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Abstract: Conventional scoring and identification methods for coronary artery calcium (CAC) and
aortic calcium (AC) result in information loss from the original image and can be time-consuming.
In this study, we sought to demonstrate an end-to-end deep learning model as an alternative to
the conventional methods. Scans of 377 patients with no history of coronary artery disease (CAD)
were obtained and annotated. A deep learning model was trained, tested and validated in a 60:20:20
split. Within the cohort, mean age was 64.2 ± 9.8 years, and 33% were female. Left anterior
descending, right coronary artery, left circumflex, triple vessel, and aortic calcifications were present
in 74.87%, 55.82%, 57.41%, 46.03%, and 85.41% of patients respectively. An overall Dice score of
0.952 (interquartile range 0.921, 0.981) was achieved. Stratified by subgroups, there was no difference
between male (0.948, interquartile range 0.920, 0.981) and female (0.965, interquartile range 0.933,
0.980) patients (p = 0.350), or, between age <65 (0.950, interquartile range 0.913, 0.981) and age ≥65
(0.957, interquartile range 0.930, 0.9778) (p = 0.742). There was good correlation and agreement for
CAC prediction (rho = 0.876, p < 0.001), with a mean difference of 11.2% (p = 0.100). AC correlated
well (rho = 0.947, p < 0.001), with a mean difference of 9% (p = 0.070). Automated segmentation took
approximately 4 s per patient. Taken together, the deep-end learning model was able to robustly
identify vessel-specific CAC and AC with high accuracy, and predict Agatston scores that correlated
well with manual annotation, facilitating application into areas of research and clinical importance.

Keywords: coronary artery calcium; deep learning; machine learning

1. Introduction

Vascular calcification is strongly predictive of cardiovascular morbidity and mortal-
ity [1]. Gated non-contrast cardiac computed tomography (CT) is the most established
tool in the assessment of coronary artery calcium (CAC), and its quantification uses the
well-established Agatston method to derive a CAC score (CACS) [2].
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However, this method has inherent shortcomings. It is unable to distinguish between
the regional features of multivessel disease, such as density, diffusivity (the degree of
dispersion of CAC within the coronary tree), and distribution (location and number of
coronary arteries involved) that may, as well as the presence of aortic calcium (AC), carry
independent prognostic value and improve risk prediction by an additional 5–20% [1].
Furthermore, evaluation of these features requires laborious manual annotation, limiting
the utility of these features when used on a large number of scans.

Because it is derived as a summation, CACS is unable to accurately convey more
nuanced, yet significant findings, such as differentiating between higher and lower density
CAC, or lesion location, distribution, shape, and size [3]. This aggregation on lesion, vessel,
and patient levels results in information resolution loss when transiting from the acquired
image to the final score, leading to seemingly divergent prognostic implications of a high
or low CACS [4]. As such, the final information yield is lower than is possible.

Machine learning (ML) is a field that proposes novel algorithmic strategies for the
construction of predictive data-driven models from large datasets [5]. Deep learning is
a subdomain that utilizes more sophisticated frameworks with the ability to perform
automated feature extraction and excels at modeling extremely complicated non-linear
relationships between inputs and outputs. It can substantially outperform systems that
rely on features supplied by domain experts [6]. In this study, we develop, demonstrate,
and evaluate an end-to-end, rapid deep learning model for the rapid identification of
vessel-specific CAC and AC on a pixel-wise level from gated noncontrast cardiac CTs.

2. Materials and Methods
2.1. Study Population

The study population comprised a convenience aggregation of two international,
multicenter, prospective, observational registries, that have been described in detail else-
where [7,8]. In brief, patients that underwent clinically indicated coronary computed
tomography angiography (CCTA) were included, with prospectively collected history, risk
factors, and symptoms at baseline. Inclusion criteria were patients undergoing clinically
indicated CCTA and aged ≥ 18 years of age. Exclusion criteria were known coronary artery
disease (CAD), hemodynamic instability, inability to provide consent, pregnancy, known
adult congenital heart disease, baseline irregular heart rhythm, heart rate ≥ 100 beats per
minute, systolic blood pressure ≤ 90 mmhg, contraindications to beta-blockers or nitroglyc-
erin or adenosine, and uninterpretable CCTA. Each site obtained local institutional review
board or ethics board approval. This resulted in a total of 846 patients. Those with missing
or uninterpretable CT CAC images were excluded, resulting in a total of 377 patients for
this study.

