Gait Pattern in People with Multiple Sclerosis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Collection
2.4. Methodological Quality
3. Results
3.1. Description of the Studies
3.2. Summary of the Results
3.3. Methodological Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gor-García-Fogeda, M.D.; Tomé-Redondo, S.; Simón-Hidalgo, C.; Daly, J.J.; Molina-Rueda, F.; Cano-de-la-Cuerda, R. Reliability and Minimal Detectable Change in the Gait Assessment and Intervention Tool in Patients with Multiple Sclerosis. PMR 2020, 12, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Merino, A.G.; Callizo, J.R.A.; Fernández, O.F.; Pascual, L.L.; Torres, E.M.; Zarrantz, A.R.-A. Consensus statement on the treatment of multiple sclerosis by the Spanish Society of Neurology in 2016. Neurología 2017, 32, 113–119. [Google Scholar]
- Otero-Romero, S.; Batlle, J.; Bonaventura, I.; Brieva, L.L.; Bufill, E.; Cano, A.; Carmona, O.; Escartín, A.; Marco, M.; Moral, E.; et al. Situación epidemiológica actual de la esclerosis múltiple: Pertinencia y puesta en marcha de un registro poblacional de nuevos casos en Cataluña. Neurologia 2010, 50, 623–626. [Google Scholar] [CrossRef]
- Poser, C.M.; Brinar, V.V. The accuracy of prevalence rates of multiple sclerosis: A critical review. Neuroepidemiology 2007, 29, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadística. Encuesta Sobre Discapacidades, Autonomía Personal y Situaciones de Dependencia: EDAD 2008; INE: Madrid, Spain, 2008. [Google Scholar]
- Carretero Ares, J.L.; BowakimDib, W.; Acebes Rey, J.M. Neurología y Medicina Interna Actualización: Esclerosis múltiple. Medifam 2001, 11, 516–529. [Google Scholar] [CrossRef]
- Fernández, O.; Fernández, V.E.; Guerrero, M. Esclerosis Múltiple. Med. Programa Form. Médica Contin. Acreditado 2015, 11, 4610–4621. [Google Scholar] [CrossRef]
- Heesen, C.; Böhm, J.; Reich, C.; Kasper, J.; Goebel, M.; Gold, S.M. Patient perception of bodily functions in multiple sclerosis: Gait and visual function are the most valuable. Mult. Scler. 2008, 14, 988–991. [Google Scholar] [CrossRef]
- Larocca, N.G. Impact of walking impairment in multiple sclerosis: Perspectives of patients and care partners. Patient 2011, 4, 189–201. [Google Scholar] [CrossRef]
- Dalgas, U. Rehabilitation and multiple sclerosis: Hot topics in the preservation of physical functioning. Neurol. Sci. 2011, 311, 43–47. [Google Scholar] [CrossRef]
- Noseworthy, J.H.; Lucchinetti, C.; Rodriguez, M.; Weinshenker, B.G. Medical progress: Multiple sclerosis. N. Engl. J. Med. 2000, 343, 938–952. [Google Scholar] [CrossRef]
- Assmann, K.; Winant, D.N.; Seidle, M.; Carter, A. Gait characteristics in multiple sclerosis: Progressive changes and effects of exercise on parameters. Arch. Phys. Med. Rehabil. 1986, 67, 536–539. [Google Scholar]
- Gor-García-Fogeda, M.D.; Cano de la Cuerda, R.; Carratalá Tejada, M.; Alguacil-Diego, I.M.; Molina-Rueda, F. Observational Gait Assessments in People with Neurological Disorders: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, S.J.; Royer, T.D.; Richards, J.G.; Hudson, D.J. Gait variability in people with multiple sclerosis. Mult. Scler. 2006, 12, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Riperno, R.; Simoncini, L.; Bonato, P.; Tonini, A.; Giannini, S. Gait abnormalities in minimally impaired multiple sclerosis patients. Mult. Scler. 1999, 5, 363–368. [Google Scholar] [CrossRef]
