Assessment of PSIM (Prostatic Systemic Inflammatory Markers) Score in Predicting Pathologic Features at Robotic Radical Prostatectomy in Patients with Low-Risk Prostate Cancer Who Met the Inclusion Criteria for Active Surveillance
Abstract
:1. Introduction
2. Material and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Hao, X.; Ma, T.; Dai, H.; Song, Y. The Prognostic Value of Platelet-to-Lymphocyte Ratio in Urological Cancers: A Meta-Analysis. Sci. Rep. 2017, 7, 15387. [Google Scholar] [CrossRef] [Green Version]
- Mbeutcha, A.; Shariat, S.F.; Rieken, M.; Rink, M.; Xylinas, E.; Seitz, C.; Lucca, I.; Mathieu, R.; Rouprêt, M.; Briganti, A.; et al. Prognostic significance of markers of systemic inflammatory response in patients with non-muscle-invasive bladder cancer. Urol. Oncol. 2016, 34, e17–e483. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Kinoshita, H.; Yoshida, K.; Mishima, T.; Yanishi, M.; Inui, H.; Komai, Y.; Sugi, M.; Inoue, T.; Murota, T.; et al. Prognostic impact of perioperative lymphocyte-monocyte ratio in patients with bladder cancer undergoing radical cystectomy. Tumour Biol. 2016, 37, 10067–10074. [Google Scholar] [CrossRef] [PubMed]
- Cantiello, F.; Russo, G.I.; Vartolomei, M.D.; Farhan, A.R.A.; Terracciano, D.; Musi, G.; Lucarelli, G.; Di Stasi, S.M.; Hurle, R.; Serretta, V.; et al. Systemic Inflammatory Markers and Oncologic Outcomes in Patients with High-risk Non-muscle-invasive Urothelial Bladder Cancer. Eur. Urol. Oncol. 2018, 1, 403–410. [Google Scholar] [CrossRef]
- Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M.; et al. Radical prostatectomy versus observation for localized prostate cancer. N. Engl. J. Med. 2012, 367, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.I.; Walsh, P.C.; Carmichael, M.; Brendler, C.B. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 1994, 271, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, F.B.; Brasso, K.; Klotz, L.H.; Røder, M.A.; Berg, K.D.; Iversen, P. Active surveillance for clinically localized prostate cancer—A systematic review. J. Surg. Oncol. 2014, 109, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Tosoian, J.J.; Mamawala, M.; Epstein, J.I.; Landis, P.; Wolf, S.; Trock, B.J.; Carter, H.B. Intermediate and Longer-Term Outcomes From a Prospective Active-Surveillance Program for Favorable-Risk Prostate Cancer. J. Clin. Oncol. 2015, 33, 3379–3385. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, F.; Haese, A.; Ahyai, S.A.; Walz, J.; Suardi, N.; Capitanio, U.; Graefen, M.; Erbersdobler, A.; Huland, H.; Karakiewicz, P.I. Critical assessment of tools to predict clinically insignificant prostate cancer at radical prostatectomy in contemporary men. Cancer 2008, 113, 701–709. [Google Scholar] [CrossRef]
- Erho, N.; Crisan, A.; Vergara, I.A.; Mitra, A.P.; Ghadessi, M.; Buerki, C.; Bergstralh, E.J.; Kollmeyer, T.; Fink, S.; Haddad, Z.; et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 2013, 8, e66855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knezevic, D.; Goddard, A.D.; Natraj, N.; Cherbavaz, D.B.; Clark-Langone, K.M.; Snable, J.; Watson, D.; Falzarano, S.M.; Magi-Galluzzi, C.; Klein, E.A.; et al. Analytical validation of the Oncotype DX prostate cancer assay—A clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genom. 2013, 14, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cucchiara, V.; Cooperberg, M.R.; Dall’Era, M.; Lin, D.W.; Montorsi, F.; Schalken, J.A.; Evans, J.P. Genomic Markers in Prostate Cancer Decision Making. Eur. Urol. 2018, 73, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Nam, H.-S.; Lim, J.H.; Kim, J.S.; Moon, Y.; Cho, J.H.; Ryu, J.; Kwak, S.M.; Lee, H.L. Prognostic impact of a new score using neutrophil-to-lymphocyte ratios in the serum and malignant pleural effusion in lung cancer patients. BMC Cancer 2017, 17, 557. [Google Scholar] [CrossRef]
