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Abstract: Background: The early detection of carotid wall plaque is recommended in the prevention
of cardiovascular disease (CVD) in moderate-risk patients. Previous techniques for B-mode carotid
atherosclerotic wall plaque segmentation used artificial intelligence (AI) methods on monoethnic
databases, where training and testing are from the “same” ethnic group (“Seen AI”). Therefore, the
versatility of the system is questionable. This is the first study of its kind that uses the “Unseen
AI” paradigm where training and testing are from “different” ethnic groups. We hypothesized
that deep learning (DL) models should perform in 10% proximity between “Unseen AI” and “Seen
AI”. Methodology: Two cohorts from multi-ethnic groups (330 Japanese and 300 Hong Kong (HK))
were used for the validation of our hypothesis. We used a four-layered UNet architecture for
the segmentation of the atherosclerotic wall with low plaque. “Unseen AI” (training: Japanese,
testing: HK or vice versa) and “Seen AI” experiments (single ethnicity or mixed ethnicity) were
performed. Evaluation was conducted by measuring the wall plaque area. Statistical tests were
conducted for its stability and reliability. Results: When using the UNet DL architecture, the
“Unseen AI” pair one (Training: 330 Japanese and Testing: 300 HK), the mean accuracy, dice-
similarity, and correlation-coefficient were 98.55, 78.38, and 0.80 (p < 0.0001), respectively, while for
“Unseen AI” pair two (Training: 300 HK and Testing: 330 Japanese), these were 98.67, 82.49, and
0.87 (p < 0.0001), respectively. Using “Seen AI”, the same parameters were 99.01, 86.89 and 0.92
(p < 0.0001), respectively. Conclusion: We demonstrated that “Unseen AI” was in close proximity
(<10%) to “Seen AI”, validating our DL model for low atherosclerotic wall plaque segmentation. The
online system runs < 1 s.

Keywords: Unseen AI; Seen AI; UNet deep learning; multi-ethnic studies; carotid atherosclerotic
wall plaque
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1. Introduction
1.1. Stroke Statistics, Causes of Stroke, and Need for Screening

Stroke is the third leading cause of death in the modern age. As per the 2018 data
from the Centre for Disease Control and Prevention (CDC), one in every six deaths from
cardiovascular diseases (CVD) is from stroke [1]. In the USA, every 40 s, someone suffers
from a stroke, and every 4 min, someone dies of stroke [1]. The primary cause of stroke
is the formation of atherosclerosis disease in carotid arteries [2], where the plaque is
formed in the lumen–intima and media layers [3]. The LDL penetration in the arterial
walls accelerate the plaque formation, such as fibrosis, fibrin, and macrophages due to
a sedentary lifestyle [3]. This plaque then ruptures over time, causing embolism in the
brain leading to stroke [2,4]. The plaque formation worsens with comorbidities such as
diabetes [5], hypertension [6], renal disease [7], and heart disease [8]. Thus, it is vital to
detect wall plaque during the early stages of its formation using angiography screening
techniques [9–11].

1.2. Importance of Imaging Modalities and Plaque Quantification

Various imaging modalities such as magnetic resonance imaging (MRI) [9], computed
tomography (CT) [12], and ultrasound (US) [5,13] are used for the screening of the disease.
The US is cheap, user-friendly, has a smaller foot print, is non-invasive, and does not use
a radiation-based method [14]. Therefore, B-mode ultrasound scans are primarily used
for the detection of atherosclerotic plaque in carotid arteries. These ultrasonic scans offer
image-based phenotypes as leading biomarkers for stroke risk assessment such as carotid
intima–media thickness (cIMT) [15], intima–media thickness variability (IMTV) [16,17],
maximum plaque height (MPH) [18], total plaque area (TPA) [19–21], total plaque volume
(TPV), and lumen diameter (LD) [22–24]. Various automated and semi-automated methods
have been proposed to calculate imaging biomarkers in the past [25]. These biomarkers
have their own relevance based on the study objective involved [26]. The measurement
of the plaque area was proposed as an alternate method of stroke risk prediction [19].
The carotid plaque area could be manually delineated between lumen–intima (LI) and
media–adventitia (MA) borders, but this is tedious, error-prone, time-consuming, and
leads to inter-observer variabilities [27,28]. Thus, one needs to automatically estimate the
plaque wall area [29,30]. All the above methods involve conventional and statistical image
processing methods for the LI and MA borders’ segmentation and quantification.

1.3. Brief Background of AI Literature

Artificial intelligence (AI)-based methods are becoming more popular in the healthcare
industry for automated diagnosis and prognosis [31,32]. Using the AI methods, researchers
contributed some ad hoc methods involving machine learning methods for stroke risk
assessment. Suri and his group significantly contributed to research in stroke risk assess-
ment using machine learning [33–36]. These machine learning methods are not entirely
automated as these involve human intervention for the extraction of plaque features from
the region of interest (ROI) area.

