The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection
2.3. Data Extraction and Synthesis
2.4. Methodological Quality
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Effect of rTMS
3.2.2. Effect of tDCS
3.2.3. Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Nakajima, Y. A five-year model project for supporting persons with higher brain dysfunctions. High Brain Funct. Res. 2006, 26, 263–273. [Google Scholar] [CrossRef]
- Stapleton, T.; Ashburn, A.; Stack, E. A pilot study of attention deficits, balance control and falls in the subacute stage following stroke. Clin. Rehabil. 2001, 15, 437–444. [Google Scholar] [CrossRef]
- Hyndman, D.; Pickering, R.M.; Ashburn, A. The influence of attention deficits on functional recovery post stroke during the first 12 months after discharge from hospital. J. Neurol. Neurosurg. Psychiatry 2007, 79, 656–663. [Google Scholar] [CrossRef]
- Nair, R.D.; Lincoln, N.B. Cognitive rehabilitation for memory deficits following stroke. Cochrane Database Syst. Rev. 2007, 18, 002293. [Google Scholar]
- Cappa, S.F.; Benke, T.; Clarke, S.; Rossi, B.; Stemmer, B.; van Heugten, C.M. Cognitive Rehabilitaion. Euro. Handb. Neurol. Manag. 2011, 1, 545–567. [Google Scholar]
- Brown, A.W.; Moessner, A.M.; Mandrekar, J.; Diehl, N.N.; Leibson, C.L.; Malec, J.F. A Survey of Very-Long-Term Outcomes after Traumatic Brain Injury among Members of a Population-Based Incident Cohort. J. Neurotrauma 2011, 28, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Hart, T.; Millis, S.; Novack, T.; Englander, J.; Fidler-Sheppard, R.; Bell, K.R. The relationship between neuropsychologic function and level of caregiver supervision at 1 year after traumatic brain injury. Arch. Phys. Med. Rehabil. 2003, 84, 221–230. [Google Scholar] [CrossRef]
- Cicerone, K.D.; Langenbahn, D.M.; Braden, C.M.A.; Malec, J.F.; Kalmar, K.; Fraas, M.; Felicetti, T.; Laatsch, L.; Harley, J.P.; Bergquist, T.; et al. Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Arch. Phys. Med. Rehabil. 2011, 92, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Ciaramelli, E.; Di Santantonio, A.; Malagù, S.; Servadei, F.; Làdavas, E. A pilot study for rehabilitation of central executive deficits after traumatic brain injury. Brain Inj. 2007, 21, 11–19. [Google Scholar] [CrossRef]
- Chung, C.S.Y.; Pollock, A.; Campbell, T.; Durward, B.R.; Hagen, S. Cognitive rehabilitation for executive dysfunction in patients with stroke or other adult non-progressive acquired brain damage. Cochrane Database Syst. Rev. 2010, 30, 008391. [Google Scholar] [CrossRef]
- Loetscher, T.; Lincoln, N. Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst. Rev. 2013, 2013, 002842. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.D.; Cogger., H.; Worthington, E.; Lincoln, N.B. Cognitive rehabilitation for memory deficits after stroke. Cochrane Database Syst. Rev. 2016, 1, 002293. [Google Scholar]
- Liew, S.-L.; Santarnecchi, E.; Buch, E.R.; Cohen, L.G. Non-invasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front. Hum. Neurosci. 2014, 8, 378. [Google Scholar] [CrossRef] [Green Version]
- Begemann, M.J.; Brand, B.A.; Ćurčić-Blake, B.; Aleman, A.; Sommer, I.E. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychol. Med. 2020, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.-P.; André-Obadia, N.; Antal, A.; Ayache, S.; Baeken, C.; Benninger, D.H.; Cantello, R.M.; Cincotta, M.; De Carvalho, M.; De Ridder, D.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 2014, 125, 2150–2206. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, S.; Lepage, J.-F.; Latulipe-Loiselle, A.; Fregni, F.; Pascual-Leone, A.; Théoret, H. The Uncertain Outcome of Prefrontal tDCS. Brain Stimul. 2014, 7, 773–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, M.D.; Buckner, R.L.; Liu, H.; Chakravarty, M.M.; Lozano, A.M.; Pascual-Leone, A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl. Acad. Sci. USA 2014, 111, E4367–E4375. [Google Scholar] [CrossRef] [Green Version]