- Preiningerova, J.L.; Novotna, K.; Rusz, J.; Sucha, L.; Ruzicka, E.; Havrdova, E. Spatial and temporal characteristics of gait as outcome measures in multiple sclerosis (EDSS 0 to 6.5). J. Neuroeng. Rehabil. 2015, 12, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, M.; Stewart, D.; Pollicj, N.; Letts, L.; Bosch, J.; Westmorland, M. Guidelines for Critical Review Form-Quantitative Studies; McMaster University: Hamilton, ON, Canada, 1998. [Google Scholar]
- Hutton, B.; Catalá López, F.; Moher, D. The PRISMA statement extensión for systematic reviews incorporating network meta-analysis: PRISMA-NMA. Med. Clin. 2016, 147, 262–266. [Google Scholar] [CrossRef]
- Liparoti, M.; Della Corte, M.; Ruccoa, R.; Sorrentinod, R.; Sparacob, M.; Capuanob, R.; Minino, R.; Lavorgna, L.; Agosti, V.; Sorrentino, G.; et al. Gait abnormalities in minimally disabled people with Multiple Sclerosis: A 3D-motion analysis study. Mult. Scler. Relat. Disord. 2019, 29, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A. Association between perceived fatigue and gait parameters measured by an instrumented treadmill in people with multiple sclerosis: A cross-sectional study. J. Neuroeng. Rehabil. 2015, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Mañago, M.M.; Hebert, J.R.; Kittelson, J.; Schenkman, M. Contributions of Ankle, Knee, Hip, and Trunk Muscle Function to Gait Performance in People with Multiple Sclerosis: A Cross-Sectional Analysis. Phys. Ther. 2018, 98, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Cofré Lizama, L.E.; Khan, F.; Vs Lee, P.; Galea, M.P. The use of laboratory gait analysis for understanding gait deterioration in people with multiple sclerosis. Mult. Scler. 2016, 14, 1768–1776. [Google Scholar] [CrossRef]
- Van der Linden, M.L.; Scott, S.M.; Hooper, J.E.; Cowan, P.; Mercer, T.H. Gait kinematics of people with Multiple Sclerosis and the acute application of Functional Electrical Stimulation. Gait Posture 2014, 39, 1092–1096. [Google Scholar] [CrossRef]
- Filli, L.; Sutter, T.; Easthope, C.S.; Killeen, T.; Meyer, C.; Reuter, K.; Lörincz, L.; Bolliger, M.; Weller, M.; Curt, A.; et al. Profiling walking dysfunction in multiple sclerosis: Characterisation, classification and progression over time. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Severini, G.; Manca, M.; Ferraresi, G.; Caniatti, L.M.; Cosma, M.; Baldasso, F.; Straudi, S.; Morelli, M.; Basaglia, N. Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics. Clin. Biomech. 2017, 45, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Morel, E.; Allali, G.; Laidet, M.; Assal, F.; Lalive, P.H.; Armand, S. Gait profile score in multiple sclerosis patients with low disability. Gait Posture 2017, 51, 169–173. [Google Scholar] [CrossRef]
- Remelius, J.G.; van Emmerik, R.E. Time-to-contact analysis of gait stability in the swing phase of walking in people with multiple sclerosis. Motor Control 2015, 19, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Coghe, G.; Corona, F.; Giovanna Marrosu, M.; Cocco, E. Effect of spasticity on kinematics of gait and muscular activation in people with multiple sclerosis. J. Neurol. Sci. 2015, 358, 339–344. [Google Scholar] [CrossRef]
