCM (1×25) = GLCM(1,1), GLCM(1,2), . . . , GLCM(1,25) (2)

In this work, the LBP with varied weight (weights with values; W = 1, 2, 3, and 4)
is considered to mine the important features from the considered test images and the
proposed LBP is already implemented in the works of Gudigar et al. [52] and Rajinikanth
and Kadry [13]. The LBP features for the varied weights are depicted in Equations (3)–(6)
and Equation (7) depicts the overall LBP features.

FVLBP1 (1×59) = LBP1(1,1), LBP1(1,2), . . . , LBP1(1,59) (3)

FVLBP2 (1×59) = LBP2(1,1), LBP2(1,2), . . . , LBP2(1,59) (4)

FVLBP3 (1×59) = LBP3(1,1), LBP3(1,2), . . . , LBP3(1,59) (5)

FVLBP4 (1×59) = LBP4(1,1), LBP4(1,2), . . . , LBP4(1,59) (6)

FV2LBP (1×236) = FVLBP1 (1×59) + FVLBP2 (1×59) + FVLBP3 (1×59) + FVLBP4 (1×59) (7)

Along with the above said features, the PHOG features are also extracted and consid-
ered along with GLCM and LBP. The total information on the PHOG can be found in the
article by Murtza et al. [48]. In this work, 255 features are extracted by assigning number
of bins = 3 and levels (L) = 3. The PHOG features of the proposed work are depicted in
Equation (8).

FV3PHOG (1×255) = PHOG(1,1), PHOG(1,2), . . . , PHOG(1,255), (8)

3.3.3. Features Concatenation

In this work, a serial features concatenation is realized to unite the DF and HCF, and
this technique helps to improve the feature dimension to a higher level. The serial features
concatenation implemented in this work is depicted in Equation (9) and Final-Feature-
Vector (FFV) is presented in Equation (10).

Concatenated f eatures = DF(1×1024) + HCF(1×516), (9)

FFV(1×1540) = FVVGG19 (1×1024) + FV1GLCM(1×25) + FV2LBP(1×236) + FV3PHOG(1×255), (10)

The FFV is then used to train, test and validate the classifier considered in the proposed
methodology for the automated classification of lung nodules using CT images.

3.3.4. Classifier Implementation

The performance of the DL-based automated disease detection arrangement depends
chiefly on the performance of the classifier implemented to categorize the considered test
images based on the need. In this paper, a binary classification is initially implemented using
the SoftMax classifier and, later, the well-known classifiers, such as Decision Trees (DT), RF,
KNN and Support Vector Machine-Radial Basis Function (SVM-RBF) [13,53–56], are also
considered to improve the classification task. In this paper, a 10-fold cross-validation process
is implemented, and the finest result attained is then considered as the final classification
result. The performance of the classifier is then authenticated and confirmed based on the
Image Performance Values (IPV) [57–59].
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3.4. Performance Computation and Validation

The overall eminence of the proposed method is validated by computing the essen-
tial IPV measures, such as True-Positive (TP), False-Negative (FN), True-Negative (TN),
False-Positive (FP), Accuracy (ACC), Precision (PRE), Sensitivity (SEN), Specificity (SPE),
Negative-Predicted-Value (NPV), F1-Score (F1S), Jaccard Index and Dice coeeficient, which
are calculated in percentages, presented in Equations (11)–(16). The necessary information
regarding these values can be found in [45–47].

Accuracy = ACC =
TP + TN

TP + TN + FP + FN
× 100% (11)

Precision = PRE =
TP

TP + FP
× 100% (12)

Sensitivity = SEN =
TP

TP + FN
× 100% (13)

Speci f icity = SPE =
TN

TN + FP
× 100% (14)

Negative Predictive Value = NPV =
TN

TN + FN
× 100% (15)

F1 − Score = F1S =
2TP

2TP + FN + FP
× 100% (16)

Jaccard =
TP

TP + FN + FP
× 100% (17)

Dice =
2TP

2TP + FN + FP
× 100% (18)