- Brunoni, A.R.; Sampaio-Junior, B.; Moffa, A.H.; Aparício, L.V.; Gordon, P.; Klein, I.; Rios, R.M.; Razza, L.B.; Loo, C.; Padberg, F.; et al. Noninvasive brain stimulation in psychiatric disorders: A primer. Rev. Bras. Psiquiatr. 2019, 41, 70–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spreij, L.A.; Visser-Meily, J.M.A.; Van Heugten, C.M.; Nijboer, T.C.W. Novel insights into the rehabilitation of memory post acquired brain injury: A systematic review. Front. Hum. Neurosci. 2014, 8, 993. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Abo, M.; Sasaki, N.; Yamada, N.; Niimi, M.; Kenmoku, M.; Kawakami, K.; Saito, R. Improvement of higher brain dysfunction after brain injury by repetitive transcranial magnetic stimulation and intensive rehabilitation therapy: Case report. Neuroreport 2017, 28, 800–807. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst. Rev. 2016, 21, 009645. [Google Scholar] [CrossRef]
- Kashiwagi, F.T.; El Dib, R.; Gomaa, H.; Gawish, N.; Suzumura, E.A.; da Silva, T.R.; Winckler, F.C.; de Souza, J.T.; Conforto, A.B.; Luvizutto, G.J.; et al. Noninvasive Brain Stimulations for Unilateral Spatial Neglect after Stroke: A Systematic Review and Meta-Analysis of Randomized and Nonrandomized Controlled Trials. Neural Plast. 2018, 2018, 1638763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moseley, A.M.; Herbert, R.D.; Sherrington, C.; Maher, C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Aust. J. Physiother. 2002, 48, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Straus, S.E.R.W.; Glasziou, P.; Haynes, R.B. Evidence-based Medicine: How to Practice and Teach EBM; Elsevier Churchill Livingstone: Toronto, ON, Canada, 2005. [Google Scholar]
- Lefaucheur, J.-P.; Antal, A.; Ayache, S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, J.P.; Pileggi, C.; Cecatti, J.G. Assessment of funnel plot asymmetry andpublication bias in reproductive health meta-analyses: An analytic survey. Rep. Health 2007, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.M.; Kim, Y.-H.; Ko, M.-H.; Ohn, S.H.; Joen, B.; Lee, K.H. Enhancing the Working Memory of Stroke Patients Using tDCS. Am. J. Phys. Med. Rehabil. 2009, 88, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.K.; Baek, M.J.; Kim, S.; Paik, N.-J. Non-invasive cortical stimulation improves post-stroke attention decline. Restor. Neurol. Neurosci. 2009, 27, 647–652. [Google Scholar] [CrossRef]
- van Lieshout, E.C.C.; van Hooijdonk, R.F.; Dijkhuizen, R.M.; Visser-Meily, J.M.A.; Nijboer, T.C.W. The Effect of Noninvasive Brain Stimulation on Poststroke Cognitive Function: A Systematic Review. Neurorehabilit. Neural Repair. 2019, 33, 355–374. [Google Scholar] [CrossRef]
- Askin, A.; Tosun, A.; Demirdal, Ü.S. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial. Somatosens. Mot. Res. 2017, 34, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yin, M.; Luo, J.; Huang, L.; Zhang, S.; Pan, C.; Hu, X. Effects of transcranial magnetic stimulation on the performance of the activities of daily living and attention function after stroke: A randomized controlled trial. Clin. Rehabil. 2020, 34, 1465–1473. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H.; Yu, Q.; Yin, L.; Li, K.; Li, Y.; Fu, J. Cerebral Functional Manipulation of Repetitive Transcranial Magnetic Stimulation in Cognitive Impairment Patients After Stroke: An fMRI Study. Front. Neurol. 2020, 11, 977. [Google Scholar] [CrossRef]
- Yin, M.; Liu, Y.; Zhang, L.; Zheng, H.; Peng, L.; Ai, Y.; Luo, J.; Hu, X. Effects of rTMS Treatment on Cognitive Impairment and Resting-State Brain Activity in Stroke Patients: A Randomized Clinical Trial. Front. Neural Circuits 2020, 14, 563777. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, T.; Wen, M.; Sun, L. Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF Val66Met SNP. Med. Sci. Monit. 2015, 21, 761–768. [Google Scholar]
