Association of the IL-37 Polymorphisms with Transaminases and Alkaline Phosphatase Levels in Premature Coronary Artery Disease Patients and Healthy Controls. Results of the Genetics of Atherosclerotic (GEA) Mexican Study
Abstract
:1. Introduction
2. Material and methods
2.1. Study Population
2.2. Bioinformatics Analysis
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
3.1. Clinical and Biochemical Characteristics
3.2. Association of IL-37 Polymorphisms with pCAD
3.3. Association of the IL-37 Polymorphisms with Cardiovascular Risk Factors, Metabolic Parameters, and Levels of Liver Enzymes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schindhelm, R.K.; Dekker, J.M.; Nijpels, G.; Bouter, L.M.; Stehouwer, C.D.A.; Heine, R.J.; Diamant, M. Alanine aminotransferase predicts coronary heart disease events: A 10-year follow-up of the Hoorn Study. Atherosclerosis 2007, 191, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Bekkelund, S.I. Serum alanine aminotransferase activity and risk factors for cardiovascular disease in a Caucasian population: The Tromso study. BMC Cardiovasc. Disord. 2021, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Montarello, N.J.; Nguyen, M.T.; Wong, D.T.L.; Nicholls, S.J.; Psaltis, P.J. Inflammation in Coronary Atherosclerosis and Its Therapeutic Implications. Cardiovasc. Drugs Ther. 2020. [Google Scholar] [CrossRef]
- Mauersberger, C.; Schunkert, H.; Sager, H.B. Inflammation-Related Risk Loci in Genome-Wide Association Studies of Coronary Artery Disease. Cells 2021, 10, 440. [Google Scholar] [CrossRef]
- Monami, M.; Bardini, G.; Lamanna, C.; Pala, L.; Cresci, B.; Francesconi, P.; Buiatti, E.; Rotella, C.M.; Mannucci, E. Liver enzymes and risk of diabetes and cardiovascular disease: Results of the Firenze Bagno a Ripoli (FIBAR) study. Metabolism 2008, 57, 387–392. [Google Scholar] [CrossRef]
- Yun, K.E.; Shin, C.Y.; Yoon, Y.S.; Park, H.S. Elevated alanine aminotransferase levels predict mortality from cardiovascular disease and diabetes in Koreans. Atherosclerosis 2009, 205, 533–537. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Sattar, N.; Papcosta, O.; Lennon, L.; Whincup, P.H. Alkaline phosphatase, serum phosphate, and incident cardiovascular disease and total mortality in older men. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1070–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, J.; Miri, A.; Namjoo, I.; Zamaninour, N.; Maljaei, M.B.; Zhou, K.; Cerneviciute, R.; Mousavi, S.M.; Varkaneh, H.K.; Salehisahlabadi, A.; et al. Elevated liver enzymes and cardiovascular mortality: A systematic review and dose-response meta-analysis of more than one million participants. Eur. J. Gastroenterol. Hepatol. 2019, 31, 555–562. [Google Scholar] [CrossRef]
- Choi, K.M.; Han, K.; Park, S.; Chung, H.S.; Kim, N.H.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Implication of liver enzymes on incident cardiovascular diseases and mortality: A nationwide population-based cohort study. Sci. Rep. 2018, 8, 3764. [Google Scholar] [CrossRef]
- Porter, S.A.; Pedley, A.; Massaro, J.M.; Vasan, R.S.; Hoffmann, U.; Fox, C.S. Aminotransferase levels are associated with cardiometabolic risk above and beyond visceral fat and insulin resistance: The framingham heart study. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Kunutsor, S.K.; Apekey, T.A.; Khan, H. Liver enzymes and risk of cardiovascular disease in the general population: A meta-analysis of prospective cohort studies. Atherosclerosis 2014, 236, 7–17. [Google Scholar] [CrossRef]
