Fat Composition Measured by Proton Spectroscopy: A Breast Cancer Tumor Marker?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. In Vivo MRS Acquisitions
2.3. Pathology Analysis
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clauser, P.; Pinker, K.; Helbich, T.H.; Kapetas, P.; Bernathova, M.; Baltzer, P.A.T. Fat saturation in dynamic breast MRI at 3 Tesla: Is the Dixon technique superior to spectral fat saturation? A visual grading characteristics study. Eur. Radiol. 2014, 24, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Cunningham, C.H.; Pauly, J.M.; Daniel, B.L.; Hargreaves, B.A. Homogenous fat suppression for bilateral breast imaging using independent shims. Magn. Reson. Med. 2014, 71, 1511–1517. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-K.; Park, S.-H.; Lee, H.M.; Lee, Y.-H.; Sung, N.-K.; Chung, D.-S.; Kim, O.-D. In vivo 1H-MRS evaluation of malignant and benign breast diseases. Breast 2003, 12, 179–182. [Google Scholar] [CrossRef]
- Fardanesh, R.; Marino, M.A.; Avendano, D.; Leithner, D.; Pinker, K.; Thakur, S.B. Proton MR spectroscopy in the breast: Technical innovations and clinical applications. J. Magn. Reson. Imaging 2019, 50, 1033–1046. [Google Scholar] [CrossRef]
- Dzendrowskyj, T.E.; Noyszewski, E.A.; Beers, J.; Bolinger, L. Lipid composition changes in normal breast throughout the menstrual cycle. MAGMA 1997, 5, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Freed, M.; Storey, P.; Lewin, A.A.; Babb, J.; Moccaldi, M.; Moy, L.; Kim, S.G. Evaluation of Breast Lipid Composition in Patients with Benign Tissue and Cancer by Using Multiple Gradient-Echo MR Imaging. Radiology 2016, 281, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipnick, S.; Liu, X.; Sayre, J.; Bassett, L.W.; DeBruhl, N.; Thomas, M.A. Combined DCE-MRI and single-voxel 2D MRS for differentiation between benign and malignant breast lesions. NMR Biomed. 2010, 23, 922–930. [Google Scholar] [CrossRef]
- Hakumäki, J.M.; Poptani, H.; Sandmair, A.-M.; Ylä-Herttuala, S.; Kauppinen, R.A. 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: Implications for the in vivo detection of apoptosis. Nat. Med. 1999, 5, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.B.; Horvat, J.V.; Hancu, I.; Sutton, O.M.; Bernard-Davila, B.; Weber, M.; Oh, J.H.; Marino, M.A.; Avendano, D.; Leithner, D.; et al. Quantitative in vivo proton MR spectroscopic assessment of lipid metabolism: Value for breast cancer diagnosis and prognosis. J. Magn. Reson. Imaging 2019, 50, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Baumann, J.; Sevinsky, C.; Conklin, D.S. Lipid biology of breast cancer. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 2013, 1831, 1509–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 2016, 16, 732–749. [Google Scholar] [CrossRef]
- Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Kourtidis, A.; Jain, R.; Carkner, R.D.; Eifert, C.; Brosnan, M.J.; Conklin, D.S. An RNA Interference Screen Identifies Metabolic Regulators NR1D1 and PBP as Novel Survival Factors for Breast Cancer Cells with the ERBB2 Signature. Cancer Res. 2010, 70, 1783–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphorst, J.J.; Cross, J.R.; Fan, J.; de Stanchina, E.; Mathew, R.; White, E.P.; Thompson, C.B.; Rabinowitz, J.D. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. USA 2013, 110, 8882–8887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picon-Ruiz, M.; Pan, C.; Drews-Elger, K.; Jang, K.; Besser, A.H.; Zhao, D.; Morata-Tarifa, C.; Kim, M.; Ince, T.A.; Azzam, D.J.; et al. Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b–Mediated Malignant Progression. Cancer Res. 2016, 76, 491–504. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Buache, E.; Chenard, M.-P.; Dali-Youcef, N.; Rio, M.-C. Adipocyte is a non-trivial, dynamic partner of breast cancer cells. Int. J. Dev. Biol. 2011, 55, 851–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilfling, F.; Haas, J.T.; Walther, T.C.; Jr, R.V.F. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 2014, 29, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.F.; Lei, H.; Gruetter, R. Characterization of hepatic fatty acids in mice with reduced liver fat by ultra-short echo time 1 H-MRS at 14.1 T in vivo. NMR Biomed. 2015, 28, 1009–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.r-project.org/ (accessed on 20 March 2021).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, I.E.; Douglas, D.; Ren, J.; Smith, N.B.; Webb, A.G.; Sherry, A.D.; Malloy, C.R. In vivo determination of human breast fat composition by 1H magnetic resonance spectroscopy at 7 T. Magn. Reson. Med. 2012, 67, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, S.B.; Brennan, S.B.; Ishill, N.M.; Morris, E.A.; Liberman, L.; Dershaw, D.D.; Bartella, L.; Koutcher, J.A.; Huang, W. Diagnostic usefulness of water-to-fat ratio and choline concentration in malignant and benign breast lesions and normal breast parenchyma: An in vivo 1H MRS study. J. Magn. Reson. Imaging 2011, 33, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Jagannathan, N.R. In vivo MR spectroscopy for breast cancer diagnosis. BJR|Open 2019, 1, 20180040. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, K.; Sharma, U.; Mathur, S.; Seenu, V.; Parshad, R.; Jagannathan, N.R. Study of lipid metabolism by estimating the fat fraction in different breast tissues and in various breast tumor sub-types by in vivo 1 H MR spectroscopy. Magn. Reson. Imaging 2018, 49, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Lewin, A.A.; Storey, P.; Moccaldi, M.; Moy, L.; Gene Kim, S. Fatty acid composition in mammary adipose tissue measured by Gradient-echo Spectroscopic MRI and its association with breast cancers. Eur. J. Radiol. 2019, 116, 205–211. [Google Scholar] [CrossRef]
- Guo, S.; Wang, Y.; Zhou, D.; Li, Z. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci. Rep. 2015, 4, 5959. [Google Scholar] [CrossRef] [Green Version]
- Brooks, G.P.; Johanson, G.A. Sample Size Considerations for Multiple Comparison Procedures in ANOVA. J. Mod. Appl. Stat. Methods 2011, 10, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Sarma, M.; Saucedo, A.; Emir, U.; Thomas, A. Semi LASER Localized Echo Planar Total Correlated Spectroscopic Imaging. In Proceedings of the ISMRM & SMRT Virtual Conference & Exhibition, 8–14 August 2020; p. 2886. Available online: https://www.ismrm.org/20/program_files/DP06-02.htm (accessed on 20 March 2021).