- Kim, B.R.; Kim, D.-Y.; Chun, M.H.; Yi, J.H.; Kwon, J.S. Effect of Repetitive Transcranial Magnetic Stimulation on Cognition and Mood in Stroke Patients. Am. J. Phys. Med. Rehabil. 2010, 89, 362–368. [Google Scholar] [CrossRef]
- Shaker, H.A.; Sawan, S.A.E.; Fahmy, E.M.; Ismail, R.S.; Elrahman, S.A.E.A. Effect of transcranial direct current stimulation on cognitive function in stroke patients. Egypt. J. Neurol. Psychiatr. Neurosurg. 2018, 54, 32. [Google Scholar] [CrossRef] [PubMed]
- Yun, G.J.; Chun, M.H.; Kim, B.R. The Effects of Transcranial Direct-Current Stimulation on Cognition in Stroke Patients. J. Stroke 2015, 17, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Koh, E.J.; Choi, H.Y.; Ko, M.H. A double-blind, sham-controlled, pilot study to assess the effects of the concomitant use of transcranial direct current stimulation with the computer assisted cognitive rehabilitation to the prefrontal cortex on cognitive functions in patients with stroke. J. Korean Neurosurg. Soc. 2013, 54, 484–488. [Google Scholar] [CrossRef]
- Tsai, P.-Y.; Lin, W.-S.; Tsai, K.-T.; Kuo, C.-Y.; Lin, P.-H. High-frequency versus theta burst transcranial magnetic stimulation for the treatment of poststroke cognitive impairment in humans. J. Psychiatry Neurosci. 2020, 45, 262–270. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.A.; Mazhari, S.; Najafi, K.; Ahmadi, M.; Aghaei, I.; Khaksarian, M. Anodal transcranial direct current stimulation enhances positive changes in movement functions, visual attention and depression of patients with chronic ischemic stroke: A clinical trial. Biomed. Res. Ther. 2018, 5, 2841–2849. [Google Scholar] [CrossRef]
- Hara, T.; Abo, M.; Kobayashi, K.; Watanabe, M.; Kakuda, W.; Senoo, A. Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation Combined with Intensive Speech Therapy on Cerebral Blood Flow in Post-Stroke Aphasia. Transl. Stroke Res. 2015, 6, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-Y.; Ku, Y.; Zanto, T.P.; Gazzaley, A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol. Aging 2015, 36, 2348–2359. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Li, G.; Wang, A.; Liu, T.; Feng, S.; Guo, Z.; Tang, Q.; Jin, Y.; Xing, G.; McClure, M.A. Repetitive Transcranial Magnetic Stimulation as an Alternative Therapy for Cognitive Impairmentin Alzheimer’s Disease: A Meta-Analysis. J. Alzheimers Dis. 2015, 48, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.W.C.; Wong, C.S.M.; Lee, K.K.; Chan, A.P.K.; Yeung, W.-F.; Chan, W.C. Effects of repetitive transcranial magnetic stimulation on improvement of cognition in elderly patients with cognitive impairment: A systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2018, 33, e1–e13. [Google Scholar] [CrossRef]
- Dinkelbach, L.; Brambilla, M.; Manenti, R.; Brem, A.-K. Non-invasive brain stimulation in Parkinson’s disease: Exploiting crossroads of cognition and mood. Neurosci. Biobehav. Rev. 2017, 75, 407–418. [Google Scholar] [CrossRef] [PubMed]
- D’Esposito, M.; Aguirre, G.; Zarahn, E.; Ballard, D.; Shin, R.; Lease, J. Functional MRI studies of spatial and nonspatial working memory. Cogn. Brain Res. 1998, 7, 1–13. [Google Scholar] [CrossRef]
- Gerton, B.K.; Brown, T.T.; Meyer-Lindenberg, A.; Kohn, P.; Holt, J.L.; Olsen, R.K.; Berman, K.F. Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 2004, 42, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M. Dorsolateral prefrontal cortex, working memory and episodic memory processes: Insight through transcranial magnetic stimulation techniques. Neurosci. Bull. 2013, 29, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Zoccatelli, G.; Beltramello, A.; Alessandrini, F.; Pizzini, F.B.; Tassinari, G. Word and position interference in stroop tasks: A behavioral and fMRI study. Exp. Brain Res. 2010, 207, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Dlabac-de Lange, J.J.; Bais, L.; van Es, F.D.; van den Heuvel, E. Efficacy of bilateral repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: Results of a multicenter double-blind randomized controlled trial. Psycol. Med. 2015, 45, 1263–1275. [Google Scholar] [CrossRef] [Green Version]