- Kalron, A.; Dvir, Z.; Givon, U.; Baransi, H.; Achiron, A. Gait and jogging parameters in people with minimally impaired multiple sclerosis. Gait Posture 2014, 39, 297–302. [Google Scholar] [CrossRef]
- Huisinga, J.M.; Schmid, K.K.; Filipi, M.L.; Stergiou, N. Gait mechanics are different between healthy controls and patients with multiple sclerosis. J. Appl. Biomech. 2012, 29, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Socie, M.J.; Motl, R.W.; Pula, J.H.; Sandroff, B.M.; Sosnoff, J.J. Gait variability and disability in multiple sclerosis. Gait Posture 2012, 38, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Dvir, Z.; Frid, L.; Achiron, A. Quantifying gait impairment using an instrumented treadmill in people with multiple sclerosis. ISRN Neurol. 2013, 2013, 867575. [Google Scholar] [CrossRef] [Green Version]
- Gianfrancesco, M.A.; Triche, E.W.; Fawcett, J.A.; Labas, M.P.; Patterson, T.S.; Lo, A.C. Speed- and cane-related alterations in gait parameters in individuals with multiple sclerosis. Gait Posture 2011, 33, 140–142. [Google Scholar] [CrossRef]
- Kelleher, K.J.; Spence, W.; Solomonidis, S.; Apatsidis, D. The characterisation of gait patterns of people with multiple sclerosis. Disabil. Rehabil. 2010, 32, 1242–1250. [Google Scholar] [CrossRef]
- Givon, U.; Zeilig, G.; Achiron, A. Gait analysis in multiple sclerosis: Characterization of temporal-spatial parameters using GAITRite functional ambulation system. Gait Posture 2009, 29, 138–142. [Google Scholar] [CrossRef]
- Fernández-González, P.; Molina-Rueda, F.; Cuesta-Gomez, A.; Carratalá-Tejada, M.; Miangolarra-Page, J.C. Instrumental gait analysis in stroke patients. Rev. Neurol. 2016, 63, 433–439. [Google Scholar] [PubMed]
- Casey Kerrigan, D.; Lee, L.W.; Collins, J.J.; Riley, P.O.; Lipsitz, L.A. Reduced Hip Extension During Walking: Healthy Elderly and Fallers Versus Young Adults. Arch. Phys. Med. Rehabil. 2001, 82, 26–30. [Google Scholar] [CrossRef]
- Grabiner, P.; Biswas, T.; Grabiner, M. Age-Related changes in spatial and temporal gait variables. Arch. Phys. Med. Rehabil. 2001, 82, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Broekmans, T.; Gijbels, D.; Eijnde, B.O.; Alders, G.; Lamers, I.; Roelants, M.; Feys, P. The relationship between upper leg muscle strength and walking capacity in persons with multiple sclerosis. Mult. Scler. 2013, 19, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Campanini, I.; Merlo, A.; Damiano, B. A method to differentiate the causes of stiff-knee gait in stroke patients. Gait Posture 2013, 38, 165–169. [Google Scholar] [CrossRef]
- Rueda, F.M.; Tejada, M.C. Patrón cinético y electromiográfico de la marcha. In Biomecánica, Evaluación y Patología, 1st ed.; Tejada, M.C., Rueda, F.M., Eds.; La Marcha Humana; Panamericana: Madrid, Spain, 2020; pp. 36–37. [Google Scholar]
- Tramonti, C.; Di Martino, S.; Chisari, C. An intensive task-oriented circuit training positively impacts gait biomechanics in MS patients. NeuroRehabilitation 2020, 46, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Benito-Villalvilla, D.; de Uralde-Villanueva, I.L.; Ríos-León, M.; Álvarez-Melcón, A.C.; Martín-Casas, P. Effectiveness of motor imagery in patients with multiple sclerosis: A systematic review. Rev. Neurol. 2021, 72, 157–167. [Google Scholar]
