Characterization of the COPD Salivary Fingerprint through Surface Enhanced Raman Spectroscopy: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Patients Selection and Saliva Collection
2.3. Raman Analysis
2.4. Data Processing and Statistical Analysis
3. Results
3.1. SERS Methodology
3.2. Clinical Analysis
3.3. Multivariate Analysis and Classification Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golpe, R.; Suárez-Valor, M.; Martín-Robles, I.; Sanjuán-López, P.; Cano-Jiménez, E.; Castro-Añón, O.; Llano, L.A.P.D. Mortality in COPD patients according to clinical phenotypes. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1433–1439. [Google Scholar] [CrossRef] [Green Version]
- Miravitlles, M.; Calle, M.; Soler-Cataluña, J.J. Clinical Phenotypes of COPD: Identification, Definition and Implications for Guidelines. Arch. Bronconeumol. 2012, 48, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Caramori, G.; Casolari, P.; Carone, M.; Bertorelli, G.; Banfi, P.; Andò, F. Personalised treatment of stable COPD patients. Rass. Patol. Appar. Respir. 2016, 31, 83–90. [Google Scholar]
- Calzetta, L.; Rogliani, P.; Matera, M.G.; Cazzola, M. A Systematic Review With Meta-Analysis of Dual Bronchodilation With LAMA/LABA for the Treatment of Stable COPD. Chest 2016, 149, 1181–1196. [Google Scholar] [CrossRef]
- WHO. Global Initiative for Chronic Obstructive Lung Disease; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Chisanga, M.; Muhamadali, H.; Ellis, D.I.; Goodacre, R. Enhancing Disease Diagnosis: Biomedical Applications of Surface-Enhanced Raman Scattering. Appl. Sci. 2019, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Carlomagno, C.; Banfi, P.I.; Gualerzi, A.; Picciolini, S.; Volpato, E.; Meloni, M.; Lax, A.; Colombo, E.; Ticozzi, N.; Verde, F.; et al. Human salivary Raman fingerprint as biomarker for the diagnosis of Amyotrophic Lateral Sclerosis. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Ryzhikova, E.; Ralbovsky, N.M.; Halámková, L.; Celmins, D.; Malone, P.; Molho, E.; Quinn, J.; Zimmerman, E.A.; Lednev, I.K. Multivariate Statistical Analysis of Surface Enhanced Raman Spectra of Human Serum for Alzheimer’s Disease Diagnosis. Appl. Sci. 2019, 9, 3256. [Google Scholar] [CrossRef] [Green Version]
- Devitt, G.; Howard, K.; Mudher, A.; Mahajan, S. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis. ACS Chem. Neurosci. 2018, 9, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Gniadecka, M.; Philipsen, P.A.; Wessel, S.; Gniadecki, R.; Wulf, H.C.; Sigurdsson, S.; Nielsen, O.F.; Christensen, D.H.; Hercogova, J.; Rossen, K.; et al. Melanoma Diagnosis by Raman Spectroscopy and Neural Networks: Structure Alterations in Proteins and Lipids in Intact Cancer Tissue. J. Investig. Dermatol. 2004, 122, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Moon, S.W.; Shin, J.-H.; Park, H.-K.; Jin, K.-H. Label-Free Biochemical Analytic Method for the Early Detection of Adenoviral Conjunctivitis Using Human Tear Biofluids. Anal. Chem. 2014, 86, 11093–11099. [Google Scholar] [CrossRef] [PubMed]
- Connolly, J.M.; Davies, K.; Kazakeviciute, A.; Wheatley, A.M.; Dockery, P.; Keogh, I.; Olivo, M. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Derruau, S.; Robinet, J.; Untereiner, V.; Piot, O.; Sockalingum, G.D.; Lorimier, S. Vibrational Spectroscopy Saliva Profiling as Biometric Tool for Disease Diagnostics: A Systematic Literature Review. Molecules 2020, 25, 4142. [Google Scholar] [CrossRef]