- Ahmadizadeh, M.J.; Rezaei, M. Unilateral right and bilateral dorsolateral prefrontal cortex transcranial magnetic stimulation in treatment post-traumatic stress disorder: A randomized controlled study. Brain Res. Bull. 2018, 140, 334–340. [Google Scholar] [CrossRef]
- Draaisma, L.R.; Wessel, M.J.; Hummel, F.C. Non-invasive brain stimulation to enhance cognitive rehabilitation after stroke. Neurosci. Lett. 2018, 719, 133678. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranialdirect current stimulation. Int. J. Neuropsychopharmacol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef]
- Hara, T.; Abo, M.; Kakita, K.; Mori, Y.; Sasaki, N.; Yoshida, M. The Effect of Selective Transcranial Magnetic Stimulation with Functional Near-Infrared Spectroscopy and Intensive Speech Therapy on Individuals with Post-Stroke Aphasia. Eur. Neurol. 2017, 77, 186–194. [Google Scholar] [CrossRef]
- Kakuda, W.; Abo, M.; Kobayashi, K.; Momosaki, R.; Yokoi, A.; Fukuda, A.; Ito, H.; Tominaga, A.; Umemori, T.; Kameda, Y. Anti-spastic effect of low-frequency rTMS applied with occupationaltherapy in post-strokepatients with upper limb hemiparesis. Brain Inj. 2011, 25, 496–502. [Google Scholar] [CrossRef]
- Sale, M.V.; Mattingley, J.B.; Zalesky, A.; Cocchi, L. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neurosci. Biobehav. Rev. 2015, 57, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grefkes, C.; Fink, G.R. Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches. Brain 2011, 134, 1264–1276. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Kakuda, W.; Kobayashi, K.; Momosaki, R.; Niimi, M.; Abo, M. Regional Cerebral Blood Flow (rCBF) after Low-frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Intensive Occupational Therapy for Upper Limb Hemiplegia after Stroke: A Study using Single Photon Emission Computed Tomography. Jpn. J. Rehabil. Med. 2013, 50, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Thiel, A.; Hartmann, A.; Rubi-Fessen, I.; Anglade, C.; Kracht, L.; Weiduschat, N.; Kessler, J.; Rommel, T.; Heiss, W.-D. Effects of Noninvasive Brain Stimulation on Language Networks and Recovery in Early Poststroke Aphasia. Stroke 2013, 44, 2240–2246. [Google Scholar] [CrossRef] [Green Version]
- Berube, S.; Hillis, A.E. Advances and Innovations in Aphasia Treatment Trials. Stroke 2019, 50, 2977–2984. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, J.L.; Cooke, D.; Joutsa, J.; Siddiqi, S.H.; Ferguson, M.; Darby, R.R.; Soussand, L.; Brown, P.; Kim, N.Y.; Voss, J.L.; et al. A Human Depression Circuit Derived From Focal Brain Lesions. Biol. Psychiatry 2019, 86, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, P.M.; Downar, J.; de Ridder, D.; Schwarzbach, J.; Schecklmann, M.; Langguth, B. A Comprehensive Review of Dorsomedial Prefrontal Cortex rTMS Utilizing a Double Cone Coil. Neuromodulation Technol. Neural Interface 2019, 22, 851–866. [Google Scholar] [CrossRef] [PubMed]
Study | Disease | Design—LoE | PEDro | Sample | Sex (M:F) | Age (SD) | Time between Stroke Onset and Treatment |
TMS | |||||||
Liu et al. 2020 [32] | Stroke | RCT-1 I + Re vs C(Sham) + Re | 10 | I: 29 C (Sham): 29 | 26:32 | I: 58.5(6.24) C:57.7(7.25) | I: 8.79(1.84) C: 8.62(1.84) months |
Li et al. 2020 [33] | Stroke | RCT-1 I + Re vs C(Sham) + Re | 8 | I: 15 C (Sham): 15 | 16:14 | I: 65.5(3.68) C:64.5(4.72) | I: 22.73(8.05) C: 19.13(7.95) days |
Tsai et al. 2020 [40] | Stroke | RCT-1 5 Hz rTMS vs iTBS vs C(Sham) | 10 | 5 Hz rTMS: 11 iTBS: 15 C (Sham): 15 | 33:8 | 5 Hz rTMS:57.5(12.3) iTBS: 60.1(14.1) C:56.2(12) | 5 Hz rTMS:33.3(26.4) iTBS: 18.5(20.2) C:38(7.9) months |
