Texture Features of Proton Density Fat Fraction Maps from Chemical Shift Encoding-Based MRI Predict Paraspinal Muscle Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MR Imaging
2.3. MR Image Segmentation
2.4. Texture Analysis of PDFF Maps
2.5. Isometric Muscle Strength Measurements
2.6. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | anterior-posterior direction |
BMI | body mass index |
CSA | cross-sectional area |
CSE-MRI | chemical shift encoding-based water-fat magnetic resonance imaging |
DTI | diffusion tensor imaging |
ES | erector spinae muscle |
FOV | field of view |
GLCM | gray-level co-occurrence matrix |
IPACQ-SF | International Physical Activity Questionnaire Short-Form |
L2 | second lumbar vertebra |
L5 | fifth lumbar vertebra |
LSS | lumbar spinal stenosis |
LR | left-right direction |
MFI | muscle fat infiltration |
MITK | Medical Imaging Interaction Toolkit |
MRI | magnetic resonance imaging |
MRS | magnetic resonance spectroscopy |
MVIC | maximum voluntary isometric contraction |
MVICext/flex, | MVIC of extension |
MVICext/flex, | MVIC of flexion |
[Nm] | newton meter |
PDFF | proton density fat fraction |
PDFFES | PDFF of erector spinae muscles |
PDFFPS | PDFF of psoas muscles |
PS | psoas muscle |
r | Pearson correlation coefficient |
R2adj | adjusted coefficient of determination |
ROI | region of interest |
SD | standard deviation |
SENSE | sensitivity encoding |
SI | superior-inferior direction |
T | Tesla |
T1 | longitudinal relaxation time |
T2 | transverse relaxation time |
T2* | effective transverse relaxation time |
TA | texture analysis |
TE | echo time |
ΔTE | echo time step |
TR | repetition time |
References
- Hicks, G.E.; Simonsick, E.M.; Harris, T.B.; Newman, A.B.; Weiner, D.K.; Nevitt, M.A.; Tylavsky, F.A. Cross-sectional associations between trunk muscle composition, back pain, and physical function in the health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 882–887. [Google Scholar] [CrossRef] [Green Version]
- Kalichman, L.; Hodges, P.; Li, L.; Guermazi, A.; Hunter, D.J. Changes in paraspinal muscles and their association with low back pain and spinal degeneration: CT study. Eur. Spine J. 2010, 19, 1136–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, R.J.; Filli, L.; Elliott, J.M.; Nanz, D.; Fischer, M.A.; Marcon, M.; Ulbrich, E.J. Age- and Level-Dependence of Fatty Infiltration in Lumbar Paravertebral Muscles of Healthy Volunteers. AJNR Am. J. Neuroradiol. 2016, 37, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Dahlqvist, J.R.; Vissing, C.R.; Hedermann, G.; Thomsen, C.; Vissing, J. Fat Replacement of Paraspinal Muscles with Aging in Healthy Adults. Med. Sci. Sports Exerc. 2017, 49, 595–601. [Google Scholar] [CrossRef]
- Fisher, M.J.; Meyer, R.A.; Adams, G.R.; Foley, J.M.; Potchen, E.J. Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest. Radiol. 1990, 25, 480–485. [Google Scholar] [CrossRef]