Deep learning (DL) techniques which are also part of AI have become more popular in
healthcare imaging in recent years [37–42]. Deep learning techniques involve less human
intervention and rely on directly extracting features from the images [43]. Several studies
have been attempted recently using DL in medical imaging [44–47]. However, the current
DL models use training and testing databases from the same ethnic group or cohort in
recent studies. The database from one ethnic group or US scanner was is partitioned into
training and testing pools. Therefore, the system only learns from the images coming from
one ethnic group or US scanners. Thus, in a macro view, there are chances that the system
is biased towards the images from one ethnic group or US scanner [48]. This view lays
the foundation of the hypothesis of our research work. A few studies involve assessing
CVD risk, but their focus was solely on enhancing the data size rather than studying the
system’s performance using a multi-ethnic database [49,50].
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1.4. Motivation, Hypothesis of Unseen AI, and Concept of Global Segmentation System

We hypothesized that the DL model will be unbiased when we use separate training
and testing databases. This means when we train the system with one ethnic group or
cohort, it will be treated as a Unseen AI model for other ethnic groups or cohorts and vice
versa. Therefore, we proposed two Unseen AI models which involve training the Japanese
(Jap) cohort and testing on Hong Kong (HK) data and vice versa. We compared our Unseen
AI model with the Seen AI model to validate our hypothesis that the Unseen AI systems
are performing their function. We combined two ethnic data and made a pool of mixed
data. This mixed database was used as the input to the Seen AI model. In the Seen AI
model, we cross-validated each image using 10-fold cross-validations. Thus, in the Seen
AI model, the cohort type was known to the system. Furthermore, we can also check the
performance of the Unseen AI model against the Seen AI model by cross-validating each
cohort. Figure 1 shows the global system diagram for unseen image segmentation.
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1.5. Layout of This Study

The architecture of this article includes six major sections. Section 1 describes the
introduction, background, and hypothesis of the current work. The methodology section
consists of patient’s demographics, data collection and ground-truth data preparation,
UNet-based deep learning architecture, and experimental protocols. All these sub-sections
are described in Section 2. Section 3 contains the results of all experiments described in
the methodology section. Section 4 describes the performance evaluation section where
each performance tests results and their corresponding graphs are described. Finally,
Sections 5 and 6 contain the discussion and conclusion.

2. Methodology

To prove our hypothesis via our experiments, the choice of the deep learning architec-
ture and the image dataset is essential. We took special care in the architecture design and
the multi-ethnic datasets, which were vital for the “Unseen AI” analysis and benchmarking
against “Seen AI” standard protocols. Thus, the methodology section mainly consists of
three parts: (1) patient demographics, data collection, and data preparation for multi-ethnic
datasets; (2) DL architecture; and (3) the experimental protocol used for the “Unseen AI”
and “Seen AI” experiments using the multi-ethnic databases.
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2.1. Patient Demographics, Data Collection, and Data Preparation
2.1.1. Patient Demographics for the First Group: Japanese Cohort

The Japanese cohort consisted of 330 of left and right common carotid arteries B-
mode ultrasound images taken from 165 patients. The male/female proportion in the
cohort was 127/38. All patients were examined retrospectively, and ethics approval was
granted by the institutional review board (IRB) of Toho University, Japan. All patients
were informed, and written consent was obtained before the examinations. The baseline
characteristics of the Japanese diabetes patients included a mean age of 68.25 ± 11.23
years. The mean hemoglobin (HbA1c) of all patients was 6.22 ± 1.04 mg/dL, low density
lipoprotein (LDL) cholesterol of 101.59 ± 31.03 (mg/dL), high density lipoprotein (HDL)
cholesterol of 51.05 ± 14.56 (mg/dL), and total cholesterol (TC) of 175.39 ± 36.03 (mg/dL).
Out of 165 patients, 73 patients were smokers, 19 had a family history of CVD and
116 had hypertension. The mean systolic and diastolic blood pressure values were
134.06 ± 9.14 (mm/Hg) and 87.03 ± 4.57 (mm/Hg). The mean eGFR value for the co-
hort was 47.31 ± 19.93 (mL/min/1.73 m2). This dataset was used in our previous
studies [33,34,40].

2.1.2. Patient Demographics for the Second Group: Hong Kong Cohort

A total of 300 images from 50 patients (6 images per patient, 3 scans at each side of
neck showing three different acquisition scans: anterior, anterolateral, and posterolateral
with simultaneous ECG gating). All subjects were postmenopausal Chinese women aged
between 54 and 67 years (mean age 60.2 years). Subjects were informed and consent was
obtained before their inclusion in study. In the pool of 50 females, 28 females were diag-
nosed with different diseases: one was diagnosed with diabetes, three with hypertension,
seven were diagnosed with hypercholesterolemia, whereas 15 had both hypertension and
hypercholesterolemia, and two had all three abnormalities. The rest controlled population
of 22 females had normal blood pressure, total cholesterol, and glucose levels in fasting
blood. These data were used in one of our previous studies [15].