- Pedrazzani, C.; Mantovani, G.; Fernandes, E.; Bagante, F.; Salvagno, G.L.; Surci, N.; Campagnaro, T.; Ruzzenente, A.; Danese, E.; Lippi, G.; et al. Assessment of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and platelet count as predictors of long-term outcome after R0 resection for colorectal cancer. Sci. Rep. 2017, 7, 1494. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, D.; Moschini, M.; Gust, K.; Abufaraj, M.; Özsoy, M.; Mathieu, R.; Soria, F.; Briganti, A.; Rouprêt, M.; Karakiewicz, P.I.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Primary Non-muscle-invasive Bladder Cancer. Clin. Genitourin. Cancer 2017, 15, e755–e764. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangma, C.H.; Bul, M.; Roobol, M. The Prostate cancer Research International: Active Surveillance study. Curr. Opin. Urol. 2012, 22, 216–221. [Google Scholar] [CrossRef]
- van der Kwast, T.H.; Amin, M.B.; Billis, A.; Epstein, J.I.; Griffiths, D.; Humphrey, P.A.; Montironi, R.; Wheeler, T.M.; Srigley, J.R.; Egevad, L.; et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 2: T2 substaging and prostate cancer volume. Mod. Pathol. 2011, 24, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.; Parwani, A.V.; Reuter, V.E.; Fine, S.W.; et al. 5 A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 2016, 69, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Draisma, G.; Etzioni, R.; Tsodikov, A.; Mariotto, A.; Wever, E.; Gulati, R.; Feuer, E.; de Koning, H. Lead time and overdiagnosis in prostate-specific antigen screening: Importance of methods and context. J. Natl. Cancer Inst. 2009, 101, 374–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draisma, G.; Boer, R.; Otto, S.J.; van der Cruijsen, I.W.; Damhuis, R.A.M.; Schröder, F.H.; de Koning, H. Lead times and overdetection due to prostate-specific antigen screening: Estimates from the European Randomized Study of Screening for Prostate Cancer. J. Natl. Cancer Inst. 2003, 95, 868–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastian, P.J.; Carter, B.H.; Bjartell, A.; Seitz, M.; Stanislaus, P.; Montorsi, F.; Stief, C.G.; Schröder, F.H. Insignificant prostate cancer and active surveillance: From definition to clinical implications. Eur. Urol. 2009, 55, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, G.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Faria, E.F.; Chapin, B.F.; Muller, R.L.; Machado, R.D.; Reis, R.B.; Matin, S.F. Radical Prostatectomy for Locally Advanced Prostate Cancer: Current Status. Urology 2015, 86, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Jahn, J.L.; Giovannucci, E.L.; Stampfer, M.J. The high prevalence of undiagnosed prostate cancer at autopsy: Implications for epidemiology and treatment of prostate cancer in the Prostate-specific Antigen-era. Int. J. Cancer 2015, 137, 2795–2802. [Google Scholar] [CrossRef] [PubMed]
- Bruinsma, S.M.; Roobol, M.J.; Carroll, P.R.; Klotz, L.; Pickles, T.; Moore, C.M.; Gnanapragasam, V.J.; Villers, A.; Rannikko, A.; Valdagni, R.; et al. Expert consensus document: Semantics in active surveillance for men with localized prostate cancer—Results of a modified Delphi consensus procedure. Nat. Rev. Urol. 2017, 14, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, M.; Musi, G.; Serino, A.; Cozzi, G.; Mistretta, F.A.; Costa, B.; Bianchi, R.; Cordima, G.; Luzzago, S.; Di Trapani, E.; et al. Neutrophil, Platelets, and Eosinophil to Lymphocyte Ratios Predict Gleason Score Upgrading in Low-Risk Prostate Cancer Patients. Urol. Int. 2019, 102, 43–50. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Sakkal, S.; Miller, S.; Apostolopoulos, V.; Nurgali, K. Eosinophils in Cancer: Favourable or Unfavourable? Curr. Med. Chem. 2016, 23, 650–666. [Google Scholar] [CrossRef]