- Robinson, A.G.; Dennett, A.M.; Snowdon, D.A. Treadmill training may be an effective form of task-specific training for improving mobility in people with Parkinson’s disease and multiple sclerosis: A systematic review and meta-analysis. Physiotherapy 2019, 105, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Givon, U. Gait characteristics according to pyramidal, sensory, and cerebellar EDSS subcategories in people with multiple sclerosis. J. Neurol. 2016, 263, 1796–1801. [Google Scholar] [CrossRef]
- Chung, L.H.; Remelius, J.G.; Van Emmerik, R.E.A.; Kent-Braun, J.A. Leg power asymmetry and postural control in women with multiple sclerosis. Med. Sci. Sports Exerc. 2008, 40, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Sosnoff, J.J.; Socie, M.J.; Boes, M.K.; Sandroff, B.M.; Pula, J.H.; Suh, Y.; Weikert, M.; Balantrapu, S.; Morrison, S.; Motl, R.W. Mobility, Balance and Falls in Persons with Multiple Sclerosis. PLoS ONE 2011, 6, e28021. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, D.; Jonsdottir, J. Sensory impairments in quiet standing in subjects with multiple sclerosis. Mult. Scler. 2009, 15, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Van Emmerik, R.E.; Remelius, J.G.; Johnson, M.B.; Chung, L.H.; Kent-Braun, J.A. Postural control in women with multiple sclerosis: Effects of task, vision and symptomatic fatigue. Gait Posture 2010, 32, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Givon, U.; Frid, L.; Dolev, M.; Achiron, A. Static Posturography and Falls According to Pyramidal, Sensory and Cerebellar Functional Systems in People with Multiple Sclerosis. PLoS ONE 2016, 11, e016446. [Google Scholar] [CrossRef]
Study | Multiple Sclerosis Participants | Control Participants | ||||||
---|---|---|---|---|---|---|---|---|
N | Sex (F:M) | Age | Type | EDSS | N | Sex (F:M) | Age | |
Filli et al. 2018 [24] | 37 | 24:13 | 48.6 | 22 RR 2 PP 13 SP | 1–4.5 | 20 | 12:8 | 48.8 |
Severini et al. 2017 [25] | 51 | 30:21 | 51 | 7 RR 18 PP 26 SP | 2–6.5 | 10 | 2:8 | 36.7 |
Morel et al. 2017 [26] | 34 | 22:12 | 36.32 | 34 RR | ≤2 | 22 | 16:6 | 36.8 |
Remelius et al. 2015 [27] | 16 | 16:0 | 51.3 | 15 RR 2 PP 2 SP | 2.5–6 | 19 | 19:0 | 51.8 |
Pau et al. 2015 [28] | 19 | 12:7 | 54.6 | 19 RR | 2.5–4.5 | 19 | 7:12 | 47.1 |
Kalron et al. 2014 [29] | 20 | 8:12 | 36.3 | 20 RR | <4 | 20 | 10:10 | 34.3 |
Huisinga et al. 2013 [30] | 31 | 26:5 | 46.2 | NE | 0–6.5 | 31 | 23:8 | 42 |
Socie et al. 2013 [31] | 86 | 73:13 | 52.4 | NE | 2.5–6.5 | 20 | 16:4 | 50.9 |
Kalron et al. 2013 [32] | 87 | 50:37 | 40.9 | 87 RR | <6 | 25 | 14:11 | 38.5 |
Gianfrancesco et al. 2011 [33] | 11 | 7:4 | 53 | 8 RR 3PP | 3.5–6 | 13 | 6:7 | 47 |
Kelleher et al. 2010 [34] | 16 | 8:8 | 42.13 | NE RR NE SP | – | 10 | 5:5 | 37.2 |
Givon et al. 2009 [35] | 81 | 53:28 | 36.2 | NE | ≤5.5 | 25 | 17:8 | 34.2 |
Study | Outcome Measures | Gait System Used | Main Results |
---|---|---|---|
Filli et al. 2018 [24] | Spatiotemporal parameters Kinematic Kinetic | Vicon Motion System® | Decrease in speed (MS: 6.2 s vs. Control: 3.6 s; p < 0.0001). Kinematics: decreased knee flexion during swing phase (MS: 35° vs. control 55°; p <0.05) and decreased ankle dorsiflexion during the initial contact and swing period (MS: −10° vs. control: −5°; MS: −10° vs. control: 0°; p < 0.05). Follow-up after one year: greater deterioration in gait of the spastic-paretic type (p = 0.0473) and greater deterioration in knee parameters (p = 0.0129). |