- Gualerzi, A.; Picciolini, S.; Carlomagno, C.; Terenzi, F.; Ramat, S.; Sorbi, S.; Bedoni, M. Raman profiling of circulating extracellular vesicles for the stratification of Parkinson’s patients. Nanomed. Nanotechnol. Biol. Med. 2019, 22, 102097. [Google Scholar] [CrossRef]
- Carlomagno, C.; Cabinio, M.; Picciolini, S.; Gualerzi, A.; Baglio, F.; Bedoni, M. SERS-based biosensor for Alzheimer disease evaluation through the fast analysis of human serum. J. Biophotonics 2020, 13, e201960033. [Google Scholar] [CrossRef]
- Dong, T.; Santos, S.; Yang, Z.; Yang, S.; Kirkhus, N.E. Sputum and salivary protein biomarkers and point-of-care biosensors for the management of COPD. Analyst 2020, 145, 1583–1604. [Google Scholar] [CrossRef] [PubMed]
- Yigla, M.; Berkovich, Y.; Nagler, R.M. Oxidative stress indices in COPD—Broncho-alveolar lavage and salivary analysis. Arch. Oral Biol. 2007, 52, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Carmicheal, J.; Hayashi, C.; Huang, X.; Liu, L.; Lu, Y.; Krasnoslobodtsev, A.; Lushnikov, A.; Kshirsagar, P.G.; Patel, A.; Jain, M.; et al. Label-free characterization of exosome via surface enhanced Raman spectroscopy for the early detection of pancreatic cancer. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Inonu, H.; Doruk, S.; Sahin, S.; Ünal, E.; Celik, D.; Celikel, S.; Seyfikli, Z. Oxidative Stress Levels in Exhaled Breath Condensate Associated With COPD and Smoking. Respir. Care 2012, 57, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Salamzadeh, J.; Dadashzadeh, S.; Habibi, M.; Estifaie, S. Serum and Saliva Theophylline Levels in Adult Outpatients with Asthma and Chronic Obstructive Pulmonary Disease (COPD): A Cross-Sectional Study. Iran. J. Pharm. Res. 2010, 7, 83–87. [Google Scholar]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics. Laser Phys. Lett. 2012, 9, 73–77. [Google Scholar] [CrossRef]
- Carlomagno, C.; Speranza, G.; Aswath, P.; Sorarù, G.D.; Migliaresi, C.; Maniglio, D. Breath figures decorated silica-based ceramic surfaces with tunable geometry from UV cross-linkable polysiloxane precursor. J. Eur. Ceram. Soc. 2018, 38, 1320–1326. [Google Scholar] [CrossRef]
- Muro, C.K.; Fernandes, L.D.S.; Lednev, I.K. Sex Determination Based on Raman Spectroscopy of Saliva Traces for Forensic Purposes. Anal. Chem. 2016, 88, 12489–12493. [Google Scholar] [CrossRef] [PubMed]
- Rygula, A.; Majzner, K.; Marzec, K.M.; Kaczor, A.; Pilarczyk, M.; Baranska, M. Raman spectroscopy of proteins: A review. J. Raman Spectrosc. 2013, 44, 1061–1076. [Google Scholar] [CrossRef]
- Sharma, B.; Kanwar, S.S. Phosphatidylserine: A cancer cell targeting biomarker. Semin. Cancer Biol. 2018, 52, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Meister, M.; Zhang, S.; Vong, C.I.; Wang, S.; Fang, R.; Li, L.; Wang, P.G.; Massion, P.; Ji, X. Identification of lipid biomarker from serum in patients with chronic obstructive pulmonary disease. Respir. Res. 2020, 21, 242. [Google Scholar] [CrossRef]