2.1.3. Data Acquisition and Ultrasound Imaging for the Two Ethnic Groups

Japanese Cohort: All Japanese ultrasound images were scanned by Aplio XV, Aplio
XG, Xario, Toshiba, Inc., Tokyo, Japan Ultrasound scanner, equipped with a 7.5 MHz linear
array transducer. An experienced sonographer performed all US scans. The timeline of
data collection was between July 2009 and September 2010. The recommendations of the
American Society of Echocardiography Carotid Intima–Media Thickness Task Force were
followed during the acquisition of these images. In this database, the mean resolution was
0.052 ± 0.01 mm/pixel.

Hong Kong Cohort: The Hong Kong (HK) database was examined using Sonoline
Antares (Siemens Medical Solutions, USA, Inc., Malvarn, PA, USA) ultrasound scanner
equipped with a 13.5 MHz linear transducer. The sonographer digitally captured a 10 s
clip of each scan for offline analysis. Similarly, six segments (3 left and 3 right) of the left
and right carotid arteries were archived for each subject. These data were used in some of
our previous studies [15,51].

2.1.4. Ground-Truth Data Preparation

An image-processing expert trained by an experienced cardiologist prepared the
ground-truth binary mask images. We used a clinically acceptable image tracing tool
developed by Atheropoint™ LLC, Roseville, CA, USA, to trace the CCA images’ lumen–
intima (LI) and media–adventitia (MA) borders. The region between the lumen–intima (LI)
and media–adventitia (MA), i.e., the atherosclerotic wall plaque, generates binary masks
for the DL system. We used PowerToys (Microsoft) software for resizing the raw images to
a size of 224 × 224 × 3. Additionally, the corresponding binary mask was also resized to
the same size as of raw images using same software.
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2.2. UNet-Based Deep Learning Architecture

A four-layer DL architecture UNet with a stack of four encoders and four decoder
stages on both sides of the U-shape is shown in Figure 2. The encoder stages up-sample the
images, while the decoder stages down-sample the images. Each encoder stage of UNet
consists of a 2D-convolution layer (red) followed by ReLU (turquoise) and a MaxPooling
layer (yellow). Similarly, each decoder stage consists of a stack of up-convolution-2D layers
(dark green), depth-concatenation (light green), 2D-convolution (red) ReLU (turquoise)
and a MaxPooling layer (yellow). A grayscale US image was given as an input of size
224 × 224 from the encoder stage 1. At stage one, the number of convolution filters was 64,
which doubled in each next stage of the encoder module. Therefore, the numbers of filters
in each stage become 128, 256, and 512. In contrast, the number of filters is reduced to half
in each stage of the decoder. When counting from the bottom of the picture, these numbers
are 512, 256, 128, and 64. Both the encoder and decoder modules are connected via a bridge
network. The bridge network consists of 3 × 3 × 1024 filters. The bridge network provides
a stack of features that are compatible with concatenating to the last encoder layer after
downsampling from the first upsampling layer.
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Figure 2. UNet: Four-layer DL architecture for atherosclerotic plaque wall segmentation.

From each encoder stage, spatial features are extracted and transferred to the down-
sampling layer at the corresponding level of depth via a skip connection. Furthermore,
these features are added with the features of the previous decoder or bridge network
layers. Finally, after the last decoder stage, the image features are classified into two classes,
i.e., the plaque area and the background using the softmax classifier layer (pink). An
efficient ADAM optimizer was used to reduce the cross-entropy loss in plaque segmenta-
tion. If yi represents the GT label and ai means the softmax classifier probability, then the
cross-entropy (CE) loss is described by Equation (1) as follows:

LCE = −[(y i× log ai) + (1 − yi) × log(1 − ai)] (1)

2.3. Experimental Protocol

We performed various experiments using both the Japanese and Hong Kong databases.
Table 1 represents a consolidated list of the experiments with selected combinations of
the databases. All experiments were conducted in the same programming environment
(MATLAB 2019b) as well as with the same hardware configuration (core i7 8th Gen, 16 GB
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RAM, 8 GB NVIDIA Quadro P4000 Graphics processor) and operating system using
Windows 10. Additionally, the same hyperparameters were applied to all experiments
such as: batch size = 10, epochs = 100, optimizer = ADAM, learning rate = 1 × 10−4

Input grayscale image and binary mask image sizes were also fixed to 224 × 224 for
all experiments.

Table 1. Summary of all experiments performed on a multiethnic database.

Exp # Name of Exp Training DB Testing DB Training
Protocol

Exp #1 Unseen AI-1 (Tr: JAP, Te:
HK) Japanese 330 Hong Kong 300 All Japanese DB

for training

Exp #2 Unseen AI-2 (Tr: HK, Te:
JAP) Hong Kong 300 Japanese 330 All Hong Kong

DB for training

Exp #3 Seen AI-1; CV w/ Mixed Japanese (330) +
Hong Kong (250)

Japanese (330) +
Hong Kong (250)

10-fold
cross-validation

Exp #4 Seen AI-2; CV w/ JAP Japanese (330) Japanese (330) 10-fold
cross-validation

Exp #5 Seen AI-3; CV w/ HK Hong Kong (300) Hong Kong (300) 10-fold
cross-validation

CV w/: cross-validation with; JAP: Japanese; HK: Hong Kong.