- Bakewell, S.J.; Nestor, P.; Prasad, S.; Tomasson, M.H.; Dowland, N.; Mehrotra, M.; Scarborough, R.; Kanter, J.; Abe, K.; Phillips, D.; et al. Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proc. Natl. Acad. Sci. USA 2003, 100, 14205–14210. [Google Scholar] [CrossRef] [Green Version]
- Michalaki, V.; Syrigos, K.; Charles, P.; Waxman, J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br. J. Cancer 2004, 90, 2312–2316. [Google Scholar] [CrossRef]
- van Soest, R.J.; Templeton, A.J.; Vera-Badillo, F.E.; Mercier, F.; Sonpavde, G.; Amir, E.; Tombal, B.; Rosenthal, M.; Eisenberger, M.A.; Tannock, I.F.; et al. Neutrophil-to-lymphocyte ratio as a prognostic biomarker for men with metastatic castration-resistant prostate cancer receiving first-line chemotherapy: Data from two randomized phase III trials. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 743–749. [Google Scholar] [CrossRef]
- Gokce, M.I.; Hamidi, N.; Suer, E.; Tangal, S.; Huseynov, A.; Ibiş, A. Evaluation of neutrophil-to-lymphocyte ratio prior to prostate biopsy to predict biopsy histology: Results of 1836 patients. Can. Urol. Assoc. J. 2015, 9, E761–E765. [Google Scholar] [CrossRef] [PubMed]
- Marliere, F.; Puech, P.; Benkirane, A.; Villers, A.; Lemaitre, L.; Leroy, X.; Betrouni, N.; Ouzzane, A. The role of MRI-targeted and confirmatory biopsies for cancer upstaging at selection in patients considered for active surveillance for clinically low-risk prostate cancer. World J. Urol. 2014, 32, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.M.; Rossi, P.J.; Nour, S.G.; Jani, A.B. The impact of multiparametric pelvic magnetic resonance imaging on risk stratification in patients with localized prostate cancer. Urology 2014, 84, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Z.; OuYang, J. A novel nomogram combined PIRADS v2 and neutrophil-to-lymphocyte ratio to predict the risk of clinically significant prostate cancer in men with PSA < 10 ng/ml at first biopsy. Urol. Oncol. 2020, 38, 401–409. [Google Scholar] [PubMed]
- Zhang, G.M.; Zhu, Y.; Ma, X.; Qin, X.; Wan, F.; Dai, B.; Sun, L.; Ye, D. Pretreatment Neutrophil-to-Lymphocyte Ratio: A Predictor of Advanced Prostate Cancer and Biochemical Recurrence in Patients Receiving Radical Prostatectomy. Medicine (Baltimore) 2015, 94, e1473. [Google Scholar] [CrossRef]
- Maxeiner, A.; Kilic, E.; Matalon, J.; Friedersdorff, F.; Miller, K.; Jung, K.; Stephan, C.; Busch, J. The prostate health index PHI predicts oncological outcome and biochemical recurrence after radical prostatectomy—Analysis in 437 patients. Oncotarget 2017, 8, 79279–79288. [Google Scholar] [CrossRef] [Green Version]
Variables | n = 260 |
---|---|
Age (years), median (95%CI) | 62.0 (61.0–63.2) |
PSA (ng/ml), median (95%CI) | 5.6 (5.32–5.95) |
PSA density (ng/ml/cc), median (95%CI) | 0.12 (0.10–0.13) |
Total Number of cores, median (95%CI) | 12.0 (12.0–14.0) |
Positive cores, n (%) | |
1 | 137 (52.7) |
2 | 123 (47.3) |
Clinical stage, n (%) | |
cT1c | 231 (88.85) |
cT2 | 29 (11.15) |
Pathological stage, n (%) | |
pT2 | 189 (72.69) |
pT3a | 68 (26.15) |
pT3b | 3 (1.15) |
Pathological lymph node, n (%) | |
N1 | 1 (0.38) |
N0 | 38 (14.62) |
Nx | 221 (85.0) |
Pathological Gleason Score, n (%) | |
ISUP 1 | 166 (63.8) |
ISUP 2 | 75 (28.8) |
ISUP 3 | 17 (6.6) |
ISUP 4 | 2 (0.8) |
NLR, median (IQR) | 2.07 (1.67–2.66) |
PLR, median (IQR) | 114.83 (93.89–136.3) |
LMR, median (IQR) | 3.69 (3.03–4.43) |
Variables | NLR < 2.0 (N = 105) | NLR ≥ 2.0 (N = 155) | p-Value | PLR < 118 (N = 147) | PLR ≥ 118 (N = 113) | p-Value | LMR < 5.0 (N = 221) | LMR ≥ 5.0 (N = 39) | p-Value |
---|---|---|---|---|---|---|---|---|---|
Age (years), median (95%CI) | 61.0 (59.0–63.0) | 63.0 (61.0–64.0) | 0.13 | 62.0 (61.0–64.0) | 63.0 (60–64) | 0.62 | 63.0 (61.5–64.0) | 60.0 (58.0–62.8) | 0.01 |