4. Results and Discussions

This section demonstrates the results and discussions attained using a workstation
with an Intel i5 2.5GHz processor, with 16GB RAM and 2GB VRAM equipped with
MATLAB® (version R2018a). Primarily, lung CT images are used as presented in Table 2
and then each image is resized into 224 × 224 × 3 pixels to perform the VGG19-supported
segmentation and classification task. Initially, the VGG-SegNet-based lung nodule extrac-
tion process is executed on the test images considered, and the sample result obtained for
the normal/nodule class image is represented in Figure 4. Figure 4 presents the experi-
mental result of the trained VGG-SegNet with CT images. Figure 4a shows the sample
images of the normal/nodule class considered for the assessment; Figure 4b depicts the
outcome attained with the final layer of the encoder unit; Figure 4c,d depicts the results of
the decoder and the SoftMax classifier, respectively. For the normal (healthy) class image,
the decoder will not provide a positive outcome for localization and segmentation, and
this section will provide the essential information only for the nodule class.

In this paper, the extracted lung-nodule section with the proposed VGG-SegNet is
compared to the ground truth (GT) image generated using ITK-Snap [28] and the essential
image measures are calculated as described in previous works [4,13]. The performance
of VGG-SegNet is also validated against the existing SegNet and UNet schemes in the
literature [24,25,48,49]. The result achieved for the trial image is depicted in Figure 5
and Table 3, respectively. Note that the performance measures [50,51] achieved with
VGG-SegNet are superior compared to other approaches.
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Table 3. Performance evaluation of CNN models on sample lung CT image. Best values are shown
in bold.

Approach Jaccard (%) Dice (%) ACC (%) PRE (%) SEN (%) SPE (%)

VGG-SegNet 82.6464 90.4988 99.6811 98.4496 83.7363 99.9756
SegNet 73.1898 84.5198 99.4539 96.6408 75.1004 99.9471
UNet 79.2308 88.4120 99.6233 93.1525 84.1307 99.8925

The segmentation performance of the proposed scheme is then tested using the lung
nodules with various dimensions, such as small, medium and large, and the attained
results are depicted in Figure 6. This figure confirms that the VGG-SegNet provides a
better segmentation on the medium and large nodule dimension and provides reduced
segmentation accuracy on the images having lesser lung nodule due to the smaller test
image dimension.

After collecting the essential DF with VGG19, the other HCFs, such as GLCM, LBP
and PHOG are collected. The GLCM features for the normal (healthy) class image are
collected from the whole CT image, and for the abnormal class image it is collected from the
binary image of the extracted nodule segment. Figure 7 shows the LBP patterns generated
for the normal/nodule class test images with various weight values. During LBP feature
collection, each image is treated with the LBP algorithm with various weights (ie, W = 1
to 4) and the 1D features obtained from each image are combined to obtain a 1D feature
vector of dimension 1 × 236.

The PHOG features for the CT images are then extracted by assigning a bin size
(L) of 3 and this process helped to obtain a 1 × 255 vector of features. The sample
PHOG features collected for a sample CT image are seen in Figure 8. All these features
(GLCM+LBP+PHOG) are then combined to form a HCF vector with a dimension of
1 × 516 features, following which they are then combined with the DF to improve the lung
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nodule detection accuracy. After collecting the essential features, the image classification
task is implemented using DF and DF + HCF separately.
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Initially, the DF-based sorting is executed with the considered CNN schemes and the
classification performance obtained with the SoftMax is depicted in Table 4. Figure 9 presents
the spider plot for the features considered, and the result of Table 4 and the dimension of
the glyph plot confirm that VGG19 helps achieve an enhanced IPV compared to other CNN
schemes. VGG19 is chosen as the suitable scheme to examine the considered CT images, and
then an attempt is made to enhance the performance of VGG19 using DF + HCF.
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Table 4. Classification performance attained with pre-trained DL scheme with DF and SoftMax classifier. Here TP—true
positives, FN—false negatives, TN—true negatives, FP—false positives, ACC—accuracy, PRE—precision, SEN—sensitivity,
SPE—specificity, NPV—negative predictive value and F1S—F1-score.