2.3.1. Unseen AI Data Experiments

In experiment#1, (Unseen AI-1 (Tr: JAP, Te: HK)), we trained the UNet model with
330 low-risk images from Japanese DB and the trained model was saved. Furthermore,
we tested the model on 300 HK DB. During the experiment, an entire database of a single
ethnic group was used for training and DB from other ethnic groups was used for testing.
Experiment#2 (Unseen AI-2 (Tr: HK, Te: JAP)) is the reverse of experiment#1 (Unseen AI-1
(Tr: JAP, Te: HK)), in which we performed the training of the same network with 300 HK
databases and testing on 330 Japanese databases. In both experiments, one database was
used for training and the other was used for testing.

2.3.2. Seen AI Data Experiments

Furthermore, we decided to check the same network with a mixture of both databases.
Continuing with our hypothesis, in this experiment#3 (Seen AI-1 CV w/ Mixed), we mixed
up 330 Japanese and 300 HK databases and used the 10-fold partition method to cross-
validate each image. In the 10-fold cross-validation method, 90% of images of the mixed
database were used as the training images and 10% of the images were used as the test
images. Furthermore, 10% of the test images were swapped from the original database,
and a fresh batch of 10% test images became available for testing. Likewise, 10 different
sets of 10% images were used for testing; therefore, the experiment was repeated 10 times.
Thus, in a 10-fold cross-validation, each image gets a chance to go for testing.

Alongside the mixed database, we also checked the performance of the UNet model
for individual databases by only cross-validating a single database. In experiment#4 (Seen
AI-2 CV w/ JAP), we only used the Japanese DB and cross-validated all 330 images using
the 10-fold cross-validations explained earlier. Similarly, in experiment #5 (Seen AI-3 CV
w/ HK)), we performed 10-fold cross-validations on the 300-image Hong Kong DB. Table 2
show the summary of the experiments used in this study.
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Table 2. Classification parameters of the test dataset of all experiments.

Experiment # UNet Experiments ACC Sens Spec Prec MCC DSC JI

Exp #1 Unseen AI-1 (Tr: JAP, Te:
HK)

98.55 ±
0.57

95.41 ±
5.29

98.64 ±
0.62

67.82 ±
12.55

79.29 ±
8.64

78.38 ±
10.11 65.42 ± 11.84

Exp #2 Unseen AI-2 (Tr: HK, Te:
JAP)

98.67 ±
0.67

79.52 ±
8.84

99.47 ±
0.67

87.29 ±
12.45

82.29 ±
8.34

82.49 ±
8.44 70.98 ± 10.90

Exp #3 Seen AI-1 CV w/ Mixed 99.01 ±
0.44

86.37 ±
8.69

99.52 ±
0.41

88.55 ±
8.82

86.68 ±
6.19

86.89 ±
6.43 77.34 ± 9.15

Exp #4 Seen AI-2 CV w/ JAP 98.99 ±
0.58

91.25 ±
8.13

99.26 ±
0.64

81.01 ±
14.80

84.88 ±
9.49

84.65 ±
10.68 74.62 ± 13.54

Exp #5 Seen AI-3 CV w/ HK 98.96 ±
0.39

87.27 ±
7.70

99.43 ±
0.42

86.50 ±
10.45

86.04 ±
7.72

86.29 ±
8.31 76.59 ± 9.96

ACC: accuracy; Sens: sensitivity; Spec: specificity; Prec: precision; MCC: Mathew’s correlation coefficient; DSC: dice similarity coefficient;
JI: Jaccard index.

3. Results

In this section, we will discuss the classification results of all experiments listed in
Table 2. Table 2 contains a summary of the classification results of all experiments. The
classification parameters of the UNet training model include (i) the correlation coefficient
(CC); (ii) the area under the curve (AUC); (iii) accuracy; (iv) sensitivity; (v) specificity;
(vi) precision; (vii) Mathew’s correlation coefficient; (viii) dice similarity coefficient (DSC);
and (ix) the Jaccard index (JI). In the first experiment#1, i.e., (Unseen AI-1 (Tr: JAP, Te:
HK)), the UNet model was trained with 330 Japanese DB images and tested on 300 Hong
Kong DB images. Therefore, nine mean classification parameters’ values of the 300 HK DB
images are 0.8, 0.87, 98.55, 95.41, 98.64, 67.82, 79.29, 78.38, and 65.42, respectively. Figure 3a
shows the bar chart of the mean classification parameters of the Unseen AI-1 (Tr: JAP,
Te: HK). Now, in experiment#2 (Unseen AI-2 (Tr: HK, Te: JAP)), the training and testing
databases were swapped. The same model was trained on 300 HK DB images and tested
on 330 Japanese DB. Therefore, with Unseen AI-2 (Tr: HK, Te: JAP), we achieved nine mean
classification parameters’ values for the 330 Japanese DB images as 0.87, 0.94, 98.67, 79.52,
99.47, 87.29, 82.29, 82.49, and 70.98. Figure 3b shows the bar chart of the mean classification
parameters of the Unseen AI-2 (Tr: HK, Te: JAP).
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Now, in experiment #3, i.e., (Seen AI-1 CV w/ Mixed), the Japanese DB and Hong Kong
DB was mixed and the combined DB was cross-validated using 10-fold cross-validations.
Therefore, in this experiment using cross-validation, each image was tested once. The
mean classification parameters’ values for the mixed database were 0.92, 0.95, 99.01, 86.37,
99.52, 88.55, 86.68, 86.89, and 77.34. Figure 3c shows the bar chart of the mean classification
parameters of experiment #3, i.e., (Seen AI-1 CV w/ Mixed).

