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Abstract: Machine learning (ML) algorithms are widely used to develop predictive frameworks.
Accurate prediction of Alzheimer’s disease (AD) age of onset (ADAOO) is crucial to investigate
potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic
factors affecting ADAOO were elucidated by other research groups and ours, the comprehensive
and sequential application of ML to provide an exact estimation of the actual ADAOO, instead of
a high-confidence-interval ADAOO that may fall, remains to be explored. Here, we assessed the
performance of ML algorithms for predicting ADAOO using two AD cohorts with early-onset familial
AD and with late-onset sporadic AD, combining genetic and demographic variables. Performance of
ML algorithms was assessed using the root mean squared error (RMSE), the R-squared (R2), and the
mean absolute error (MAE) with a 10-fold cross-validation procedure. For predicting ADAOO in
familial AD, boosting-based ML algorithms performed the best. In the sporadic cohort, boosting-
based ML algorithms performed best in the training data set, while regularization methods best
performed for unseen data. ML algorithms represent a feasible alternative to accurately predict
ADAOO with little human intervention. Future studies may include predicting the speed of cognitive
decline in our cohorts using ML.

Keywords: age of onset; machine learning; Alzheimer’s disease; genetic isolates; PSEN1; predictive
genomics; natural history

1. Introduction

Alzheimer’s disease (AD; OMIM 104300) is a neurodegenerative disorder charac-
terized by progressive loss of neurological, mental, and cognitive functions, including
memory, changes in judgment, behavior, and emotions [1–4]. AD is the most common
cause of dementia and constitutes an increasing challenge due to society’s public health
and economic costs [5–8]. As of 2016, ~44 million people had AD or related dementia
worldwide [9]. Without new medicines to prevent, delay, or stop the disease, this figure is
projected to dramatically increase to ~66 million dementia cases by 2030 and ~116 million
by 2050 [10]. The financial burden associated with the disease was estimated to be USD
818 billion in 2015 worldwide [11,12].

AD neuropathological damage is characterized by extracellular deposits of the beta-
amyloid (Aβ) peptide, the formation of intracellular neurofibrillary tangles of hyperphos-

Diagnostics 2021, 11, 887. https://doi.org/10.3390/diagnostics11050887 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-3146-7899
https://orcid.org/0000-0002-0975-674X
https://www.mdpi.com/article/10.3390/diagnostics11050887?type=check_update&version=1
https://doi.org/10.3390/diagnostics11050887
https://doi.org/10.3390/diagnostics11050887
https://doi.org/10.3390/diagnostics11050887
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11050887
https://www.mdpi.com/journal/diagnostics


Diagnostics 2021, 11, 887 2 of 15

phorylated tau protein (p-Tau), and the impairment of neurons and synaptic connections in
the cerebral cortex and hippocampus, a key brain region involved in learning and memory
processes and emotional control [1,13–15]. Genetically, AD is divided into familial AD
(f AD), which accounts for <5% of AD cases and is caused by the presence of pathogenic
and deleterious mutations harbored in major genes (segregating in a mendelian way)
such as APP, PSEN1, PSEN2 [9,16–18], ADAM10, AKAP9, PICALM, PLD3, TREM2, and
UNC5C [19–27], and sporadic AD (sAD), without a clear mendelian pattern of segregation,
which accounts for >90% of AD cases. In contrast to f AD, mutations in genes associated
with sAD do not directly cause AD but confer susceptibility [28]. Although f AD and sAD
forms are phenotypically similar, the age of onset (AOO) at which signs and/or symptoms
of AD appear for the first time in cases of f AD is generally earlier than in cases of sAD,
with important predictors of ADAOO in sAD correspond to several genetic variants of
small effect [29,30]. Indeed, it is generally established that f AD cases have an AOO before
65 years (ranging from the early 30s to the late 70s), while the AOO in sAD generally starts
after 65 years [31,32]. Considering that in sAD cases are diagnosed later and usually at the
later stages of disease compared to familial cases [16,28], developing predictive models of
ADAOO will open new possibilities for clinicians, patients, and family members [33–38].