2.2. Image Acquisition and Identification of CAC

Imaging data were acquired using multi-detector row CT scanners consisting of
64-rows or greater. Image acquisition, image post-processing, and data interpretation were
performed according to guidelines [9]. Gated non-contrast cardiac scans were performed
with triggering corresponding to 60–80% of the RR interval. Images were obtained and
reconstructed at 2.5- or 3.0-mm intervals beginning one centimeter below the carina and
progressing caudally to include all coronary arteries. Both CAC and AC within the field of
view were separately identified and annotated (Figure 1). Images were in Digital Imaging
and Communications in Medicine (DICOM) format. AC was a combination of aortic valve
calcification (AVC) and thoracic aortic calcification (TAC). The coronaries were divided
into left anterior descending (LAD), right coronary artery (RCA) and left circumflex (LCx).
Annotation was done at a core laboratory blinded to all other data. These annotations
established and verified by board-certified cardiologists (L.B., 5 years of training; S.A.,
3 years of training), were used as the ‘ground truth’ for the deep learning model. CACS
and AC were scored using the Agatston method [2].
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Figure 1. (A) Annotation in DICOM format requires differentiation between several non-cardiac structures with HU > 130 
such as the vertebrae and sternum (red), and cardiac calcium (green). (B and ×15 magnification, C) The colored annotation 
in DICOM format is extracted using color-based K-means clustering. Abbreviations: DICOM = Digital Imaging and Com-
munications in Medicine, HU = Hounsfield units. 
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79 patients, 5111 images). The splitting of the dataset aimed at maintaining a ratio of 
60:20:20 (Train: Test: Validation). The process of extraction of the ground truth from the 
output was accomplished using K-means clustering (Figure 1). All scans were converted 
to Hounsfield Units (HU) and resampled to a voxel spacing of 1 × 1 × 3 mm. 

2.4. Deep Learning Model 
The CNN architecture used in this study was inspired by the U-Net framework for 

semantic segmentation (Figure 2) [10]. The architecture comprised two main subparts: (i) 
a contracting path (Encoder) and (ii) an expansive path (Decoder). After each convolu-
tional block, the number of filters was doubled starting with 16 filters in the first layer. 
The expansive path is composed of four upsampling blocks. In the final layer, a (1 × 1) 
convolutional layer with softmax activation was applied. All convolutional layers were 
initialized with He-uniform initializations unless mentioned otherwise [11]. The architec-
ture was retrofitted to incorporate the nuances of accomplishing segmentation of vascular 
calcification. First, the problem was posed as an n+1 class problem to the architecture 
where n was the number of classes trained for performing segmentation. An additional 
class was added to account for the background. Secondly, to account for imbalance be-
tween the higher number of images with AC than CAC, undersampling was performed, 
keeping in mind that images from the same patients always belonged to only one of the 
sets—i.e., training, testing, or validation. Thirdly, since there existed class imbalance, the 
loss function was also weighted to account for the importance of CAC to be suited for 
clinical application. Fourthly, the location and the size of the CAC was highly correlated 
in the 3D volume, owing to the fact that the CAC tends to be much smaller in volume 
compared to AC. To adapt to this, exhaustive data augmentation was performed. Lastly, 
unlike many datasets with natural image segmentation, CT images posed unique chal-
lenges such as the need to convert these images into HU, the inability to apply z-score-
like normalization by directly taking maximum and minimum for an image, and the need 
for the data augmentation to replicate the naturally occurring defects. The proposed ap-
proach was conceived by iteratively eliminating the abovementioned unique challenges. 