We also tested the monoethnic DB using the 10-fold cross-validation method. Using
this strategy, we performed experiment#4 (Seen AI-2 CV w/ JAP) in which only 330
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Japanese DB images were used for the 10-fold cross-validation. For this experiment, the
mean classification parameters’ values are 0.87, 0.93, 98.99, 91.25, 99.26, 81.01, 84.88, 84.65,
and 74.62. In an experiment similar to experiment#5 (Seen AI-3 CV w/ HK), only 300 HK
DB images were used for 10-fold cross-validation. The mean classification parameters are
0.89, 0.95, 98.96, 87.27, 99.43, 86.50, 86.04, 86.29, and 76.59.

Visual Segmentation Results

Figure 4 below shows the generation of difference between and the GT images and AI
segmented images. Figure 4a shows the overlay of the GT mask and raw image in green
color. Figure 4b shows the overlay of the AI-segmented mask and raw image in red color.
Figure 4c shows the overlay of difference between the GT and AI segmented images. Thus,
in Figure 4c, the red color shows the AI predicted plaque area whereas the green color
represents the difference plaque area.
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Figure 5 below shows the absolute difference image of the UNet model output (red)
and GT mask overlay on the grayscale image (green).
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Figure 5. Visual results of the Unseen AI and Seen AI experiments. [Column 1 shows the absolute difference images of the
HK test DB for experiment#1 (Unseen AI-1 (Tr: JAP, Te: HK)). Similarly, Column 2 shows the absolute difference images of
the Japanese test DB for experiment#2 (Unseen AI-2 (Tr: HK, Te: JAP)). However, columns 3 and 4 represent the difference
images from the mixed database of experiment#3 (Seen AI-1 CV w/ Mixed)].

4. Performance Evaluation

We performed various performance evaluations and statistical tests on the test data
to validate our hypothesis. We calculated the mean of all performance and statistical
parameters for both DL models and presented them in Table 3.

Table 3. Performance and statistical parameters of the test dataset of all experiments.

Experiment # UNet Experiment CC AUC FoM

Exp #1 Unseen AI-1 (Tr: JAP, Te: HK) 0.8 0.87 70.96

Exp #2 Unseen AI-2 (Tr: HK, Te: JAP) 0.87 0.94 91.14

Exp #3 Seen AI-1, CV w/ Mixed 0.92 0.95 97.57

Exp #4 Seen AI-2, CV w/ JAP 0.87 0.93 88.89

Exp #5 Seen AI-3, CV w/ HK 0.89 0.95 99.14
CC: correlation coefficient; AUC: area under the curve; FoM: figure of merit.

4.1. Correlation between AI Models and Ground Truth

The correlation coefficient (CC) is an effective statistical parameter used to analyze
the relationship between two quantities. It ranges between ”0” and “1”, representing a
degree of match between the two quantities. A high value (close to “1”) represents a high
match, whereas a low value represents a low match. Table 3 shows the CC value for all
experiments. Additionally, Figure 6a–c below show the CC values and regression curve
for experiments #1, #2, and #3. As depicted in the figure, the CC between UNet and GT
for experiment #1 (Unseen AI-1 (Tr: JAP, Te: HK)) is 0.8, 0.87 for experiment #2 (Unseen
AI-2 (Tr: HK, Te: JAP)), and 0.92 for experiment #3 (Seen AI-1 CV w/ Mixed)—all having
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p < 0.001. Additionally, the CC for exp#4 (Seen AI-2 CV w/ JAP) is 0.87, and 0.89 for
experiment #5 (Seen AI-3 CV w/ HK).
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4.2. Receiver Operating Characteristics and AUC

The receiver operating characteristics (ROC) curve and the area under the ROC curve
are important performance parameters in medical image analysis. We used the ground-
truth plaque area (GTPA) threshold value of 40 mm2 to generate the GT binary labels “1”
for high-risk images and “0” for low-risk images. Furthermore, the deep learning plaque
area (DLPA) was used to plot the ROC curve between the GTPA labels and DLPA scores.
Figure 7a–c show the ROC curves and AUC values for experiment #1 (Unseen AI-1 (Tr:
JAP, Te: HK)), experiment #2 (Unseen AI-2 (Tr: HK, Te: JAP)), and experiment #3 (Seen
AI-1 CV w/ Mixed).
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(a) Experiment #1 (Unseen AI-1 (Tr: JAP, Te: HK)) (b) experiment #2 (Unseen AI-2 (Tr: HK, Te: JAP)) (c) experiment
#3 (Seen AI-1 CV w/ Mixed).