Yin et al. 2020 [34] | Stroke | RCT-1 I + Re vs C(Sham) + Re | 8 | I: 16 C (Sham): 18 | 30:4 | I: 56.7(12.9) C:58.2(11.3) | I: 52(38.25–98.75) C: 55(39.75–94.75) days |
Lu et al. 2015 [35] | Stroke | RCT-1 I + Re vs C(Sham) + Re | 8 | I: 19 C (Sham): 21 | 25:15 | I: 42.5(12.3) C:47.3(11.8) | 61 (30–365) days |
Kim et al. 2010 [36] | Stroke | RCT-1 1 Hz + Re vs 10 Hz + Re vs C(Sham) + Re | 7 | I: 12 (1 Hz 6, 10 Hz 6) C (Sham): 6 | 10:8 | I: LFS 68.3(7.4) HFS: 53.5(16.9) C: 66.8(17.2) | I: LFS 404.4(71.7) HFS: 241.2(42.5) C: 69.7(39.0) days |
tDCS | |||||||
Shaker et al. 2018 [37] | Stroke | RCT-1 I + Re vs C(Sham) + Re | 7 | I: 20 C (Sham): 20 | 40:0 | I: 54.45(4.68) C: 53.05(6.32) | I: 14.05(1.53) C: 16.55(2.78) months |
Hosseinzadeh et al. 2018 [41] | Stroke | RCT-1 Anodal vs Cathodal vs Sham vs Control(routine treatment) | 6 | Anodal: 25 Cathodal: 25 Sham: 25 Control: 25 | 49:51 | Anodal: 58(8) Cathodal: 60(7) Sham: 59(7) Control: 59(8) | 25–180 days |
Yun et al. 2015 [38] | Stroke | RCT-2 Left;Re vs Right + Re vs Sham + Re | 5 | I:30(Left 15, Right15) C (Sham): 15 | 20:25 | I: Left 60.9(12.9) I: Right58.9(15.0) C: 68.5(14.6) | I: Left 42.2(31.9) I: Right 38.1(27.0) C: 39.5(29.6) days |
Park et al. 2013 [39] | Stroke | RCT-1 I + Re vs C(Sham) + Re | 6 | I: 6 C (Sham): 5 | 5:6 | I: 65.3(14.3) C: 66.0(10.8) | I: 29.0(18.7) C:25.2(17.5) days |
Study | Disease | Targets | Stimulation Site | Parameter | Session | Rehabilitation | Assessments & Follow-Up | Results |
TMS | ||||||||
Liu et al. 2020 [32] | Stroke | Cognition Attention WM | Left DLPFC | 10 Hz 90%MT 700 pulses/session | 20 | Both groups of patients were given comprehensive cognitive function training. The cognitive function training was carried out on a touch screen computer. | TMT-A, DST, DS, MMSE, FIM | Intervention group was significantly improved in all assessment categories compared with the control. |
Li et al. 2020 [33] | Stroke | Cognition | Left DLPFC | 5 Hz 100%MT 2000 pulses/session | 15 | Routine cognitive training (included memory, attention, orientation, visual and spatial, judging and reasoning, executive capability) for 30 min/time, 1time/day and 5 days/week for total of 15 times in 3 weeks | MMSE, MoCA | Cognitive improvements were observed both in the intervention group and the control group, while the rTMS group got more significant improvement than the control group. |
Tsai et al. 2020 [40] | Stroke | Attention, WM, Memory | Left DLPFC | rTMS:5 Hz 80%MT 600 pulses/session iTBS:3 pulses of 50 Hz repeated at 5 Hz for total 190 sec(600pulses) | 10 | None | RBANS, BDI | The 5 Hz rTMS group showed significantly greater improvement than the sham group in RBANS total score, attention, and delayed memory. The iTBS group showed significantly greater improvement than the sham group in RBANS total score and delayed memory. The 5 Hz rTMS group exhibited a superior modulating effect in attention compared to the iTBS group. |
Yin et al. 2020 [34] | Stroke | Cognition, Memory, Executive | Left DLPFC | 10 Hz 80%MT 2000 pulses/session | 20 | 30-min computer-assisted cognitive rehabilitation referring to attention, executive function, memory, calculation, language and visuospatial skills after treatment. | MoCA, VST(a colored dots trail (A), a neutral words trail (B), and an incongruent- colored words trail (C)), RBMT, BI | The MoCA score in both groups increased significantly after four weeks and the score for the intervention group was significantly higher than that in the control group after treatments. The improvement of the RBMT score for the intervention group was significantly higher than that in the control group after treatments. The improvement of VST-B and -C for the intervention group was significantly higher than that in the control group after treatments. |