- Shellock, F.G.; Fukunaga, T.; Mink, J.H.; Edgerton, V.R. Acute effects of exercise on MR imaging of skeletal muscle: Concentric vs eccentric actions. AJR Am. J. Roentgenol. 1991, 156, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Kuno, S.; Miyamoto, T.; Yoshioka, H.; Inaki, M.; Akima, H.; Katsuta, S.; Anno, I.; Itai, Y. Changes in magnetic resonance images in human skeletal muscle after eccentric exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Villanueva, A.; Suarez-Arrones, L.; Rodas, G.; Fernandez-Gonzalo, R.; Tesch, P.; Linnehan, R.; Kreider, R.; Di Salvo, V. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players. PLoS ONE 2016, 11, e0161356. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Liu, P.; Cheng, J.; Ma, Z.; Liu, J.; Qin, T. Correlation between intervertebral disc degeneration, paraspinal muscle atrophy, and lumbar facet joints degeneration in patients with lumbar disc herniation. BMC Musculoskelet Disord. 2017, 18, 167. [Google Scholar] [CrossRef] [Green Version]
- Sebro, R.; O’Brien, L.; Torriani, M.; Bredella, M.A. Assessment of trunk muscle density using CT and its association with degenerative disc and facet joint disease of the lumbar spine. Skeletal Radiol. 2016, 45, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.A.; Nanz, D.; Shimakawa, A.; Schirmer, T.; Guggenberger, R.; Chhabra, A.; Carrino, J.A.; Andreisek, G. Quantification of muscle fat in patients with low back pain: Comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology 2013, 266, 555–563. [Google Scholar] [CrossRef]
- Kjaer, P.; Bendix, T.; Sorensen, J.S.; Korsholm, L.; Leboeuf-Yde, C. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med. 2007, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Teichtahl, A.J.; Urquhart, D.M.; Wang, Y.; Wluka, A.E.; Wijethilake, P.; O’Sullivan, R.; Cicuttini, F.M. Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults. Spine J. 2015, 15, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Karampinos, D.C.; Baum, T.; Nardo, L.; Alizai, H.; Yu, H.; Carballido-Gamio, J.; Yap, S.P.; Shimakawa, A.; Link, T.M.; Majumdar, S. Characterization of the regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based water/fat separation. J. Magn Reson Imaging 2012, 35, 899–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadar, H.; Gadoth, N.; Heifetz, M. Fatty replacement of lower paraspinal muscles: Normal and neuromuscular disorders. AJR Am. J. Roentgenol. 1983, 141, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Dahlqvist, J.R.; Vissing, C.R.; Thomsen, C.; Vissing, J. Severe paraspinal muscle involvement in facioscapulohumeral muscular dystrophy. Neurology 2014, 83, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Kern, H.; Carraro, U. Home-Based Functional Electrical Stimulation of Human Permanent Denervated Muscles: A Narrative Review on Diagnostics, Managements, Results and Byproducts Revisited 2020. Diagnostics 2020, 10, 529. [Google Scholar] [CrossRef]
- Edmunds, K.J.; Gislason, M.K.; Arnadottir, I.D.; Marcante, A.; Piccione, F.; Gargiulo, P. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment. Eur. J. Transl. Myol. 2016, 26, 6015. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Parrish, T.B.; Abbott, R.; Hoggarth, M.A.; Mendoza, K.; Chen, Y.F.; Elliott, J.M. Muscle-fat MRI: 1.5 Tesla and 3.0 Tesla versus histology. Muscle Nerve 2014, 50, 170–176. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Hainc, N.; Stippich, C.; Stieltjes, B.; Leu, S.; Bink, A. Experimental Texture Analysis in Glioblastoma: A Methodological Study. Invest. Radiol. 2017, 52, 367–373. [Google Scholar] [CrossRef]
- Ingrisch, M.; Schneider, M.J.; Norenberg, D.; Negrao de Figueiredo, G.; Maier-Hein, K.; Suchorska, B.; Schuller, U.; Albert, N.; Bruckmann, H.; Reiser, M.; et al. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma. Invest. Radiol. 2017, 52, 360–366. [Google Scholar] [CrossRef]