Severini et al. 2017 [25] | Spatiotemporal parameters Kinematic | Vicon Motion System® | Differences in spatiotemporal parameters according to the degree of MS disability: decrease in speed (low disability: 97.5 cm/s; moderate disability: 52 cm/s; severe disability: 23.9 cm/s vs. control: 139.2 cm/s; p < 0.001). Stride length decreased (low disability: 111.9 cm; moderate disability: 82.6 cm; severe disability: 55.8 cm vs. control: 139.2 cm; p < 0.001). Pelvis: increased pelvic tilt and hiking. Hip Kinematic: decreased extension during pre-swing (moderate disability: −5.5°, high disability: 1.4° vs. control: −12.50°; p < 0.0001); knee: decreased flexion during swing period (low disability: 42.2°, moderate disability: 30.6°; severe disability: 14.2° vs. control: 57.0°; p < 0.0005); ankle: decreased dorsiflexion during stance period (severe disability: 5° vs. control: 12°; p = 0.01). |
Morel et al. 2017 [26] | Spatiotemporal parameters Kinematic | Vicon Motion System® | Pelvis Kinematic: decreased pelvis tilt (MS: 9.09° vs. control: 11.08°; p = 0.033) and reduced obliquity range (MS: 10.33° vs. control: 12.83°, p < 0.001). Ankle: increased dorsiflexion during mid-stance and decreased plantar flexion in pre-swing (MS: −14.67° vs. control: −20.0° p < 0.001). |
Remelius et al. 2015 [27] | Spatiotemporal parameters Kinematic Kinetic | Oqus System® | Duration of the swing period is decreased (MS: 385 ms vs. control: 401 ms; p = 0.004). Anteriorized COM in the swing period (MS: 230 mm vs. control 253 mm; p < 0.001). |
Pau et al. 2015 [28] | Spatiotemporal parameters Kinematic Electromyography | Smart-D System | Decrease in speed (MS: 0.42 m/s vs. control: 1.12 m/s; p < 0.001) and increase in the percentage of the stance period (MS: 65.48–67.75% vs. control: 61.79–61.32%; p = 0.021). Increase in the rectus femoris activation throughout the gait cycle (RMS in MS: 0.644–0.639 W/s vs. control: 0.504–0.493 W/s; p < 0.001). |
Kalron et al. 2014 [29] | Spatiotemporal parameters Kinetic | Zebris FDM-T® | Decrease in self-paced gait (MS: 3.24 km/h vs. control: 3.52 km/h; p = 0.32), cadence 99.0 step/min vs. control 100.4 step/min; p = 0.75), step width (MS: 14.1 cm vs. control: 10.9 cm; p = 0.02). |
Huisinga et al. 2013 [30] | Spatiotemporal parameters Kinetic | EvaRT 5.0, Motion Analysis® | Ankle Kinematic: increased plantar flexion during loading response (MS: 5.47° vs. control: 6.58°; p = 0.016) and decreased during pre-swing (MS: 13.53° vs. control: 16.88°; p = 0.022). Decreased hip extensor torque during early stance. (MS: 0.650 Nm/Kg vs. control: 0.789 N·m/Kg; p = 0.157). Decreased ankle power absorption in early stance. (Ankle MS: −0.398 W/kg vs. control: −0.601 W/Kg; p = 0.015. Knee: −0.675 W/Kg vs. control: −1.021 W/Kg; p = 0.006). Decreased power generation in late stance (MS: 2.440 W/kg vs. control: 3.121 W/Kg; p = 0.008). |
Socie et al. 2013 [31] | Spatiotemporal parameters | GAITRite TM® | Decrease in speed (MS: 1.0 m/s vs. control: 1.4 m/s; p < 0.001) and step length (MS: 58.0 cm vs. control: 73.8 cm; p < 0.001). Increased step width (MS: 12.6 cm vs. control 8.6 cm; p = 0.002) and extended step time (MS: 603 ms. vs. control: 530 ms; p < 0.001). |