Figure 1. (A) Annotation in DICOM format requires differentiation between several non-cardiac structures with HU > 130
such as the vertebrae and sternum (red), and cardiac calcium (green). (B) and ×15 magnification, (C) The colored annotation
in DICOM format is extracted using color-based K-means clustering. Abbreviations: DICOM = Digital Imaging and
Communications in Medicine, HU = Hounsfield units.

2.3. Splitting of Dataset and Preprocessing

The entire dataset containing 377 patients was split into three parts; training (60%,
226 patients, 19, 543 images), testing (19%, 72 patients, 4443 images), and validation (21%,
79 patients, 5111 images). The splitting of the dataset aimed at maintaining a ratio of
60:20:20 (Train: Test: Validation). The process of extraction of the ground truth from the
output was accomplished using K-means clustering (Figure 1). All scans were converted to
Hounsfield Units (HU) and resampled to a voxel spacing of 1 × 1 × 3 mm.

2.4. Deep Learning Model

The CNN architecture used in this study was inspired by the U-Net framework for
semantic segmentation (Figure 2) [10]. The architecture comprised two main subparts: (i) a
contracting path (Encoder) and (ii) an expansive path (Decoder). After each convolutional
block, the number of filters was doubled starting with 16 filters in the first layer. The
expansive path is composed of four upsampling blocks. In the final layer, a (1 × 1) convolu-
tional layer with softmax activation was applied. All convolutional layers were initialized
with He-uniform initializations unless mentioned otherwise [11]. The architecture was
retrofitted to incorporate the nuances of accomplishing segmentation of vascular calcifica-
tion. First, the problem was posed as an n+1 class problem to the architecture where n was
the number of classes trained for performing segmentation. An additional class was added
to account for the background. Secondly, to account for imbalance between the higher
number of images with AC than CAC, undersampling was performed, keeping in mind
that images from the same patients always belonged to only one of the sets—i.e., training,
testing, or validation. Thirdly, since there existed class imbalance, the loss function was
also weighted to account for the importance of CAC to be suited for clinical application.
Fourthly, the location and the size of the CAC was highly correlated in the 3D volume,
owing to the fact that the CAC tends to be much smaller in volume compared to AC. To
adapt to this, exhaustive data augmentation was performed. Lastly, unlike many datasets
with natural image segmentation, CT images posed unique challenges such as the need to
convert these images into HU, the inability to apply z-score-like normalization by directly
taking maximum and minimum for an image, and the need for the data augmentation
to replicate the naturally occurring defects. The proposed approach was conceived by
iteratively eliminating the abovementioned unique challenges.
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used in this study was inspired by U-Net and has two main parts; the encoder (green) and the decoder (red). In the en-
coder, starting from the initial number of filters as 16, the number of filters was doubled after each subsequent convolu-
tional block followed by a max pooling operation. The decoder part restores the dimensionality of the segmentation mask 
by concatenating the features from the encoder by application of transposed convolutional operations followed by convo-
lutions, batch normalization and ReLu operations. The segmentation mask of the same resolution is obtained as the model 
output (blue). Abbreviations: LAD = left anterior descending, LCx = left circumflex, RCA = right coronary artery. 
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Figure 2. The deep learning model architecture. An input image of 512 × 512 is fed as input to the model (gray). The
model used in this study was inspired by U-Net and has two main parts; the encoder (green) and the decoder (red). In
the encoder, starting from the initial number of filters as 16, the number of filters was doubled after each subsequent
convolutional block followed by a max pooling operation. The decoder part restores the dimensionality of the segmentation
mask by concatenating the features from the encoder by application of transposed convolutional operations followed by
convolutions, batch normalization and ReLu operations. The segmentation mask of the same resolution is obtained as the
model output (blue). Abbreviations: LAD = left anterior descending, LCx = left circumflex, RCA = right coronary artery.