- Hwang, I.P.; Park, C.M.; Park, S.J.; Lee, S.M.; McAdams, H.P.; Jeon, Y.K.; Goo, J.M. Persistent Pure Ground-Glass Nodules Larger Than 5 mm: Differentiation of Invasive Pulmonary Adenocarcinomas From Preinvasive Lesions or Minimally Invasive Adenocarcinomas Using Texture Analysis. Invest. Radiol. 2015, 50, 798–804. [Google Scholar] [CrossRef]
- Pickles, M.D.; Lowry, M.; Gibbs, P. Pretreatment Prognostic Value of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Vascular, Texture, Shape, and Size Parameters Compared With Traditional Survival Indicators Obtained From Locally Advanced Breast Cancer Patients. Invest. Radiol. 2016, 51, 177–185. [Google Scholar] [CrossRef]
- Sogawa, K.; Nodera, H.; Takamatsu, N.; Mori, A.; Yamazaki, H.; Shimatani, Y.; Izumi, Y.; Kaji, R. Neurogenic and Myogenic Diseases: Quantitative Texture Analysis of Muscle US Data for Differentiation. Radiology 2017, 283, 492–498. [Google Scholar] [CrossRef]
- Mookiah, M.R.K.; Rohrmeier, A.; Dieckmeyer, M.; Mei, K.; Kopp, F.K.; Noel, P.B.; Kirschke, J.S.; Baum, T.; Subburaj, K. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis. Osteoporos Int. 2018, 29, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Mannil, M.; Burgstaller, J.M.; Thanabalasingam, A.; Winklhofer, S.; Betz, M.; Held, U.; Guggenberger, R. Texture analysis of paraspinal musculature in MRI of the lumbar spine: Analysis of the lumbar stenosis outcome study (LSOS) data. Skeletal Radiol. 2018, 47, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Mannil, M.; Burgstaller, J.M.; Held, U.; Farshad, M.; Guggenberger, R. Correlation of texture analysis of paraspinal musculature on MRI with different clinical endpoints: Lumbar Stenosis Outcome Study (LSOS). Eur. Radiol. 2019, 29, 22–30. [Google Scholar] [CrossRef]
- Burian, E.; Subburaj, K.; Mookiah, M.R.K.; Rohrmeier, A.; Hedderich, D.M.; Dieckmeyer, M.; Diefenbach, M.N.; Ruschke, S.; Rummeny, E.J.; Zimmer, C.; et al. Texture analysis of vertebral bone marrow using chemical shift encoding-based water-fat MRI: A feasibility study. Osteoporos Int. 2019, 30, 1265–1274. [Google Scholar] [CrossRef] [Green Version]
- Recenti, M.; Ricciardi, C.; Edmunds, K.; Gislason, M.K.; Gargiulo, P. Machine learning predictive system based upon radiodensitometric distributions from mid-thigh CT images. Eur. J. Transl. Myol. 2020, 30, 8892. [Google Scholar] [CrossRef] [Green Version]
- Schlaeger, S.; Inhuber, S.; Rohrmeier, A.; Dieckmeyer, M.; Freitag, F.; Klupp, E.; Weidlich, D.; Feuerriegel, G.; Kreuzpointner, F.; Schwirtz, A.; et al. Association of paraspinal muscle water-fat MRI-based measurements with isometric strength measurements. Eur. Radiol. 2019, 29, 599–608. [Google Scholar] [CrossRef]
- Inhuber, S.; Sollmann, N.; Schlaeger, S.; Dieckmeyer, M.; Burian, E.; Kohlmeyer, C.; Karampinos, D.C.; Kirschke, J.S.; Baum, T.; Kreuzpointner, F.; et al. Associations of thigh muscle fat infiltration with isometric strength measurements based on chemical shift encoding-based water-fat magnetic resonance imaging. Eur. Radiol. Exp. 2019, 3, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodpaster, B.H.; Carlson, C.L.; Visser, M.; Kelley, D.E.; Scherzinger, A.; Harris, T.B.; Stamm, E.; Newman, A.B. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J. Appl. Physiol. 2001, 90, 2157–2165. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Guedes, D.P.; Lopes, C.C.; Guedes, J.E.R.P. Reprodutibilidade e validade do Questionário Internacional de Atividade Física em adolescentes. Rev. Bras. Med. Esporte 2005, 11, 151–158. [Google Scholar] [CrossRef]