Despite being suggested ~25 years ago as a valuable quantitative phenotype for
monitoring AD natural history [39], ADAOO is one of the least studied phenotypes in
the epidemiology of AD [39–41]. In fact, recent studies of our group and from other
research groups showed that the natural history of AD might lead to the elucidation of
new diagnostic, predictive, and therapeutic alternatives while considering interventions to
delay the ADAOO [33,42–44].

For more than three decades, our group characterized clinically and genetically the
world’s most extensive known pedigree with an aggressive form of AD caused by the
E280A mutation in the PSEN1 gene, often referred to as the Paisa mutation [39]. Parallelly,
we have characterized other forms of f AD and individuals with sAD from the same com-
munity who share the same genetic background of the E280A pedigree [45,46]. To the best
of our knowledge, our group pioneered the exposition of major genetic variants modifying
ADAOO in sAD [35]. Instead of using a traditional approach where the risk of develop-
ing AD is assessed [39,41], we recruited individuals with sAD exhibiting ADAOO at the
extremes of the AOO distribution in order to identify genetic variants responsible for the
wide spread of AOO [33,35,42–44]. Genes harboring these variants play an essential role in
cell proliferation, apoptotic and immune dysregulation processes, oligodendrocyte differ-
entiation, protein degradation, neuron apoptosis, cholesterol metabolism, neurogenesis,
and inflammatory and memory processes linked to AD [35,36].

Predictive models aim to determine the expected value of an outcome variable Y of
interest based on a set of predictors X = (X1, X2, . . . , Xp)T. Generally speaking, Y and X
can be of any nature (i.e., binary, multinomial, ordinal, or continuous), and the selection
of the best predictive model is based on some sort of error-related measure, such as the
accuracy, the root mean squared error (RMSE) or the mean absolute error (MAE) [47,48].
Although some predictive models have recently been developed for AD [49–52], the
outcome variable is not ADAOO and genetic variants are not included as predictors. We
argue that genetic/genomic data will substantially improve AD diagnosis and mitigate
the confounding effect of demographic and population structure data while increasing
power [53,54].

Machine learning (ML) has attracted the research community’s attention for dis-
closing patterns, detecting objects, and developing predictive frameworks in several dis-
eases [55,56]. AD is one of the most common mental health conditions studied via ML
methods [57]. In fact, we and others showed that ML algorithms constitute a promis-
ing alternative for assessing AD diagnosis based on prospective clinical, image, and/or
biomarker data [18,58–64]. Furthermore, ML algorithms have also proven to be a suitable
alternative for the timely diagnosis of late-onset AD based on genetic variation [29,32,65],
differentiate AD from other neurological disorders using noninvasive blood markers [65],
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and predict AD conversion in individuals with Mild Cognitive Impairment (MCI) [66,67].
Interestingly, optimization procedures for tuning the parameters of ML algorithms have
been reported to increase the sensitivity, specificity, and accuracy of ML for AD diag-
nosis [68]. Other ML alternatives include the use of artificial intelligence (AI), namely
deep learning (DL), assessing AD diagnosis and progression with brain radiological im-
ages [69,70]. Although these results are promising, their main limitation is that the predic-
tive model provided either an estimate of the risk of an individual for developing AD or
the range within which the ADAOO may fall with high confidence (i.e., early- or late-onset
based on whether the ADAOO was before or after a threshold, respectively), but not an
estimate of the actual ADAOO. Moreover, a comprehensive exploration of advanced ML
algorithms for ADAOO prediction is yet to be conducted.

In this study, we comprehensively assess ML algorithms’ feasibility applied to f AD
and sAD cohorts, with the overarching aims of (1) accurately predicting ADAOO and im-
proving the scope and performance previously reached; and (2) expanding the possibilities
of quantifying ADAOO in the clinical setting. Our results suggest that ML constitutes a
feasible and easy-to-implement new methodology to predict ADAOO, especially in the
clinical setting, while significantly overpowering our previous results and paving the way
for new possibilities to define follow-up and counseling strategies for patients and their
family members.

2. Materials and Methods
2.1. Subjects
2.1.1. E280A Pedigree

We ascertained 71 patients from the 459 E280A PSEN1 mutation carriers at the ex-
tremes of the ADAOO distribution (44 women [62%] and 27 men [38%]) [33,36]. Detailed
clinical assessment and ascertainment procedures of this pedigree have been presented
elsewhere [31,71–73].