2.5. Model Evaluation

The image-based performance metric used Dice loss as the performance metric [12].
The Dice similarity score quantifies the pixel-wise degree of similarity between the model
predicted segmentation mask and the ground truth (Figure 3). It ranges from 0–1, with 1
denoting that the predicted mask is identical to the ground truth, expressed as

Dice similarity coefficient =
(2 × True Positive)

[2 × (True Positive + False Positive + False Negative)]
(1)
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Figure 3. Dice score visualization. (A,D) Original image; (B,E) ground truth annotation; (C,F) deep
learning model output. The Dice score is commonly used to gauge the model performance and
ranges from 0 to 1, with 1 corresponding to a pixel perfect pixel match between the ground truth
annotation. In the images above, the prediction with the lower Dice score (C) is due to the model
misclassifying right coronary artery calcification (yellow) as aortic calcium (red). The prediction with
the higher Dice score (F) correctly classifies left anterior descending (green), left circumflex (blue)
and aortic calcification (red) correctly.
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2.6. Statistical Analysis

Continuous and normally distributed variables were expressed by their mean ± standard
deviation or median with the interquartile range as appropriate and categorical data by
their number and percentage. Wilcoxon rank-sum test was conducted to examine the dif-
ference in Dice scores by sex and age subgroups. Levels of agreement between the model
prediction and ground truth (manual annotation) were assessed on the test set. Correla-
tions between model prediction and ground truth were assessed with the nonparametric
Spearman’s rank test of correlation, without the normality assumption.

3. Results

The dataset comprised 377 patients, containing 24,507 images. The cohort mean
age was 64.2 ± 9.8 years, and 33.16% were female. Prevalence of diabetes, dyslipidemia,
hypertension, and smoking was 29.71%, 56.50%, 64.19%, and 32.36% respectively. LAD,
RCA, LCx, triple vessel, and aortic calcification were present in 74.87%, 55.82%, 57.41%,
46.03% and 85.41% of patients respectively. Prevalence of CACS of 0, 1–99, 100–399 and
≥400 were 11.39%, 11.39%, 24.05 % and 53.16% respectively. (Table 1). Overall median
CACS was 560 ± 1063. There was no difference between male (603 ± 1200) and female
(473; ±, 707) (p = 0.187), but CACS for age <65 (450 ± 909) trended towards being lower
than for age ≥65 (658 ± 1176) (p = 0.054). The prevalence of AC > 0 was 33.42%. The
overall median AC score was 2000 ± 4368.

For CAC (LAD, RCA, and LCx), the overall Dice score was 0.952 (interquartile range
0.921, 0.981), with no significant difference between the scores for male (0.948, interquartile
range 0.920, 0.981) and female (0.965, interquartile range 0.933, 0.980) patients (p = 0.350) or
between age <65 (0.950, interquartile range 0.913, 0.981) and age ≥65 (0.957, interquartile
range 0.930, 0.9778) (p = 0.742). Overall Dice scores for the LAD, RCA. LCx and AC
were 0.971 (interquartile range 0.930, 1.000), 0.963 (interquartile range 0.889, 0.991), 0.955
(interquartile range 0.894, 1.000) and 0.832 (interquartile range 0.759, 0.897) respectively,
with no significant difference between sex- or age-stratified subgroups (Table 2). Figure 4
demonstrates comparisons between the ground truth and model predictions. Automated
segmentation took approximately 4 ± 0.93 s per patient, at 0.06 s per slice, whereas manual
segmentation took approximately 2 min per patient.

Table 1. Baseline characteristics.

Characteristic Total

N 377
Age, years (SD) 64.2 ± 9.8

Female (%) 33.16
Diabetes Mellitus (%) 29.71

Dyslipidemia (%) 56.50
Hypertension (%) 64.19

Smoker (%) 32.36
LAD calcification (%) 74.87
RCA calcification (%) 55.82
LCx calcification (%) 57.41

Triple vessel calcification (%) 46.03
Aortic calcification (%) 85.41

CACS 0 (%) 11.39
CACS 1–99 (%) 11.39

CACS 100–399 (%) 24.05
CACS ≥ 400 (%) 53.16

LAD = left anterior descending, RCA = right coronary artery, LCx = left circumflex, CACS = coronary
artery calcium score.
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Figure 4. Comparison. (A,D) Illustrative comparisons between original image; (B,E) manual annota-
tion ground truth; (C,F) the model predicted segmentation mask. The model is able to identify both
calcifications of the left anterior descending (green), left circumflex (blue) and right coronary arteries
(yellow) as well as aortic calcium (red).