- Kurtze, N.; Rangul, V.; Hustvedt, B.E. Reliability and validity of the international physical activity questionnaire in the Nord-Trondelag health study (HUNT) population of men. BMC Med. Res. Methodol. 2008, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Karampinos, D.C.; Yu, H.; Shimakawa, A.; Link, T.M.; Majumdar, S. T(1)-corrected fat quantification using chemical shift-based water/fat separation: Application to skeletal muscle. Magn Reson Med. 2011, 66, 1312–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Assefa, D.; Keller, H.; Menard, C.; Laperriere, N.; Ferrari, R.J.; Yeung, I. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: A preliminary investigation in terms of identification and segmentation. Med. Phys 2010, 37, 1722–1736. [Google Scholar] [CrossRef]
- Thibault, G.; Devic, C.; Fertil, B.; Mari, J.; Sequeira, J. Indices de formes: De la 2D vers la 3D-Application au classement de noyaux de cellules. Journées de l’Association Francophone d’Informatique Graphique 2007, 17, 17–24. [Google Scholar]
- Freedman, D. On the histogram as a density estimator: L2 theory. Probab Theory Relat Fields 1981, 57, 453–476. [Google Scholar]
- Scott, D.W. On optimal and data-based histograms. Biometrika 1979, 66, 605–610. [Google Scholar] [CrossRef]
- Sturges, H.A. The choice of a class interval. J. Am. Stat. Assoc 1926, 21, 65–66. [Google Scholar] [CrossRef]
- Vallieres, M.; Freeman, C.R.; Skamene, S.R.; El Naqa, I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 2015, 60, 5471–5496. [Google Scholar] [CrossRef]
- Zhou, H.; Vallieres, M.; Bai, H.X.; Su, C.; Tang, H.; Oldridge, D.; Zhang, Z.; Xiao, B.; Liao, W.; Tao, Y.; et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol. 2017, 19, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Vallieres, M.; Kay-Rivest, E.; Perrin, L.J.; Liem, X.; Furstoss, C.; Aerts, H.; Khaouam, N.; Nguyen-Tan, P.F.; Wang, C.S.; Sultanem, K.; et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 2017, 7, 10117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.E.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef]
- Huber, F.A.; Stutz, S.; Vittoria de Martini, I.; Mannil, M.; Becker, A.S.; Winklhofer, S.; Burgstaller, J.M.; Guggenberger, R. Qualitative versus quantitative lumbar spinal stenosis grading by machine learning supported texture analysis-Experience from the LSOS study cohort. Eur. J. Radiol. 2019, 114, 45–50. [Google Scholar] [CrossRef]
- Klupp, E.; Cervantes, B.; Schlaeger, S.; Inhuber, S.; Kreuzpointer, F.; Schwirtz, A.; Rohrmeier, A.; Dieckmeyer, M.; Hedderich, D.M.; Diefenbach, M.N.; et al. Paraspinal Muscle DTI Metrics Predict Muscle Strength. J. Magn Reson Imaging 2019, 50, 816–823. [Google Scholar] [CrossRef] [Green Version]
Inclusion Criteria | Age: 20–45 years BMI: 20–33 kg/m2 Completion of the IPAQ-sf with a score referring to a moderate level of physical activity (600–1500 metabolic equivalent of task-min/week) |
Exclusion Criteria | Vertebral fractures Severe anatomical or pathological alterations of the spine (e.g., scoliosis, spondylolisthesis, degenerative disc disease, facet joint arthrosis) Neuromuscular disease Metabolic disease (e.g., diabetes mellitus) History of high-performance sports General MRI contraindications (e.g., cochlear implant, severe claustrophobia) |