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Biros, E.; Reznik, J.E.; Moran, C.S. Role of inflammatory cytokines in genesis and treatment of atherosclerosis. Trends Cardiovasc. Med. 2021, S1050–S1738. [Google Scholar] [CrossRef]
- Boraschi, D.; Lucchesi, D.; Hainzl, S.; Leitner, M.; Maier, E.; Mangelberger, D.; Oostingh, G.J.; Pfaller, T.; Pixner, C.; Posselt, G.; et al. IL-37: A new anti-inflammatory cytokine of the IL-1 family. Eur. Cytokine Netw. 2011, 22, 127–147. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, S.; Liu, C.A.; Yap, J.; Boisvert, W.A. Potential role of IL-37 in atherosclerosis. Cytokine 2019, 122, 154169. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, S.; Baumer, Y.; Toulmin, E.; Lee, B.H.; Boisvert, W.A. Macrophage-Specific Expression of IL-37 in Hyperlipidemic Mice Attenuates Atherosclerosis. J. Immunol. 2017, 199, 3604–3613. [Google Scholar] [CrossRef]
- Dinarello, C.A.; Nold-Petry, C.; Nold, M.; Fujita, M.; Li, S.; Kim, S.; Bufler, P. Suppression of innate inflammation and immunity by interleukin-37. Eur. J. Immunol. 2016, 46, 1067–1081. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Li, X.; Jiang, S.; Han, B. Interleukin-37 elevation in patients with atrial fibrillation. Clin. Cardiol. 2017, 40, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Min, X.; Lin, Y.; Huang, Y.; Huang, S.; Liu, L.; Peng, Y.; Meng, K.; Li, D.; Ji, Q.; et al. Increased IL-37 concentrations in patients with arterial calcification. Clin. Chim. Acta 2016, 461, 19–24. [Google Scholar] [CrossRef]
- Ji, Q.; Zeng, Q.; Huang, Y.; Shi, Y.; Lin, Y.; Lu, Z.; Meng, K.; Wu, B.; Yu, K.; Chai, M.; et al. Elevated plasma IL-37, IL-18, and IL-18BP concentrations in patients with acute coronary syndrome. Mediat. Inflamm. 2014, 2014, 165742. [Google Scholar] [CrossRef]
- Xu, D.; Wang, A.; Jiang, F.; Hu, J.; Zhang, X. Effects of interleukin-37 on cardiac function after myocardial infarction in mice. Int. J. Clin. Exp. Pathol. 2015, 8, 5247–5251. [Google Scholar]
- Wu, B.; Meng, K.; Ji, Q.; Cheng, M.; Yu, K.; Zhao, X.; Tony, H.; Liu, Y.; Zhou, Y.; Chang, C.; et al. Interleukin-37 ameliorates myocardial ischaemia/reperfusion injury in mice. Clin. Exp. Immunol. 2014, 176, 438–451. [Google Scholar] [CrossRef]
- Chai, M.; Ji, Q.; Zhang, H.; Zhou, Y.; Yang, Q.; Zhou, Y.; Guo, G.; Liu, W.; Han, W.; Yang, L.; et al. The protective effect of interleukin-37 on vascular calcification and atherosclerosis in apolipoprotein E-deficient mice with diabetes. J. Interferon Cytokine Res. 2015, 35, 530–539. [Google Scholar] [CrossRef]
- Sakai, N.; Van Sweringen, H.L.; Belizaire, R.M.; Quillin, R.C.; Schuster, R.; Blanchard, J.; Burns, J.M.; Tevar, A.D.; Edwards, M.J.; Lentsch, A.B. Interleukin-37 reduces liver inflammatory injury via effects on hepatocytes and non-parenchymal cells. J. Gastroenterol. Hepatol. 2012, 27, 1609–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicklin, M.J.; Barton, J.L.; Nguyen, M.; FitzGerald, M.G.; Duff, G.W.; Kornman, K. A sequence-based map of the nine genes of the human interleukin-1 cluster. Genomics 2002, 79, 718–725. [Google Scholar] [CrossRef]