Table 2. Model performance.

Structure Category
Dice Score

Median Quartile
(1st, 3rd) p

Total coronary
(LAD + RCA + LCx)

Overall 0.952 (0.921, 0.981) -
Male 0.948 (0.920, 0.981)

0.350Female 0.965 (0.933, 0.980)
Age < 65 years 0.950 (0.913, 0.981)

0.742Age ≥ 65 years 0.957 (0.930, 0.977)

LAD

Overall 0.971 (0.930, 1.000) -
Male 0.963 (0.919, 1.000)

0.058Female 0.988 (0.968, 1.000)
Age < 65 years 0.970 (0.941, 0.999)

0.980Age ≥ 65 years 0.975 (0.911, 1.000)

RCA

Overall 0.963 (0.889, 0.991) -
Male 0.951 (0.880, 1.000)

0.633Female 0.977 (0.923, 0.991)
Age < 65 years 0.964 (0.874, 0.999)

0.875Age ≥ 65 years 0.959 (0.899, 0.987)

LCx

Overall 0.955 (0.894, 1.000) -
Male 0.954 (0.887, 1.000)

0.388Female 0.958 (0.942, 0.998)
Age < 65 years 0.954 (0.905, 0.999)

0.897Age ≥ 65 years 0.955 (0.887, 1.000)

Aortic

Overall 0.832 (0.759, 0.897)
Male 0.802 (0.760, 0.905)

0.996Female 0.834 (0.764, 0.883)
Age < 65 years 0.833 (0.776, 0.933)

0.204Age ≥ 65 years 0.793 (0.756, 0.862)

LAD = left anterior descending; RCA = right coronary artery; LCx = left circumflex; CACS = coronary artery calcium score.
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Linear regression plots for the ranking of predictions against ranking of ground
truth are shown (Figure 5). There was good correlation and agreement for CAC predic-
tion (rho = 0.876, p < 0.001), with a difference of 11.2% (p = 0.100). AC correlated well
(rho = 0.947, p < 0.001), with a mean difference of 9% (p = 0.070). Examples of disagreement
between ground truth and model predictions are shown in Figure 6.
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signed to output CACS, but with a loss of information at the pixel level [15–18]. 

Secondly, this facilitates the gleaning of more information from the standard cardiac 
CT. Whilst conventional scoring protocols for CAC detection have also used volume and 
mass, further prognostic imaging information such as density, diffusivity, plaque burden, 
regional distribution, progression, number of lesions, size, and shape can be obtained if 

Figure 6. Potential for Error Detection. Illustrative examples of the model as a ‘second reader’,
correcting the human error. (A,D) The original images showing calcification of the left circumflex
(blue) and right coronary arteries (yellow), as well as aorta (red); (B,E) manual annotation, showing
missed calling of calcification; (C,F) correct identification of calcifications that were missed by manual
annotation.
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4. Discussion

This study demonstrates a deep learning method that provides rapid, end-to-end,
pixel-wise segmentation of both vessel-specific CAC and AC in gated non-contrast cardiac
CTs. To our knowledge, this is the first demonstrated application of such a model. The
mode showed high pixel-level accuracy and CACS agreement to manual ground truth
annotation. This was consistent across sex- and age-stratified subgroups. This facilitates
the rapid throughput and reading of scans.

This potentiates clinically relevant consequences. The model is able to identify calcium
on a pixel level, resulting in no informational resolution loss. Currently, commercially avail-
able CAC-scoring programs pool pixel values. Consequently, despite uniform scanning
parameters, a patient may have different CACSs, and differing subsequent risk categoriza-
tions, when using different vendor-provided software [13]. A pixel-wise model averts this
and allows future flexibility to adapt the output to meet a number of needs.