Male | Female | Total | p | |
---|---|---|---|---|
Age [years] | 30.73 ± 4.82 | 29.93 ± 7.07 | 30.27 ± 6.12 | 0.751 |
BMI [kg/m2] | 27.86 ± 3.48 | 26.38 ± 1.82 | 27.01 ± 2.69 | 0.171 |
PDFFES [%] | 8.93 ± 2.10 | 11.65 ± 2.92 | 10.50 ± 2.90 | 0.015 |
PDFFPS [%] | 4.22 ± 1.72 | 5.27 ± 1.81 | 4.83 ± 1.82 | 0.148 |
Variance(global)ES | 335.72 ± 39.32 | 285.96 ± 25.84 | 307.01 ± 40.26 | 0.001 |
Skewness(global)ES | 2.02 ± 0.20 | 1.71 ± 0.20 | 1.84 ± 0.25 | 0.001 |
Kurtosis(global)ES | 4.71 ± 1.42 | 3.24 ± 1.31 | 3.86 ± 1.52 | 0.012 |
EnergyES [×102] | 0.51 ± 0.26 | 0.29 ± 0.13 | 0.38 ± 0.22 | 0.008 |
ContrastES | 84.08 ± 26.92 | 110.65 ± 27.09 | 99.41 ± 29.67 | 0.021 |
EntropyES | 9.68 ± 0.63 | 10.36 ± 0.57 | 10.07 ± 0.68 | 0.008 |
HomogeneityES | 0.38 ± 0.04 | 0.33 ± 0.04 | 0.35 ± 0.05 | 0.007 |
CorrelationES | 0.86 ± 0.02 | 0.87 ± 0.02 | 0.86 ± 0.02 | 0.553 |
SumAverageES [×102] | 0.18 ± 0.02 | 0.18 ± 0.02 | 0.18 ± 0.02 | 0.322 |
VarianceES [×102] | 0.77 ± 0.25 | 1.08 ± 0.35 | 0.95 ± 0.35 | 0.021 |
DissimilarityES | 5.10 ± 1.01 | 6.22 ± 1.02 | 5.75 ± 1.15 | 0.010 |
Variance(global)PS | 223.66 ± 44.36 | 138.94 ± 36.00 | 174.79 ± 57.75 | <0.001 |
Skewness(global)PS | 1.15 ± 0.68 | 1.07 ± 0.47 | 1.11 ± 0.56 | 0.728 |
Kurtosis(global)PS | 5.90 ± 1.98 | 4.22 ± 1.09 | 4.93 ± 1.72 | 0.011 |
EnergyPS [×102] | 0.19 ± 0.05 | 0.13 ± 0.04 | 0.16 ± 0.05 | 0.003 |
ContrastPS | 104.98 ± 18.23 | 140.31 ± 27.83 | 125.36 ± 29.72 | 0.001 |
EntropyPS | 10.28 ± 0.30 | 10.79 ± 0.29 | 10.57 ± 0.39 | <0.001 |
HomogeneityPS | 0.31 ± 0.02 | 0.28 ± 0.02 | 0.29 ± 0.03 | <0.001 |
CorrelationPS | 0.73 ± 0.03 | 0.73 ± 0.04 | 0.73 ± 0.04 | 0.945 |
SumAveragePS [×102] | 0.19 ± 0.02 | 0.20 ± 0.01 | 0.19 ± 0.01 | 0.187 |
VariancePS [×102] | 0.48 ± 0.06 | 0.65 ± 0.12 | 0.58 ± 0.12 | <0.001 |
DissimilarityPS | 5.95 ± 0.57 | 7.22 ± 0.82 | 6.68 ± 0.96 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dieckmeyer, M.; Inhuber, S.; Schlaeger, S.; Weidlich, D.; Mookiah, M.R.K.; Subburaj, K.; Burian, E.; Sollmann, N.; Kirschke, J.S.; Karampinos, D.C.; et al. Texture Features of Proton Density Fat Fraction Maps from Chemical Shift Encoding-Based MRI Predict Paraspinal Muscle Strength. Diagnostics 2021, 11, 239. https://doi.org/10.3390/diagnostics11020239
Dieckmeyer M, Inhuber S, Schlaeger S, Weidlich D, Mookiah MRK, Subburaj K, Burian E, Sollmann N, Kirschke JS, Karampinos DC, et al. Texture Features of Proton Density Fat Fraction Maps from Chemical Shift Encoding-Based MRI Predict Paraspinal Muscle Strength. Diagnostics. 2021; 11(2):239. https://doi.org/10.3390/diagnostics11020239
Chicago/Turabian StyleDieckmeyer, Michael, Stephanie Inhuber, Sarah Schlaeger, Dominik Weidlich, Muthu Rama Krishnan Mookiah, Karupppasamy Subburaj, Egon Burian, Nico Sollmann, Jan S. Kirschke, Dimitrios C. Karampinos, and et al. 2021. "Texture Features of Proton Density Fat Fraction Maps from Chemical Shift Encoding-Based MRI Predict Paraspinal Muscle Strength" Diagnostics 11, no. 2: 239. https://doi.org/10.3390/diagnostics11020239
APA StyleDieckmeyer, M., Inhuber, S., Schlaeger, S., Weidlich, D., Mookiah, M. R. K., Subburaj, K., Burian, E., Sollmann, N., Kirschke, J. S., Karampinos, D. C., & Baum, T. (2021). Texture Features of Proton Density Fat Fraction Maps from Chemical Shift Encoding-Based MRI Predict Paraspinal Muscle Strength. Diagnostics, 11(2), 239. https://doi.org/10.3390/diagnostics11020239