4.3. Bland–Altman Plots

Bland–Altman’s plots between the UNet-GT for experiment #1 (Unseen AI-1 (Tr: JAP,
Te: HK)), experiment #2 (Unseen AI-2 (Tr: HK, Te: JAP)), and experiment #3 (Seen AI-1 CV
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w/ Mixed) are shown in Figure 8a–c. From the plots, the Seen AI experiment #1 model’s
output is closely concentrated along the central lines.
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4.4. Paired Sample t-Test and ANOVA Test

Paired Sample t-test: The box and whiskers plot is a convenient way to show the
data distribution. Figure 9a–c below show the paired sample t-tests between the UNet
estimated area and GT area using a box and whiskers plot for experiments #1, 2, and 3,
respectively. As the boxes in the plot show, for experiment #3 (Seen AI-1 CV w/ Mixed), the
median values of UNet are close to the GT median values compared to other experiments.
Figure 10a–c show the box and whiskers plot for the analysis of variance (ANOVA) test
between the UNet and GT area for all three experiments: experiment #1 (Unseen AI-1
(Tr: JAP, Te: HK)), experiment #2 (Unseen AI-2 (Tr: HK, Te: JAP)), and experiment #3
(Seen AI-1 CV w/ Mixed).
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4.5. Figure of Merit

The figure of merit (FoM) is defined in terms of the central tendency of the error. Let
aai(n) and agt represent the plaque area for the UNet model and GT, respectively, for image
“n”. Considering N as the total number of scans, the corresponding mean area aai(e) for
the experiment “e” and for GT agt and then the FoM can be expressed as Equation (2):

FoM(e) = 100 −
[(∣∣aai(e)− agt

∣∣
agt

)
∗ 100

]
(2)

Thus, the FoM for experiment #1 (Unseen AI-1 (Tr: JAP, Te: HK)), experiment #2
(Unseen AI-2 (Tr: HK, Te: JAP)), experiment #3 (Seen AI-1 CV w/ Mixed), experiment #4
(Seen AI-2 CV w/ JAP), and experiment #5 (Seen AI-3 CV w/ HK) was calculated using
the above method to be 70.96%, 91.14%, 97.57%, 88.89%, and 99.14%, respectively.

5. Discussion

We presented herein the Unseen AI-based deep learning system for the segmenta-
tion of carotid B-mode plaque images. The system used two ethnic databases, i.e., the
low-plaque Japanese diabetic database and the Hong Kong database. Furthermore, we
hypothesized that the system is able to perform well with Unseen AI data. To prove
our hypothesis, we performed a series of experiments as shown in Table 1. One unseen
experiment used one ethnic DB for training and the other used another ethnic DB for
testing and the second experiment did the opposite. The third experiment used a mix of
the Japanese and Hong Kong databases for training and testing. In this Seen AI experi-
ment, a cross-validation approach was used to test each image from the mixed database.
However, in this mixed data experiment, the training and testing images were from the
same pool of the mixed database. We also extended our work to experiments #4 and #5,
which performed the cross-validation of same ethnic databases on the Japanese and Hong
Kong databases. A comparison of the ROC curves for experiments #1, 2, and 3 is shown in
Figure 11. Comparing the three seen and two unseen experiments, we can conclude that the
system can segment a low atherosclerotic plaque from the unseen database. Additionally,
the differences between unseen and seen experiments shown in Table 4 are within the
range of 15%.
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Table 4. Comparison of experiments and validation of hypothesis.

#Exp Comparison of Experiments CC AUC ACC Sens Spec Prec MCC DSC JI

3-1 Seen AI-1 CV w/ Mixed-Unseen AI-1 (Tr: JAP,
Te: HK) 13.04 8.42 0.46 −10.47 0.88 23.41 8.53 9.79 15.41

~
√ √ √ √

~
√ √

~

3-2 Seen AI-1 CV w/ Mixed-Unseen AI-2 (Tr: HK,
Te: JAP) 5.43 1.05 0.34 7.93 0.05 1.42 5.06 5.06 8.22

√ √ √ √ √ √ √ √ √

4-1 Seen AI-2, CV w/ JAP-Unseen AI-1 (Tr: JAP,
Te: HK) 8.05 6.45 0.44 −4.56 0.62 16.28 6.59 7.41 12.33

√ √ √ √ √
~

√ √
~

4-2 Seen AI-2, CV w/ JAP-Unseen AI-2 (Tr: HK,
Te: JAP) 0.00 −1.08 0.32 12.85 −0.21 −7.75 3.05 2.55 4.88

√ √ √
~

√ √ √ √ √

5-1 Seen AI-3, CV w/ H -Unseen AI-1 (Tr: JAP, Te:
HK) 10.11 8.42 0.41 −9.33 0.79 21.60 7.85 9.17 14.58