DL Scheme
(Image Size) TP FN TN FP ACC (%) PRE (%) SEN (%) SPE (%) NPV (%) F1S (%)

VGG19
(224 × 224 × 3) 235 15 236 14 94.20 94.38 94.00 94.40 94.02 94.19

VGG16
(224 × 224 × 3) 236 14 230 20 93.20 92.19 94.40 92.00 94.26 93.28

ResNet18
(224 × 224 × 3) 229 21 228 22 91.40 91.23 91.60 91.20 91.57 91.42

ResNet50
(224 × 224 × 3) 228 22 231 19 91.80 92.31 91.20 92.40 91.30 91.75

Ale × Net
(2274 × 227 × 3) 231 19 233 17 92.80 93.14 92.40 93.20 92.46 92.77
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The experiment is then repeated using the VGG19 scheme with the DF + HCF
(1 × 1540 features) using classifiers, such as SoftMax, DT, RF, KNN and SVM-RBF; the
outcomes are depicted in Table 5. Figure 10 shows the performance of VGG19 with SVM-
RBF, in which a 10-fold cross validation is implemented and the best result attained among
the 10-fold validation is demonstrated. The result demonstrated in Table 5 confirms that
the SVM-RBF classifier offers superior outcome contrast to other classifiers and a graphical
illustration in Figure 11 (Glyph-Plot) also confirmed the performance of SVM-RBF. The
Receiver-Operating-Characteristic curve (ROC) presented in Figure 12 also confirms the
merit of proposed technique.

Table 5. Disease detection performance of VGG19 with DF + HCF with different classifiers. Best values are shown in bold.

Classifier TP FN TN FP ACC (%) PRE (%) SEN (%) SPE (%) NPV (%) F1S (%)

SoftMax 237 13 244 6 96.20 97.53 94.80 97.60 94.94 96.14
DT 238 12 241 9 95.80 96.36 95.20 96.40 95.25 95.77
RF 240 10 238 12 95.60 95.24 96.00 95.20 95.97 95.62

KNN 241 9 242 8 96.60 96.79 96.40 96.80 96.41 96.59
SVM-RBF 243 7 246 4 97.83 98.38 97.20 98.40 97.23 97.79
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The above-shown result confirms that the disease detection performance of VGG19
can be enhanced by using both the DF with the HCF. The eminence of the proposed lung
nodule detection system is then compared with other methods found in the literature.
Figure 13 shows the comparison of the classification precision existing in the literature and
the accuracy obtained with the proposed approach (97.83%) is superior compared to other
works considered for the study. This confirms the superiority of the proposed approach
compared to the existing works.
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Figure 13. Validation of the disease detection accuracy of the proposed system with existing approaches.

The major improvement of the proposed technique compared to other works, such as
Bhandary et al. [4] and Rajinikanth and Kadry [13], is as follows: this paper proposed the
detection of lung nodules using CT images without removing the artifact. The number of
stages in the proposed approach is lower compared to existing methods [4,10].

The future work includes: (i) considering other hand-made characteristics, such as
HOG [48] and GLDM [43], to improve disease detection accuracy, (ii) considering the other
variants of the SVM classifiers [43] to achieve better image classification accuracy and
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(iii) implementing a selected procedure to enhance the segmentation accuracy in lung CT
having a lesser nodule size.

5. Conclusions

Due to its clinical significance, several automated disease detection systems have been
proposed in the literature to detect lung nodules from CT images. This paper proposes a
pre-trained VGG19-based automated segmentation and classification scheme to examine
lung CT images. This scheme is implemented in two stages: (i) VGG-SegNet supported
extraction of lung nodules from CT images and (ii) classification of lung CT images using
deep learning schemes with DF and DF + HCF. The initial part of this work implemented the
VGG-SegNet architecture with VGG19-based Encoder-Decoder assembly and extracted the
lung nodule section using the SoftMax classifier. Handcrafted features from the test images
are extracted using GLCM (1 × 25 features), LBP with varied weights (1 × 236 features)
and PHOG with an assigned bin = L = 3 (1 × 255 features), and this combination helped
to obtain the chosen HCF with a dimension of 1 × 516 features. The classification task is
initially implemented with the DF and SoftMax, and the result confirmed that the VGG19
provided better result compared to the VGG16, ResNet18, ResNet50 and AlexNet models.
The CT image classification performance of VGG19 is once again verified using DF + HCF
and the obtained result confirmed that the SVM-RBF classifier helped to obtain better
classification accuracy (97.83%).

The limitation of the proposed approach is the dimension of concatenated features
(1× 1540) which is rather large. In the future, a feature reduction scheme can be considered
to reduce this set of features. Also, the performance of the proposed system can be
improved by considering other HCFs that are known from the literature.
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