2.1.2. The Cohort of Sporadic Cases

Fifty-four individuals with sAD were included in this study (43 [80%] were women,
and 11 [20%] men). Clinical, neurological, and neuropsychological assessment of sAD
patients has been reported elsewhere [35]. ADAOO was determined during anamnesis
with the information provided by patients or their families, with confirmation by several
sources. Because some patients started their follow-up during MCI, ADAOO was defined
during the follow-up stage based on Petersen’s criteria [74]. This strategy was recently
proven to be highly accurate [75]. AD affection status was defined based on the DSM-IV
criteria [76].

2.2. Variants Associated with ADAOO

We previously studied the association of common exonic functional variants (CEFVs)
with ADAOO (Table 1) [35,36] using single- and multi-locus linear mixed-effects mod-
els [77] and recursive partitioning ML algorithms [36]. These variants were found to delay
ADOO up to 17 years in carriers of the E280A PSEN1 mutation and accelerate it up to
~14 years in individuals with sAD [35,36].

2.3. ADAOO Prediction Using ML

Predictive models of ADAOO were constructed with ML algorithms in individuals
carrying the E280A PSEN1 mutation and individuals with sAD. The set of predictor
variables consisted of demographic variables (i.e., gender, sex, and years of education) and
genomic variants previously identified to be associated as ADAOO modifiers (Table 1). The
complete list of ML algorithms is provided in the Supplementary Materials. Construction,
parameters tuning, validation, and testing of these predictive models were performed in
R version 4.0.2 Patched (2020-06-30 r78761) [80] with the methods implemented in the
caret package [47,48] using a 10-fold cross-validation procedure with five repetitions. The



Diagnostics 2021, 11, 887 4 of 15

training/testing data sets consisted of 70%/30% of individuals per cohort. Given the
continuous nature of the outcome variable (i.e., ADAOO), the root mean squared error
(RMSE), the R-squared (R2), and the mean absolute error (MAE) measures were used to
evaluate the performance of the ML algorithms. In ML-based predictive models, high
values of R2 and low values of RMSE and MAE indicate good performance. To graphically
represent the performance of these ML algorithms and to identify similarities among them,
we combined K-means clustering [81] and principal component analysis (PCA) [82,83]; the
number of K-means clusters and the number of principal components were determined
using the methods implemented in the NbClust [84] and paran [85] packages for R.

Table 1. Common exonic functional variants modifying ADAOO in 125 individuals from the Paisa genetic isolate.