√ √ √ √ √
~

√ √
~

5-2 Seen AI-3, CV w/ H -Unseen AI-2 (Tr: HK, Te:
JAP) 2.25 1.05 0.29 8.88 −0.04 −0.91 4.36 4.40 7.32

√ √ √ √ √ √ √ √ √

3-4 Seen AI-1 CV w/ Mixed-Seen AI-2, CV w/
JAP 5.43 2.11 0.02 −5.65 0.26 8.51 2.08 2.58 3.52

√ √ √ √ √ √ √ √ √

3-5 Seen AI-1 CV w/ Mixed-Seen AI-3, CV w/
HK 3.26 0.00 0.05 −1.04 0.09 2.32 0.74 0.69 0.97

√ √ √ √ √ √ √ √ √

5.1. Benchmarking

Table 5 shows the benchmarking studies that involve the multi-ethnic databases for
atherosclerotic plaque measurement. Modern techniques for the segmentation of the wall
plaque in carotid B-mode ultrasound have been active since 2010. Even though the ultimate
goal of these techniques is cIMT measurement, we briefly discuss them here. Most of the
methods were developed by Suri’s group from AtheroPoint™ (Roseville, CA, USA) [52,53].
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In the early start-up methods for wall segmentation, the first-order absolute moment
(FOAM) method for completely automated local statistical-based method (CALSFORM)
was shown [54–56]. The region of interest detection was important for automated LI/MA
detection. Three methods were discussed for ROI estimation in which the plaque wall was
supposed to be detected [57]. Scale-space methods were invented, which had the flexibility
of automatically finding the LI and MA borders, which proved to be more robust [29,30].
These techniques are also summarized in the review by Molinari et al. [58]. This system
was then commercialized into AtheroEdge™ 1.0 and applied for a multicenter clinical
study. A review was published comparing the different methods [59]. Several validation
methods and applications were also developed [60,61]. All the above studies were focused
on wall segmentation and cIMT measurement. Recently, AI tools were developed for the
joint estimation of wall thickness and area estimation by Biswas et al. [10]. Molinari et al.
used five ethnic databases for IMT measurement using automated and semi-automated
methods [15]. However, their systems did not involve deep-learning methods. Mean ± SD
for IMT measurement for all these methods were 0.811 ± 0.292 (CALEX), 0.779 ± 0.264
(CARES), 0.806 ± 0.294 (CAMES), 0.873 ± 0.323 (CAUDLES-EF), and 0.786 ± 0.251 (FOAM),
respectively (in mm). Ikeda et al. used three ethnic groups’ (Japanese, Italy and Hong
Kong) data for IMT measurement at the bulb area [62]. Another group of Zhou et al. [47]
presented a deep learning-based method for segmentation of atherosclerotic plaque from
carotid ultrasound images. Their system used two ethnic databases: namely those of Stroke
Prevention and Atherosclerosis Research Centre (SPARC), from London, Canada; and
Chinese data from Zhongnan Hospital (Wuhan, China). However, their work does not
focus on the effect of unseen databases on the system’s performance. In a multi-ethnic
atherosclerosis study, Carol et al. 2018 used four ethnic people, i.e., White, Chinese, Black,
and Hispanic people from across the country [63]. Purpose of their study was to analyze
the relation between TPA and CVD risk factors in middle age group. Recently, by the team
of Suri, Jamthikar et al. in 2020 proposed a Framingham risk score-based model for stroke
risk assessment. They included 648 patients from three ethnic databases, and both left and
right carotid artery images of each patient were included in the experiment. A 10-year
risk prediction model, atherosclerosis CVD (ASCVD) developed by American College of
Cardiology/American Heart Association, was used in their research. Furthermore, we
compared our system with these studies, and found that our study has been solely focused
upon the effect of ethnicity on the performance of the system [64].

Table 5. Benchmarking table showing multiethnic database studies for atherosclerotic plaque measurement.

Sr# Authors and Year Cohorts Images Purpose Model

1 Molinari et al., 2012 [15]

Torino (n1)
Nicosia (n2)
Cagliari (n3)

Porto (n4)
Hong Kong (n5)

n1 = 200
n2 = 100
n3 = 42
n4 = 23

n5 = 300

IMT measurement using
auto and semi-auto

methods
ML

2 Ikeda et al., 2013 [62]
Japanese (n1)

Italy (n2)
Hong Kong (n3)

n1 = 259
n2 = 98

n3 = 300

IMT measurement in
Bulb area ML

3 Zhou et al., 2020 [47] SPARC (n1)
Chinese * (n2)

n1 = 510
n2 = 638

Plaque area
measurement in ICA

and CCA images
DL

4 Carol et al., 2018 [63]

White (n1)
Chinese (n2)

Black (n3)
Hispanic (n4)

n1 = 946
n2 = 185
n3 = 595
n4 = 479

Carotid plaque analysis
using manual method Statistical method
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Table 5. Cont.