PSA (ng/ml), median (95%CI) | 5.5 (5.03–6.02) | 5.7 (5.30–6.01) | 0.31 | 5.6 (5.30–6.00) | 5.5 (5.03–6.09) | 0.45 | 5.7 (5.31–6.00) | 5.5(4.54–6.29) | 0.63 |
PSA density (ng/ml/cc), median (95%CI) | 0.10 (0.10–0.12) | 0.12 (0.11–0.14) | 0.02 | 0.12 (0.10–0.13) | 0.12 (0.10–0.13) | 0.48 | 0.12 (0.10–0.13) | 0.11 (0.09–0.15) | 0.75 |
Prostate volume (mL), median(95%CI) | 50.0 (45.0–53.0) | 49.0 (46.0–52.0) | 0.71 | 49.0 (46.0–50.7) | 51.0 (45.0–55.0) | 0.63 | 49.0 (46.0–50.4) | 53.0 (38.2–60.0) | 0.91 |
ECE, n (%) | 28 (23.6) | 43 (27.7) | 0.01 | 37 (25.1) | 34 (30) | 0.71 | 54 (24.4) | 17 (43.6) | 0.001 |
Pathological ISUP ≥ 2, n (%) | 21 (20) | 73 (47.1) | 0.001 | 44 (29.9) | 50 (44.2) | 0.40 | 77 (34.8) | 17 (43.6) | 0.001 |
Systemic Inflammatory Markers | |||||
---|---|---|---|---|---|
Variables | 0 (N = 54) | 1 (N = 110) | 2 (N = 91) | 3 (N = 5) | p-Value |
Age (years), 95%CI | 61.0 (59.0–63.5) | 63.0 (61.0–64.0) | 63.0 (60.0–65.0) | 56.0 (46.0–66.0) | 0.21 |
PSA (ng/ml), 95%CI | 5.65 (4.97–6.62) | 5.68 (5.39–6.08) | 5.30 (4.92–5.92) | 9.02 (6.09–9.40) | 0.04 |
PSA density (ng/ml/cc), median (95%CI) | 0.11 (0.10–0.13) | 0.12 (0.10–0.14) | 0.12 (0.10–0.13) | 0.18 (0.11–0.19) | 0.06 |
Prostate volume (ml), median (95%CI) | 50.0 (43.4–52.5) | 49.0 (45.0–52.0) | 50.0 (45.0–56.0) | 52.0 (32.0–60.0) | 0.86 |
ECE, n (%) | 11 (20.4) | 30 (27.3) | 26 (28.6) | 4 (80.0) | 0.03 |
Pathological ISUP ≥2, n (%) | 8 (14.8) | 37 (33.6) | 44 (48.3) | 5 (100.0) | 0.001 |
Variables | O.R. | 95%CI | p-Value |
---|---|---|---|
Age | 1.02 | 0.97–1.08 | 0.30 |
PSA | 1.23 | 1.02–1.49 | 0.02 |
PSA density | 1.51 | 1.10–1.65 | 0.01 |
Prostate volume | 0.98 | 0.96–1.01 | 0.23 |
PSIMS | 2.17 | 1.33–3.54 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferro, M.; Musi, G.; Matei, D.V.; Mistretta, A.F.; Luzzago, S.; Cozzi, G.; Bianchi, R.; Di Trapani, E.; Cioffi, A.; Lucarelli, G.; et al. Assessment of PSIM (Prostatic Systemic Inflammatory Markers) Score in Predicting Pathologic Features at Robotic Radical Prostatectomy in Patients with Low-Risk Prostate Cancer Who Met the Inclusion Criteria for Active Surveillance. Diagnostics 2021, 11, 355. https://doi.org/10.3390/diagnostics11020355
Ferro M, Musi G, Matei DV, Mistretta AF, Luzzago S, Cozzi G, Bianchi R, Di Trapani E, Cioffi A, Lucarelli G, et al. Assessment of PSIM (Prostatic Systemic Inflammatory Markers) Score in Predicting Pathologic Features at Robotic Radical Prostatectomy in Patients with Low-Risk Prostate Cancer Who Met the Inclusion Criteria for Active Surveillance. Diagnostics. 2021; 11(2):355. https://doi.org/10.3390/diagnostics11020355
Chicago/Turabian StyleFerro, Matteo, Gennaro Musi, Deliu Victor Matei, Alessandro Francesco Mistretta, Stefano Luzzago, Gabriele Cozzi, Roberto Bianchi, Ettore Di Trapani, Antonio Cioffi, Giuseppe Lucarelli, and et al. 2021. "Assessment of PSIM (Prostatic Systemic Inflammatory Markers) Score in Predicting Pathologic Features at Robotic Radical Prostatectomy in Patients with Low-Risk Prostate Cancer Who Met the Inclusion Criteria for Active Surveillance" Diagnostics 11, no. 2: 355. https://doi.org/10.3390/diagnostics11020355
APA StyleFerro, M., Musi, G., Matei, D. V., Mistretta, A. F., Luzzago, S., Cozzi, G., Bianchi, R., Di Trapani, E., Cioffi, A., Lucarelli, G., Busetto, G. M., Del Giudice, F., Russo, G. I., Di Mauro, M., Porreca, A., Renne, G., Catellani, M., Bottero, D., Brescia, A., ... de Cobelli, O. (2021). Assessment of PSIM (Prostatic Systemic Inflammatory Markers) Score in Predicting Pathologic Features at Robotic Radical Prostatectomy in Patients with Low-Risk Prostate Cancer Who Met the Inclusion Criteria for Active Surveillance. Diagnostics, 11(2), 355. https://doi.org/10.3390/diagnostics11020355