Cohort Chr Marker Position a Gene Change
^
β (SE^

β
) b PFDR

E280A 19 rs7412 45,412,079 APOE p.Arg176Cys 17.45 (0.48) 2.13 × 10−30

(n = 71) 8 rs36092215 142,367,246 GPR20 p.Arg260Cys 12.12 (0.54) 6.58 × 10−22

11 rs12364019 5,730,343 TRIM22 p.Arg321Lys −11.64 (0.79) 1.15 × 10−14

1 rs16838748 157,508,997 FCRL5 p.Asn427Lys 7.14 (0.68) 8.61 × 10−10

7 rs12701506 36,566,020 AOAH c −2.75 (0.30) 5.69 × 10−8

19 rs2682585 44,081,288 PINLYP p.His6Arg −1.68 (0.21) 1.67 × 10−6

1 rs62621173 159,021,506 IFI16 p.Ser512Phe −2.80 (0.37) 8.63 × 10−6

1 rs10798302 173,987,798 RC3H1 d 1.76 (0.27) 1.86 × 10−4

7 rs754554 24,758,818 DFNA5 p.Pro142Thr −1.39 (0.28) 3.62 × 10−2

Sporadic 2 rs35946826 105,859,249 GPR45 p.Leu312fs −12.67 (0.148) 3.08 × 10−36

(n = 54) 1 rs61742849 114,226,143 MAGI3 p.Gly1318fs −14.32 (0.199) 4.38 × 10−34

6 rs675026 154,414,563 OPRM1 p.Ala442fs 5.42 (0.079) 1.15 × 10−33

10 rs838759 22,498,468 EBLN1 p.Gly149fs −4.26 (0.092) 3.90 × 10−28

17 rs61749930 48,594,691 MYCBPAP p.Arg124fs −12.08 (0.286) 6.06 × 10−27

19 rs7250872 1,811,603 ATP8B3 p.Gly45fs −2.54 (0.088) 9.57 × 10−22

16 rs749670 31,088,625 ZNF646 p.Lys328fs −1.52 (0.067) 1.35 × 10−18

4 rs7677237 89,306,659 HERC6 p.Met123fs 2.14 (0.122) 3.58 × 10−15

4 rs6835769 79,284,694 FRAS1 p.Ala817fs −1.11 (0.074) 2.74 × 10−13

11 rs4757987 5,906,205 OR52E4 p.Arg228fs 1.02 (0.07) 6.86 × 10−13

20 rs236150 5,903,141 CHGB p.Lys117fs −2.14 (0.181) 2.12 × 10−10

6 rs3130257 33,256,471 WDR46 p.Thr40fs −2.35 (0.209) 7.92 × 10−10

18 rs754093 77,246,406 NFATC1 p.Cys751fs −0.94 (0.094) 1.34 × 10−8

3 rs34230332 14,725,878 C3orf20 p.Leu84fs 1.59 (0.185) 4.81 × 10−7

19 rs867228 52,249,211 FPR1 p.Glu346fs −0.94 (0.115) 1.34 × 10−6

4 rs3733251 77,192,838 FAM47E p.Arg166fs −0.71 (0.127) 2.07 × 10−3

16 rs2303772 87,795,580 KLHDC4 p.Leu56fs 0.75 (0.135) 2.75 × 10−3

16 rs739999 319,511 RGS11 p.Met416fs 0.35 (0.075) 3.48 × 10−2

16 rs34779002 87,782,396 KLHDC4 p.Gly74fs 0.78 (0.172) 4.00 × 10−2

15 rs6493068 43,170,793 TTBK2 p.Asp9fs −0.48 (0.107) 4.27 × 10−2

16 rs17137138 4,606,743 C16orf96 p.Val85fs 1.00 (0.223) 4.40 × 10−2

7 rs3823646 99,757,612 GAL3ST4 p.Lys468fs −0.31 (0.069) 4.47 × 10−2

13 rs17081389 25,487,001 CENPJ p.Pro55fs 1.00 (0.223) 4.61 × 10−2

10 rs78334417 75,071,618 TTC18 p.Pro450fs 1.00 (0.223) 4.84 × 10−2

7 rs186048202 134,678,273 AGBL3 p.Arg52fs 0.61 (0.139) 4.91 × 10−2

a UCSC GRCh37/hg19 coordinates; b Markers can accelerate (β̂ < 0) or delay (β̂ > 0) ADAOO according to their effect; c Chromatin state
segmentation strong enhancer state-5 from ChiP-seq data; d CpG islands, DNaseI hypersensitivity uniform peak from ENCODE/analysis.
ADAOO = Alzheimer’s disease age of onset; Chr: chromosome; β̂ = Regression coefficient; SEβ̂ = Standard error of β̂; PFDR = Corrected
P-value using the False Discovery Rate (FDR) [78,79].

To evaluate the stability of each predictor’s variable importance, we implemented
the following resampling strategy, which is a slight modification of the empirical boot-
strap [86,87]. First, we constructed B = 1000 training data sets at random, keeping the
70%/30% proportion for the training/testing data sets initially used to identify the best
performing ML model. Secondly, for the b-th training data set (b = 1,2, . . . , B), this model
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was fitted, and the variable importance measure associated with each predictor was com-
puted. Thus, for any predictor X, we obtained the values X(1), X(2), X(3), . . . , X(B), with
X(b) representing the variable importance of X calculated in the b-th randomly generated
training data set. Finally, we calculated the bootstrap-based 95% confidence intervals (CIs)
based on the 2.5% and 97.5% percentiles of X(1), X(2), X(3), . . . , X(B).

3. Results
3.1. ADAOO Prediction in the fAD E280A Pedigree

Table 2 presents the performance measures for ML algorithms’ collection for predicting
AOO in the E280A pedigree. The training/testing data sets consisted of 51/20 individuals,
respectively. When predicting AOO in the training data set, the xgbLinear ML algorithm
outperformed all other algorithms in the RMSE, R2, and MAE performance measures.
When evaluating these ML algorithms’ performance for unseen data (i.e., testing data set),
the glmboost ML algorithm outperformed all other alternatives.