- Knowles, E.E.; Meikle, P.J.; Huynh, K.; Göring, H.H.; Olvera, R.L.; Mathias, S.R.; Duggirala, R.; Almasy, L.; Blangero, J.; Curran, J.E.; et al. Serum phosphatidylinositol as a biomarker for bipolar disorder liability. Bipolar Disord. 2017, 19, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Liang, Q.-L.; Hu, P.; Wang, Y.-M.; Luo, G.-A. Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta 2011, 85, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, P.A.; Barnes, P.J. Oxidative Stress in COPD. Chest 2013, 144, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Iizuka, J.; Murata, Y.; Ito, Y.; Iwamiya, M.; Mori, H.; Hirata, Y.; Mukai, Y.; Mikuni-Takagaki, Y. Multimolecular Salivary Mucin Complex Is Altered in Saliva of Cigarette Smokers: Detection of Disulfide Bridges by Raman Spectroscopy. BioMed Res. Int. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Baker, E.H.; Bell, D. Blood glucose: Of emerging importance in COPD exacerbations. Thorax 2009, 64, 830–832. [Google Scholar] [CrossRef] [Green Version]
- Ngkelo, A.; Hoffmann, R.F.; Durham, A.L.; Marwick, J.A.; Brandenburg, S.M.; De Bruin, H.G.; Jonker, M.R.; Rossios, C.; Tsitsiou, E.; Caramori, G.; et al. Glycogen synthase kinase-3β modulation of glucocorticoid responsiveness in COPD. Am. J. Physiol. Cell. Mol. Physiol. 2015, 309, L1112–L1123. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.-C.; Zhang, H.-W.; Yu, J.; Xu, H.-J.; Chen, H.; Luo, S.-P.; Zhang, H.; Liang, L.-H.; Wu, X.-L.; Lei, Y.; et al. CT Imaging and Differential Diagnosis of COVID-19. Can. Assoc. Radiol. J. 2020, 71, 195–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agudelo, C.W.; Kumley, B.K.; Area-Gomez, E.; Xu, Y.; Dabo, A.J.; Geraghty, P.; Campos, M.; Foronjy, R.; Garcia-Arcos, I. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS ONE 2020, 15, e0228279. [Google Scholar] [CrossRef] [PubMed]
- Bolton, C.E.; Evans, M.; Ionescu, A.A.; Edwards, S.M.; Morris, R.H.K.; Dunseath, G.; Luzio, S.; Owens, D.R.; Shale, D.J. Insulin Resistance and inflammation—A Further Systemic Complication of COPD. COPD J. Chronic Obstr. Pulm. Dis. 2007, 4, 121–126. [Google Scholar] [CrossRef]
- Hjalmarsen, A.; Aasebø, U.; Birkeland, K.; Sager, G.; Jorde, R. Impaired glucose tolerance in patients with chronic hypoxic pulmonary disease. Diabetes Metab. 1996, 22, 37–42. [Google Scholar]
- Patel, N.; Belcher, J.; Thorpe, G.; Forsyth, N.R.; Spiteri, M.A. Measurement of C-reactive protein, procalcitonin and neutrophil elastase in saliva of COPD patients and healthy controls: Correlation to self-reported wellbeing parameters. Respir. Res. 2015, 16, 62. [Google Scholar] [CrossRef] [Green Version]
- Langen, R.; Korn, S.; Wouters, E. ROS in the local and systemic pathogenesis of COPD. Free. Radic. Biol. Med. 2003, 35, 226–235. [Google Scholar] [CrossRef]
- Man, S.F.P.; Xing, L.; Connett, J.E.; Anthonisen, N.R.; Wise, R.A.; Tashkin, D.P.; Zhang, X.; Vessey, R.; Walker, T.G.; Celli, B.R.; et al. Circulating fibronectin to C-reactive protein ratio and mortality: A biomarker in COPD? Eur. Respir. J. 2008, 32, 1451–1457. [Google Scholar] [CrossRef] [Green Version]
- Stolz, D.; Christ-Crain, M.; Morgenthaler, N.G.; Leuppi, J.; Miedinger, D.; Bingisser, R.; Müller, C.; Struck, J.; Müller, B.; Tamm, M. Copeptin, C-Reactive Protein, and Procalcitonin as Prognostic Biomarkers in Acute Exacerbation of COPD. Chest 2007, 131, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
Raman Shift | Attribution | |||
---|---|---|---|---|
Protein | Lipids | Nucleotides | Carbohydrates | |
441 cm−1 | Sterols stretching | |||
524 cm−1 | Phosphatidylserine | |||
543 cm−1 | Glucose/Saccharides | |||