Firstly, there is the ability to automatically output CACS with high precision. Auto-
mated methods for this have previously been demonstrated, but not on a vessel-specific
basis. de Vos et al. demonstrated a method that could directly output score-based risk
category from cardiac or thoracic CTs [14]. This method predicted categories of risk, rather
than a specific integer. Whilst being fast (<0.15 s per scan on a GPU) and accurate (cardio-
vascular risk categorization of 93%), it is noted that the model was not meant to provide
pixel-level calcium identification, with a lower Dice score of 0.81, suggesting a loss in
informational resolution. Similarly, other automated deep learning methods have been
designed to output CACS, but with a loss of information at the pixel level [15–18].

Secondly, this facilitates the gleaning of more information from the standard cardiac
CT. Whilst conventional scoring protocols for CAC detection have also used volume and
mass, further prognostic imaging information such as density, diffusivity, plaque burden,
regional distribution, progression, number of lesions, size, and shape can be obtained if
pixel-wise information can be harnessed [1]. The current study may facilitate rapid analysis
and detailed exploration into these parameters. Current conventional scoring methods
have withstood the test of time due to parsimony at the expense of information loss. This
study provides for the future development of more representative and intricate scoring
systems that may be more time and labor efficient, but with higher information density.

Thirdly, this study allows the identification of prognostically significant AC, with
potential incorporation into future risk prediction tools. It facilitates the further detailed
study of relationships between CAC and AC and outcomes. A prior study has been able
to identify coronary and extracoronary calcium on a voxel level, albeit on low-dose non-
contrast chest CT scans [19]. In that study, the model was able to not only identify coronary
calcium but was able to identify the coronary artery involved. Furthermore, AVC, TAC and
mitral annular calcification were all identifiable, with Dice scores of 0.66–0.90. Those results
portend avenues of expansion for the current study. Currently, non-contrast cardiac CTs
are not used to evaluate CAC in patients with coronary stents, as contemporary software is
unable to distinguish between CAC and metal coronary stents, and CAC quantification
is inaccurate due to blooming artifact from the stent. However, further expansion of this
algorithm’s use may include the recognition of coronary stents and accurate quantification
of CAC correcting for the blooming artifact. This will require the requisite training datasets.

Finally, a deep learning model would reproduce the same result every time, lending
consistency to image-based annotation and analysis, avoiding human reader fatiguability
and error. During training and testing, a few model outputs identified annotation error
by human readers that were later corrected (Figure 6). This raises the future possibility of
a deep learning ‘second reader’ to be used in the practical workflow to minimize reader
error.

This study and method carry inherent limitations. When compared to conventional
clinical trials, the cohort size of this study was not as large. However, the dataset from 377
patients contains 24,507 images, numbers that are more than amply acceptable in size for
medical image-based deep learning applications [20]. Although the present study is one of
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the largest deep learning-based demonstrations of vessel-specific CAC identification using
non-contrast cardiac CTs that have been evaluated on a pixel basis, validation using larger
cohorts is required. This shortcoming is reflected in Figure 5B, showing an underestimation
bias of CAC when compared to the ground truth, with likely under-identification of CAC.
It is possible that training on more varied images will reduce this bias. Secondly, the
model was validated internally within the cohort. To address this, the study cohort was
aggregated from multicenter registries and included a ‘hold-out’ validation set. The model
was trained and tested on a randomized 80% of the patients, and never ‘saw’ the remaining
20% of patients until the final performance evaluation. Thirdly, this study had a high
prevalence of high CAC and is not representative of the general population. Prior work
has shown poorer prediction at higher rather than lower CAC values, whereas this model
performed well in a high CAC cohort [21].

Concluding, a deep-learning model was able to rapidly and robustly identify vessel-
specific CAC and AC. This was done with high speed, accuracy and agreement on both
pixel-based and score-based levels, facilitating the expansion of its application into areas of
research and clinical import.
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