Table 2. Performance of ML algorithms for predicting ADAOO in the E280A pedigree. RMSE = root mean squared error,
lower is better; MAE = mean absolute error, lower is better; R2 = coefficient of determination, higher is better. Best results
are shown in bold.

ML Algorithm

Performance Measure

RMSE R2 MAE

Training Testing Training Testing Training Testing

glmboost 3.51 3.73 0.62 0.65 2.41 2.86
bstTree 3.67 6.75 0.59 0.08 3.00 4.52

gbm 4.90 6.68 0.27 0.09 3.86 4.52
glmnet 3.59 3.85 0.62 0.64 2.51 2.89

knn 4.53 6.35 0.39 0.05 3.56 4.13
mlp 6.30 6.62 0.07 0.43 5.64 5.78
qrf 1.35 7.24 0.95 0.03 0.69 4.65
rf 2.14 6.17 0.91 0.12 1.70 3.93

rpart 4.73 6.36 0.31 0.07 3.95 4.51
rpart1SE 4.18 5.89 0.46 0.18 3.35 4.11

rpart2 4.28 6.02 0.43 0.15 3.43 4.11
svmLinear 4.74 6.80 0.43 0.07 2.97 4.21

svmLinear2 4.74 6.80 0.43 0.07 2.97 4.21
svmPoly 3.46 7.30 0.66 0.14 1.86 5.13

svmRadial 5.21 6.50 0.35 0.02 3.43 3.96
treebag 4.26 6.02 0.45 0.16 3.47 4.20

xgbLinear 0.85 7.14 0.98 0.06 0.37 4.28
xgbTree 1.79 7.12 0.90 0.08 1.28 4.65

Following our results, the performance of these ML algorithms can be grouped into
three classes. For the training data set, class 1 comprises the rf, xgbTree, xbLinear, and qrf
algorithms (Figure 1a; yellow); class 2 is constituted by the mlp, treebag, rpart1SE, rpart2,
rpart, knn, gbm, svmRadial, svmLinear, and svmLinear2 algorithms (Figure 1a; red); and
class 3 by the bstTree, glmnet, glmboost, and svmPoly algorithms (Figure 1a; blue). In the
testing data set, the svmPoly, xgbTree, xgbLinear, gbm, bstTree, rpart, and qrf algorithms
belong to class 1 (Figure 1b; yellow); tree bag, rpart1SE, rpart2, svmLinear, svmLinear2,
rf, knn, and svmRadial form class 2 (Figure 1a; red); and glmnet and glmboost constitute
class 3 (Figure 1b; blue). Overall, the best performing algorithms are grouped into class 1
for the training data set, and into class 3 for the testing data set; the xgbLinear algorithm
outperforms all other alternatives in class 1 (Table 2 and Figure 1a), while the glmboost
algorithm outperforms those in class 3 (Table 2 and Figure 1b).
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Figure 1. PCA and K-means clustering representation of the performance measures for ML algorithms predicting ADAOO
in individuals carrying the PSEN1 E280A mutation when the (a) training (n = 51) and (b) testing (n = 20) data sets are used.
(c) Variable importance for the glmnet (left) and glmboost (right) ML algorithms. Here, higher values are better.

Figure 1c depicts variable importance plots for the xgbLinear, glmnet, and glmboost
algorithms. Our results suggest that, for the xgbLinear algorithm, which is more suitable
for assessing ADAOO in the training data set, years of education (Schooling), genetic
variants GPR20-rs36092215 and PYNLIP-rs2682585, and sex (i.e., being male) are the most
important predictors of ADAOO (Figure 1c, left). For the glmnet and glmboost algorithms,
which outperform the other alternatives when predicting ADAOO for unseen data, the
most important predictors are the genetic variants APOE-rs7412, FCRL5-rs16838748, GRP20-
rs36092215, IFI16-rs62621173, AOAH-rs12701506, and PYNLIP-rs2682585, followed by years
of education (Figure 1c, center; Figure 1c, right).