Characteristic Peak | All Voxels, n = 36 | Normal FGT, n = 18 | Tumor, n = 18 | p-Value |
---|---|---|---|---|
L09, median (IQR) | 0.03 (0.01, 0.10) | 0.08 (0.04, 0.12) | 0.01 (0.01, 0.03) | <0.001 |
L13 + L16, median (IQR) | 0.23 (0.09, 0.66) | 0.49 (0.27, 0.84) | 0.09 (0.03, 0.20) | <0.001 |
L21 + L23, median (IQR) | 0.04 (0.02, 0.12) | 0.10 (0.05, 0.15) | 0.02 (0.01, 0.04) | <0.001 |
L28, median (IQR) | 0.004 (0.002, 0.012) | 0.009 (0.004, 0.016) | 0.001 (0.000, 0.004) | <0.001 |
L41 + L43, median (IQR) | 0.004 (0.001, 0.012) | 0.010 (0.004, 0.014) | 0.002 (0.000, 0.004) | <0.001 |
L52 + L53, median (IQR) | 0.007 (0.004, 0.017) | 0.012 (0.007, 0.023) | 0.005 (0.001, 0.006) | 0.002 |
SI, median (IQR) | 9.08 (7.34, 10.93) | 9.08 (7.99, 11.23) | 9.09 (6.42, 10.82) | 0.4 |
NDB, median (IQR) | 0.28 (0.13, 0.41) | 0.20 (0.14, 0.35) | 0.33 (0.14, 0.45) | 0.3 |
PUFA, median (IQR) | 0.16 (0.11, 0.24) | 0.23 (0.15, 0.33) | 0.14 (0.09, 0.20) | 0.04 |
MUFA, median (IQR) | 0.47 (0.33, 0.56) | 0.38 (0.30, 0.54) | 0.51 (0.45, 0.57) | 0.085 |
MCL, median (IQR) | 14.9 (13.3, 17.9) | 14.4 (13.7, 17.9) | 15.4 (12.2, 17.7) | 0.6 |
Characteristic Peak | p-Value | ||
---|---|---|---|
ER+ (n = 5) vs. ER− (n = 13) | PR+ (n = 3) vs. PR− (n = 15) | HER2+ (n = 8) vs. HER2− (n = 10) | |
L09 | 0.24 | 0.22 | 0.07 |
L13 + L16 | 0.24 | 0.22 | 0.06 |
L21 + L23 | 0.22 | 0.22 | 0.06 |
L28 | 0.22 | 0.22 | 0.04 |
L41 + L43 | 0.22 | 0.22 | 0.04 |
L52 + L53 | 0.03 | 0.03 | 0.03 |
SI | 0.24 | 0.22 | 0.14 |
NDB | 0.22 | 0.22 | 0.11 |
PUFA | 0.22 | 0.22 | 0.04 |
MUFA | 0.90 | 0.90 | 0.90 |
MCL | 0.66 | 0.22 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitencourt, A.; Sevilimedu, V.; Morris, E.A.; Pinker, K.; Thakur, S.B. Fat Composition Measured by Proton Spectroscopy: A Breast Cancer Tumor Marker? Diagnostics 2021, 11, 564. https://doi.org/10.3390/diagnostics11030564
Bitencourt A, Sevilimedu V, Morris EA, Pinker K, Thakur SB. Fat Composition Measured by Proton Spectroscopy: A Breast Cancer Tumor Marker? Diagnostics. 2021; 11(3):564. https://doi.org/10.3390/diagnostics11030564
Chicago/Turabian StyleBitencourt, Almir, Varadan Sevilimedu, Elizabeth A. Morris, Katja Pinker, and Sunitha B. Thakur. 2021. "Fat Composition Measured by Proton Spectroscopy: A Breast Cancer Tumor Marker?" Diagnostics 11, no. 3: 564. https://doi.org/10.3390/diagnostics11030564
APA StyleBitencourt, A., Sevilimedu, V., Morris, E. A., Pinker, K., & Thakur, S. B. (2021). Fat Composition Measured by Proton Spectroscopy: A Breast Cancer Tumor Marker? Diagnostics, 11(3), 564. https://doi.org/10.3390/diagnostics11030564