Kalron et al. 2013 [32] | Spatiotemporal parameters | Zebris FDM-T® | Decrease in speed (MS: 2.2 Km/h vs. control: 3.5 km/h; p < 0.001) and increase in step width (MS:13.8 cm vs. control: 11.0 cm; p < 0.001). |
Gianfrancesco et al. 2011 [33] | Spatiotemporal parameters | GAITRite TM® | Decrease in speed (MS: 73.3 cm/s vs. control: 134.4 cm/s; p < 0.10) and stride length (MS: 103.7 cm vs. control: 144.3 cm; p < 0.10). |
Kelleher et al. 2010 [34] | Spatiotemporal parameters Kinematic Kinetic Electromyography | Vicon Motion System® | Alteration in all spatiotemporal parameters except cadence (Speed MS: 1.2 m/s vs. control: 1.42 m/s. Step length (MS: 0.63 m vs. control: 0.80 m; p < 0.05). Decrease in external hip moment (EM: 0.86 Nm/Kg vs. control: 0.99 Nm/Kg; p < 0.05). Maximum propulsive anteroposterior force was reduced during pre-swing (MS: 1.65 N/Kg vs. control: 2.42 N/kg; p < 0.05). Increase in the percentage of activation of the gastrocnemius during the gait cycle (MS medial gastrocnemius: 29.5% vs. control: 11%; MS Lateral gastrocnemius: 28.82% vs. control: 14.27%; p < 0.05). |
Givon et al. 2009 [35] | Spatiotemporal parameters | GAITRite TM® | Decrease in speed (MS: 85.5 cm/s vs. control: 138.6 cm/s; p < 0.001), cadence (MS 94.4 p/min vs. control: 115.2; p < 0.001) and step length (MS: 45.3 cm vs. control: 72.1 cm; p < 0.001). |
ITEMS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | TOTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Filli et al. 2018 [24] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 |
Severini et al. 2017 [25] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 11 |
Morel et al. 2017 [26] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 12 |
Remelius et al. 2015 [27] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 12 |
Pau et al. 2015 [28] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 11 |
Kalron et al. 2014 [29] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 12 |
Huisinga et al. 2013 [30] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 12 |
Socie et al. 2013 [31] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 12 |
Kalron et al. 2013 [32] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 13 |
Gianfrancesco et al. 2011 [33] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 13 |
Kelleher et al. 2010 [34] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 12 |
Givon et al. 2009 [35] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coca-Tapia, M.; Cuesta-Gómez, A.; Molina-Rueda, F.; Carratalá-Tejada, M. Gait Pattern in People with Multiple Sclerosis: A Systematic Review. Diagnostics 2021, 11, 584. https://doi.org/10.3390/diagnostics11040584
Coca-Tapia M, Cuesta-Gómez A, Molina-Rueda F, Carratalá-Tejada M. Gait Pattern in People with Multiple Sclerosis: A Systematic Review. Diagnostics. 2021; 11(4):584. https://doi.org/10.3390/diagnostics11040584
Chicago/Turabian StyleCoca-Tapia, María, Alicia Cuesta-Gómez, Francisco Molina-Rueda, and María Carratalá-Tejada. 2021. "Gait Pattern in People with Multiple Sclerosis: A Systematic Review" Diagnostics 11, no. 4: 584. https://doi.org/10.3390/diagnostics11040584
APA StyleCoca-Tapia, M., Cuesta-Gómez, A., Molina-Rueda, F., & Carratalá-Tejada, M. (2021). Gait Pattern in People with Multiple Sclerosis: A Systematic Review. Diagnostics, 11(4), 584. https://doi.org/10.3390/diagnostics11040584