3.2. ADAOO Prediction in the Sporadic AD

Table 3 presents the performance measures for collecting ML algorithms used to
predict AOO in individuals of the sAD cohort. The training and data sets consisted
of 40 and 14 individuals, respectively. When predicting AOO in the training data set,
the svmLinear and xgbLinear ML algorithms perform reasonably well, with the latter
algorithm outperforming all others in terms of the RMSE, R2, and MAE performance
measures. Despite its remarkable performance in the training data set, the predictive power
of the xgbLinear algorithm is rather week in unseen data (i.e., possible overlearning). Thus,
the svmLinear algorithm seems to be a better alternative than xgbLinear algorithm. On the
other hand, when evaluating the performance of these ML algorithms for the testing data
set, the lasso outperforms the other alternatives in terms of the RMSE and R2, while the
glmnet algorithm does so in terms of the MAE (Table 3). In contrast, these ML algorithms
are strong learners.
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Table 3. Performance of ML algorithms for predicting ADAOO in the individuals with sporadic AD from the Paisa genetic
isolate. Conventions as in Table 2. Best results are shown in bold.

ML Algorithm

Performance Measure

RMSE R2 MAE

Training Testing Training Testing Training Testing

bstTree 3.33 5.22 0.83 0.44 2.56 3.75
glmboost 2.32 3.08 0.92 0.84 1.96 2.47

glmnet 0.25 0.52 1.00 0.99 0.17 0.39
knn 5.37 6.75 0.48 0.16 3.90 4.98
lasso 0.40 0.52 1.00 1.00 0.31 0.42
qrf 0.87 5.86 0.99 0.30 0.40 4.57
rf 2.47 5.09 0.94 0.49 1.86 4.15

rpart 5.53 7.69 0.38 0.00 4.46 6.37
rpart1SE 5.53 7.69 0.38 0.00 4.46 6.37

rpart2 5.92 6.98 0.29 0.03 4.63 5.75
svmLinear 0.61 1.11 0.99 0.97 0.57 0.83

svmLinear2 0.61 1.11 0.99 0.97 0.57 0.83
svmPoly 0.75 1.33 0.99 0.96 0.70 1.07

svmRadial 2.57 4.70 0.93 0.51 1.57 3.64
treebag 5.22 7.02 0.48 0.02 4.13 5.54

xgbLinear 0.03 4.61 1.00 0.67 0.02 3.32
xgbTree 1.13 3.98 0.98 0.70 0.93 3.19

Our results indicate that these ML algorithms’ performance can be grouped into
three classes. For the training data set, class 1 comprises the bstTree, glmboost, rf, and
svmRadial algorithms (Figure 2a; yellow); class 2 is constituted by the xgbTree, svmPoly,
qrf, svmLinear, svmLinear2, lasso, glmnet, and xbgLinear algorithms (Figure 2a; red); and
class 3 by the treebag, knn, rpart1SE, rpart, and rpart2 algorithms (Figure 2a; blue). In the
testing data set, the glmboost, xgbTree, rf, svmRadial, and bstTree algorithms belong to
class 1 (Figure 2b, yellow); svmPoly, svmLinear, svmLinear2, lasso, and glmnet algorithms
belong to class 2 (Figure 2b; red); and treebag, rpart, rpart1SE, rpart2, and qrf constitute
class 3 (Figure 2b; blue). Overall, the best performing algorithms are grouped into class 2
for both the training and testing data sets; the xgbLinear algorithm outperforms all other
alternatives for the training data set (Table 3 and Figure 2a), while the lasso and glmnet
algorithms seem to be the best options for unseen data (Table 3 and Figure 2b).

Figure 2c depicts variable importance plots for the svmLinear, lasso, and glmnet algo-
rithms. We identified that for the svmLinear and lasso algorithms, the most important pre-
dictors of ADAOO are variants HERC6-rs7677237, years of education, GPR45-rs35946826,
NFATC1-rs754093, FRAS1-rs6835769 and MAGI3-rs61742849, and CENPJ-rs17081389 (Fig-
ure 2c, left and Figure 2c, center). Interestingly, under the svmLinear and lasso ML
algorithms, sex is a seemingly significant predictor of ADAOO. In terms of variable impor-
tance, the glmnet ML algorithm yields similar results to those in the svmLinear and lasso
algorithms, but highlights the relevance of variants GPR45-rs35946826, MAGI3-rs61742849,
C16orf96-rs17137138, and C3orf20-rs34230332, and the small contribution to ADAOO of sex
and years of education in unseen individuals with sAD (Figure 2c, right).