Sr# Authors and Year Cohorts Images Purpose Model

5 Jamathikar et al., 2020 [64]
Japanese (n1)

Asian-Indian (n2)
Spanish (n3)

n1 = 404
n2 = 628
n3 = 264

Framingham risk
score-based stroke risk

stratification
ML

6 Proposed method Japanese (n1)
Hong Kong (n2)

n1 = 330
n2 = 300

Plaque area
measurement in CCA

images
DL

SPARC: Stroke Prevention and Atherosclerosis Research Centre, London, Canada; * Zhongnan Hospital (Wuhan, China).

5.2. Short Note on Image Quality

Image quality in medical imaging such as MRI [65], CT [66], X-ray [67], and US [68]
certainly plays an important point during the design of the computer-aided diagnosis
(CAD) system. This is even more crucial during the US CAD design, since the quality of
the images are subjected to several factors such as (i) strong contact between the probe and
the skin; (ii) the gel used at the contact point; (iii) the gain control systems of the scanner;
and (iv) the role of the harmonic imaging system and compound imaging systems were on
during the beam formation and scanning process.

There have been several CAD systems which directly employ denoising solutions for
US scans [13,69] or scale-space filtering methods [70]. One way to handle the denoising
process is to compute the signal-to-noise ratio (SNR) or contrast-to-noise ratio (CNR) of US
scans [71] and if they are under threshold limits, they can then be used for deep learning
solutions. Note that these threshold limits are partially dependent on the datasets. Not all
datasets need denoising solutions. Lastly, the latest US scanners have started to produce
high-resolution images. Old legacy machines certainly need special denoisers for removing
salt and pepper noise, speckle noise, or even getting rid of black shadows.

In our study, the images were selected by the experienced sonographer and filtered out
based on their judgement of image quality to characterize the plaque area. Thus, we never
encountered images which had low image quality. One can, however, design a method
which can add denoisers in the loss function for improvements in the plaque detection
process. This is similar to the approach of adding the penalty function in the bound-
ary segmentation models [72] or using a partial differential equation-based smoothing
process [73].

In our current study, we used two types of databases, namely the Japanese and Hong
Kong ones. The Hong Kong database images are much nosier compared to the Japanese
database images. The major objective of this paper was to address the use of different
databases and prepare such a deep learning model which can train on one database and
predict on other databases. We also swapped the databases and each time the accuracy
was above the threshold mark. However, the images which were low in quality or the
sonographer’s lack of experience were not considered in our study.

5.3. Strength, Limitations and Future Extensions

As seen in Table 4, the percentage difference between the seen and unseen data
experiments suggests that the system can perform atherosclerotic plaque segmentation.
The system demonstrated significant results with unseen data experiments. Additionally,
the system is able to capture the plaque data in the low-contrast images of the Hong Kong
ethnic database. Furthermore, the system performs the testing of images in almost real-
time. A major limitation of our system was the inclusion of the noisy Hong Kong database
in the system. However, with the inclusion of some noise suppression methods [69],
performance can be improved. Furthermore, (i) the system can be extended and applied for
the segmentation of temporal data and (ii) we can characterize the segmented plaque wall
using classification methods [74]. Multi-modality validation can also be achieved using
joint ultrasound and CT [75].
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The loss function plays an important role during the segmentation and classification
paradigm [46]. In our recent publication, we tried to apply the dice loss function to stroke
publications [37,76]. This was attempted for heavy plaque images having a partial volume
effect (partial plaque available in the plaque zones of some pixel locations). The results
were very encouraging. In our current study, most of the arteries were low plaque and
mainly straight due to the nature of the common carotid artery. Thus, the identification of
the region-of-interest was very straight-forward in the patient test data. There is no such
issue of partial volume because the media region clearly showed a high-intensity zone.
Thus, the simple cross-entropy function was successful in demonstrating our hypothesis of
“Unseen AI”. However, we will pursue other loss functions in the future such as MSE and
DSC loss functions.

6. Conclusions

This was the first pilot study in the area of carotid ultrasound-based imaging that used
two different ethnic groups in the AI framework, demonstrating the concept of “Unseen
AI”. Two distinct cohorts, i.e., the Japanese and Hong Kong ones, were used to prove
the hypothesis that “Unseen AI” was close (<10%) to “Seen AI”. The study presented a
four-layer deep learning UNet architecture for atherosclerotic plaque wall segmentation in
the common carotid arteries. Our performance parameters such as mean accuracy, dice-
similarity, and correlation-coefficient were 98.55, 78.38, and 0.80 (p < 0.0001), respectively,
when using the Unseen AI pair-1 with the Japanese database for training and the Hong
Kong database for testing. The same parameters were 98.67, 82.49, and 0.87 (p < 0.0001),
respectively, when using the Unseen AI pair-2 consisting of Hong Kong training and
Japanese testing. When benchmarking against the Seen AI, using the cross-validation
protocol, for a mixed cohort (Japanese and Hong Kong), our system demonstrated the same
parameters to be 99.01, 86.89, and 0.92 (p < 0.0001), respectively, validating our hypothesis
and stability of the system. We further concluded that an online system takes less than
one second, and such a system can be extended to other deep learning and hybrid deep
learning models.
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