587 cm−1 | Phosphatidylinositol | |||
621 cm−1 | Phenylalanine | |||
715 cm−1 | C-N phospholipids | |||
746 cm−1 | Ring breathing DNA/RNA | |||
778 cm−1 | Ring breathing C, U, T | |||
812 cm−1 | Phosphodiester bonds | |||
924 cm−1 | Glucose/Glycogen | |||
1001 cm−1 | Phenylalanine, Tryptophan | |||
1051 cm−1 | Glycogen | |||
1126 cm−1 | Stretching of acyl backbone | |||
1161 cm−1 | Tyrosine | |||
1267 cm−1 | Amide III | |||
1284 cm−1 | C-H bending | |||
1301 cm−1 | C-H vibration | |||
1382 cm−1 | C-H rocking | |||
1409 cm−1 | Bending of methyl groups | |||
1454 cm−1 | Phospholipids |
COPD | CTRL | p-Value | |
---|---|---|---|
Number | 15 | 15 | − |
Sex (male) | 53.3% (8) | 53.3% (8) | 1.23 |
Age (years) | 66 ± 10 | 60 ± 6 | 0.06 |
Smoker | Yes = 46.6% (7) Ex = 54.4% (8) | Yes = 33.3% (5) No = 66.7% (10) | 0.27 |
COPD Phenotype | With Emphysema = 46.6% (7) With Bronchitis = 54.4% (8) | − | 0.59 |
Frequent exacerbator | Yes = 60% (9) No = 40% (6) | − | 0.12 |
GOLD Classification | 2 A = 6.6% (1) 2 B = 20% (3) 2 C = 6.6% (1) 2 D = 6.6% (1) 3 C = 6.6% (1) 3 D = 26.6% (4) 4 B = 13.3% (2) 4 D = 13.3% (2) | − | − |
Raman Shift CTRL | Attribution | Raman Shift COPD |
---|---|---|
441 cm−1 | Sterols stretching | − |
471 cm−1 | Polysaccharides | − |
499 cm−1 | Glycogen | − |
524 cm−1 | Phosphatidylserine | − |
543 cm−1 | Glucose/Saccharides | − |
560 cm−1 | Tryptophan | − |
587 cm−1 | Phosphatidylinositol | − |
− | Glucose/Glycogen | 924 cm−1 |
− | Proline | 937 cm−1 |
− | Proline and Valine | 948 cm−1 |
− | Phosphate monoester groups | 962 cm−1 |
− | C-H bending in lipids | 979 cm−1 |
− | Phenylalanine, Tryptophan | 1001 cm−1 |
− | Glycogen | 1051 cm−1 |
− | C-C of lipids | 1077 cm−1 |
− | Phenylalanine | 1104 cm−1 |
− | Stretching of acyl backbone | 1126 cm−1 |
− | Tyrosine | 1161 cm−1 |
− | Nucleotides breathing | 1195 cm−1 |
1242 cm−1 | Amide III | − |
1267 cm−1 | Amide III/Lipids | − |
1450 cm−1 | C-H deformations in lipids | − |
− | Cytosine | 1515 cm−1 |
Accuracy | Sensitivity | Specificity | Precision | ER | MCC | ROC-AUC | |
---|---|---|---|---|---|---|---|
LOOCV Model | 98% | 98% | 99% | 98% | 0.85% | 0.97 | 0.975 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlomagno, C.; Gualerzi, A.; Picciolini, S.; Rodà, F.; Banfi, P.I.; Lax, A.; Bedoni, M. Characterization of the COPD Salivary Fingerprint through Surface Enhanced Raman Spectroscopy: A Pilot Study. Diagnostics 2021, 11, 508. https://doi.org/10.3390/diagnostics11030508
Carlomagno C, Gualerzi A, Picciolini S, Rodà F, Banfi PI, Lax A, Bedoni M. Characterization of the COPD Salivary Fingerprint through Surface Enhanced Raman Spectroscopy: A Pilot Study. Diagnostics. 2021; 11(3):508. https://doi.org/10.3390/diagnostics11030508
Chicago/Turabian StyleCarlomagno, Cristiano, Alice Gualerzi, Silvia Picciolini, Francesca Rodà, Paolo Innocente Banfi, Agata Lax, and Marzia Bedoni. 2021. "Characterization of the COPD Salivary Fingerprint through Surface Enhanced Raman Spectroscopy: A Pilot Study" Diagnostics 11, no. 3: 508. https://doi.org/10.3390/diagnostics11030508
APA StyleCarlomagno, C., Gualerzi, A., Picciolini, S., Rodà, F., Banfi, P. I., Lax, A., & Bedoni, M. (2021). Characterization of the COPD Salivary Fingerprint through Surface Enhanced Raman Spectroscopy: A Pilot Study. Diagnostics, 11(3), 508. https://doi.org/10.3390/diagnostics11030508