3.3. Variable Importance: Stability and Relationship with β̂

Figure 3 shows our implementation results for evaluating variable importance stability
for each predictor in the best ML algorithm. When predicting ADAOO in individuals
carrying the E280A mutation, the most important predictor is, by far, the APOE-rs7412
genetic variant, and the least essential predictors are sex, the genetic variant RC3H1-
rs10798302, and years of education (Figure 3a).
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Figure 2. PCA and K-means clustering representation of the performance measures for ML algorithms predicting ADAOO
in individuals with sporadic AD from the Paisa genetic isolate when the (a) training (n = 40) and (b) testing (n = 14) data
sets are used. (c) Variable importance for the svmLinear (left), lasso (center) and glmnet (right) ML algorithms. Conventions
as in Figure 1.

Figure 3. Variable importance for the best ADAOO-predicting ML algorithm in individuals (a) carrying the E280A mutation
and (b) individuals with sAD. Blue dots represent the average importance; segments represent 95% bootstrap-based
confidence intervals based on B = 1000 replicates. Conventions as in Figure 1.

In individuals with sAD, the most important ADAOO predictor is the genetic variant
GPR45-rs359446826, followed by variants MAGI3-rs61742849, C16orf96-rs17137138, and
C3orf20-rs34230332. Interestingly, sex and years of education (not shown) are among the
least important predictors (Figure 3b). Variable importance bootstrap-based distributions
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are provided in Figures S1 and S2 (Supplementary Materials). Figure 4 shows scatterplots
between β̂ and their variable importance predicting ADAOO (Tables 2 and 3), confirming
that, in contrast to f AD, essential predictors of ADAOO in sAD correspond to several
genetic variants of small effect [29,30].
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Figure 4. Variable importance vs. effect on ADAOO for genetic variants in individuals with (a) E280A PSEN1 and (b)
sporadic AD. Protective (β̂ > 0) variants are shown in green, while harmful (β̂ < 0) variants are shown in red. See Table 1 for
more details.

4. Discussion

Machine learning (ML) algorithms have recently caught the scientific community’s
attention because of their flexibility, ease of use, and ability to learn from the data pro-
vided [55,56]. Via ML, it has been possible to develop models to identify individuals
more susceptible to developing common and rare diseases [58–63,67,88–93] and deter-
mine diverse phenotypic response profiles in infectious diseases [94–96]. Considering
that ML- and computational-based models have the potential to overcome the limitations
of current established clinical models for the diagnosis and follow-up of neurodegener-
ative diseases, including AD [97], here we studied the feasibility of ML algorithms for
predicting Alzheimer’s disease age of onset (ADAOO) in individuals from the Paisa genetic
isolate. We argue that these ML-based predictive models will improve our understand-
ing of the disease and provide a more accurate and precise definition of the AD natural
history landmarks.

We previously identified protective (β̂ > 0; Table 1) and harmful (β̂ < 0; Table 1)
ADAOO-modifying variants of significant effect in this community from whole-exome
genotyping and whole-exome sequencing data [35,36] using linear-mixed effects models
and some ML methods [77]. Thus, the presence of the APOE*E2 allele alone delays
ADAOO up to ~12 years in PSEN1 E280A mutation carriers. Furthermore, this same allele
delays ADAOO up to ~17 years when included in an AD oligogenic model (Table 1) [36].
Subsequent analysis led to the development of a classification tree using advanced recursive
partitioning to determine whether individuals carrying this mutation would develop early-
onset or late-onset familial AD [36]. Following a similar approach, our group was able to
identify ADAOO modifier variants in individuals with sporadic AD (Table 1) [35].

After evaluating several ML-based predictive algorithms for ADAOO in individuals
suffering from the most aggressive form of AD (Figure 1 and Table 2) and in individuals
with sporadic AD (Figure 2 and Table 3), we identified that the glmboost and glmnet
algorithms perform best for predicting ADAOO in unseen data for each cohort, respectively.
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These ML-based predictive models showed promising results that can be easily extended to
the clinical setting [98]. In particular, the glmboost algorithm in E280A PSEN1 AD yielded
MAE values below 4% and RMSE values of ~4 (Table 2), while the glmnet algorithm
yielded MAE values below 1% and RMSE values < 1 in sAD (Table 3), suggesting that
predicting AOO in these cohorts is feasible. Using these ML-based ADAOO predictive
models, AD diagnosis could be made earlier, and potential treatments are provided long
before symptoms begin to appear.