Lu et al. 2015 [35] | Stroke | Cognition, Memory | Right DLPFC | 1 Hz 100%MT 600 pulses/session | 20 | All patients received regular computer-assisted cognitive training for 30 min every day. | MoCA, LOTCA, RBMT Follow-up at 3 days and 2 months | No difference was observed between the intervention group and the control group for MoCA, LOTCA, and RBMT. However, RBMT was better in the intervention group. Two months after treatment, RMBT in the intervention group was higher than in the control group, but not MoCA and LOTCA scores. |
Kim et al. 2010 [36] | Stroke | Attention, WM, Memory, Executive | Left DLPFC | 1 Hz 900 pulses/ 10 Hz 450 pulses 80% MT | 10 | All patients received conventional cognitive rehabilitation two or three times a week for 2 wks. | DS, VS, VerL, VisL, VCPT, auditory CPT, a word-color test, ToL, BI, Beck Depression Inventory | There was no significant improvement about cognition in each intervention groups. However, mood state significantly improved with 10 Hz stimulation. |
tDCS | ||||||||
Shaker et al. 2018 [37] | Stroke | Attention, Memory | Bilateral DLPFC | 2 mA × 30 min, The anode electrode was placed over the right and left DLPFC. The cathode was placed over the contralateral supraorbital area. | 12 | All patients received cognitive training program. | Computer-based cognitive therapy tool (attention and concentration, figural memory, reaction behavior, and logical reasoning.), FIM | There was a significant improvement in the scores of attention and concentration, figural memory, logical reasoning, reaction behaviour in both groups. However, the improvement was significantly higher in the intervention group compared to the control group. |
Hosseinzadeh et al. 2018 [41] | Stroke | Attention | anodal: left STG, cathodal: Right PPC | 2 mA/35 cm2 × 30 min | 12 | None | NIHSS, TMT, Beck test Follow-up at 1 and 3 months | In TMT, the control group, the Anodal group, and the Cathodal group showed improvement after 1 month and 3 months compared with baseline, but there was no significant difference between all groups. NIHSS, Beck test was improved in Anodal. |
Yun et al. 2015 [38] | Stroke | Cognition, Attention, WM, Memory | fronto-temporal(T3 or T4) | 2 mA/25 cm2 × 30 min The anodal stimulation was placed over T3 or T4. | 15 | All patients received cognitive rehabilitation. | MMSE, DS, VS, VerL, VisL, VCPT, ACPT, BI | Left anodal tDCS improved digit and visual span task and verbal memory. Right anodal tDCS improved only verbal memory between pre and post treatment. Left anodal tDCS significantly improved verbal memory compared to the other groups. |
Park et al. 2013 [39] | Stroke | Cognition Attention, WM | Bilateral PFC | 2 mA/25 cm2 × 30 min, The anodal stimulation was placed over bilateral PFC and the cathodal stimulation were placed over the non-dominant arm. | mean 18.5 | All patients received computer assisted cognitive rehabilitation | DS, VS, CPT, MMSE | Intervention group was significantly improved in auditory and visual continuous performance compared with control. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, T.; Shanmugalingam, A.; McIntyre, A.; Burhan, A.M. The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis. Diagnostics 2021, 11, 227. https://doi.org/10.3390/diagnostics11020227
Hara T, Shanmugalingam A, McIntyre A, Burhan AM. The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis. Diagnostics. 2021; 11(2):227. https://doi.org/10.3390/diagnostics11020227
Chicago/Turabian StyleHara, Takatoshi, Aturan Shanmugalingam, Amanda McIntyre, and Amer M. Burhan. 2021. "The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis" Diagnostics 11, no. 2: 227. https://doi.org/10.3390/diagnostics11020227
APA StyleHara, T., Shanmugalingam, A., McIntyre, A., & Burhan, A. M. (2021). The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis. Diagnostics, 11(2), 227. https://doi.org/10.3390/diagnostics11020227