Analysis of variable importance shows that the most relevant ADAOO predictors in
f AD are variants APOE-rs7412, FCRL5-rs16838748, GPR20-rs36092215, IFI16-rs62621173,
AOAH-rs12701506, and PYNLIP-rs2682585 (Figures 1b and 3a). Furthermore, protective
variants APOE-rs7412, GRP20-rs36092215, and FCRL5-rs16838748 have both the highest
effect on ADAOO and are the most important predictors of ADAOO, while variants
TRIM22-rs12364019, IFI16-rs62621173, and AOAH-rs12701506 have both the most harmful
effect on ADAOO and are among the most important predictors of ADAOO (Figure 4a).
Comparing these results with those of previous models predicting AD status (early- vs.
late-onset) [36] shows some discrepancies in how the genetic variants are ranked and the
relevance of demographic information (i.e., sex and years of education) for predicting AD
status. Although predicting AD status may be of interest in some clinical settings, the use of
ML-based predictive algorithms for ADAOO is a step forward in both our understanding
of the disease and our goal of providing timely clinical care to individuals from this
community. While AD cannot be cured and there is no way to stop or slow its progression
at the moment, our approach offers the possibility of treating symptoms several years
before they begin to appear [4,99,100] under an individually tailored biomarker scheme
rather, than using a one-size-fits-all population average strategy [99–101], while taking
individual variability into account. Although our results can certainly be used to move
AD research in this direction, it is also important to consider the legal implications and
the preparation that health providers, neurologists, and centers specializing in AD and
neurodegeneration must have in order to interpret these findings and provide proper
counseling to patients and their families [102–104]. Another challenge in the years to come
is also to significantly reduce the misinformed conclusions produced by ML methods in
the absence of clinical domain expertise [105]. In this regard, having a deep understanding
of the clinical background in AD, how ML methods operate, and how the results can
interpreted and translated to the patient and their relatives is crucial [57].

Variants GPR45-rs35946826 and MAGI3-rs61742849 have both a more harmful effect
on ADAOO and are the most important predictors of ADAOO in individuals with sAD
(Figure 4b). Interestingly, the harmful effect on ADAOO of variants MYCBPAP-rs61749930
and EBLN1-rs838759 differs from those of other variants, but their importance for predicting
ADAOO is lower, while variants CHGB-rs236150 and WDR46-rs3130257 accelerate ADAOO
and have higher variable importance (Figure 4b). Among protective genetic variants,
the highest effect is produced by OPRM1-rs675026, followed by HERC6-rs7677237 and
C3orf20-rs34230332, with the former being the less important. Intriguingly, variant C16orf96-
rs17137138 is the most important ADAOO predictor despite its small effect (Figure 4b).

In summary, here we explore the feasibility of ML algorithms for predicting ADAOO
using demographic and genetic data in individuals from the world’s most extensive pedi-
gree segregating a severe form of AD caused by a fully penetrant mutation in the PSEN1
gene and individuals with sAD inhabiting the same geographical region. Based on the
RMSE, MAE, and R2 performance measures, our results indicate that ML algorithms are
a feasible and promising alternative for assessing ADAOO in these individuals. Interest-
ingly, the most important predictors in these ML-based predictive models were genetic
variants, which makes it possible to assess ADAOO at the individual level and opens new
personalized medicine and predictive genomic alternatives for AD [98–101].

Future studies should assess the ability of the ML-based predictive models for ADAOO
presented herein with out-of-sample data (i.e., determine how close the model is to predict-
ing ADAOO in a patient with known genetic data that was not part of our cohorts) and the
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development of ML-based models of disease progression [38,50,51,60]. Ultimately, these
models could help us to provide an easy-to-use platform, with potential application in the
clinical setting, to provide early and accurate estimates of ADAOO and the evolution of
AD in individuals with a family history of the disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11050887/s1, Table S1: ML algorithms used to predict ADAOO; Figure S1: Variable
importance bootstrap-based density distribution for ADAOO predictors in E280A AD; Figure S2:
Variable importance bootstrap-based density distribution for ADAOO predictors in sAD.
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