- Pei, B.; Xu, S.; Liu, T.; Pan, F.; Xu, J.; Ding, C. Associations of the IL-1F7 gene polymorphisms with rheumatoid arthritis in Chinese Han population. Int. J. Immunogenet. 2013, 40, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Meng, S.; Song, R.H.; Qin, Q.; Wang, X.; Yao, Q.; Jiang, Y.; Jiang, W.; Shi, L.; Xu, J.; et al. Polymorphism of IL37 gene as a protective factor for autoimmune thyroid disease. J. Mol. Endocrinol. 2015, 55, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, H.; Deng, B.; Yu, H.; Yang, Y.; Ding, L.; Zhang, Q.; Qin, J.; Kijlstra, A.; Chen, R.; Yang, P. Genetic analysis of innate immunity in Behcet’s disease identifies an association with IL-37 and IL-18RAP. Sci. Rep. 2016, 6, 35802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Zhou, J.; Yuan, Z.C.; Lan, Y.Y.; Xu, W.D.; Huang, A.F. Association between IL-37 and Systemic Lupus Erythematosus Risk. Immunol. Investig. 2021, 1–12. [Google Scholar] [CrossRef]
- Yin, D.; Naji, D.H.; Xia, Y.; Li, S.; Bai, Y.; Jiang, G.; Zhao, Y.; Wang, X.; Huang, Y.; Chen, S.; et al. Genomic Variant in IL-37 Confers A Significant Risk of Coronary Artery Disease. Sci. Rep. 2017, 7, 42175. [Google Scholar] [CrossRef]
- Villarreal-Molina, T.; Posadas-Romero, C.; Romero-Hidalgo, S.; Antúnez-Argüelles, E.; Bautista-Grande, A.; Vargas-Alarcón, G.; Kimura-Hayama, E.; Canizalez-Quinteros, S.; Juárez-Rojas, J.G.; Posadas-Sánchez, R.; et al. The ABCA1 gene R230C variant is associated with decreased risk of premature coronary artery disease: The genetics of atherosclerotic disease (GEA) study. PLoS ONE 2012, 7, e49285. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Coral-Vázquez, R.M.; Roque-Ramírez, B.; Llorente, L.; Lima, G.; Flores-Dominguez, C.; Villarreal-Molina, T.; Posadas-Romero, C.; et al. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: The genetics of atherosclerotic disease (GEA) Mexican study. Oncotarget 2017, 8, 64459–64470. [Google Scholar] [CrossRef] [Green Version]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar]
- Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef]
- Grundy, S.M. Diagnosis and Management of the Metabolic Syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association Standards of medical care in diabetes. Diabetes Care 2009, 32 (Suppl. 1), S13–S61.
- Mautner, G.C.; Mautner, S.L.; Feuerstein, I.M.; Proschan, M.A.; Roberts, W.C.; Doppman, J.L. Coronary artery calcification: Assessment with electron beam CT and histomorphometric correlation. Radiology 1994, 192, 619–623. [Google Scholar] [CrossRef]
- Kvist, H.; Chowdhury, B.; Grangård, U.; Tylén, U.; Sjöström, L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: Predictive equations. Am. J. Clin. Nutr. 1988, 48, 1351–1361. [Google Scholar] [CrossRef]
- Longo, R.; Ricci, C.; Masutti, F.; Vidimari, R.; Crocé, L.S.; Bercich, L.; Tiribeli, C.; Palma, L.D. Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Investig. Radiol. 1993, 28, 297–302. [Google Scholar] [CrossRef]
- McKimmie, R.L.; Daniel, K.R.; Carr, J.J.; Bowden, D.W.; Freedman, B.I.; Register, T.C.; Hsu, F.C.; Lohman, K.K.; Weinberg, R.B.; Wagenknecht, L.E. Hepatic steatosis and subclinical cardiovascular disease in a cohort enriched for type 2 diabetes: The Diabetes Heart Study. Am. J. Gastroenterol. 2008, 103, 3029–3035. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.Y.; Chiou, J.J.; Tseng, W.H.; Liu, C.H.; Liu, C.K.; Lin, Y.J.; Wang, H.H.; Yao, A.; Chen, Y.T.; Hsu, C.N. FASTSNP: An always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res. 2006, 34, W635–W641. [Google Scholar] [CrossRef]
- Available online: http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html (accessed on 30 May 2021).
- Available online: http://www.h-invitational.jp/h-dbas (accessed on 30 May 2021).
- Available online: http://spliceport.cbcb.umd.edu/SplicingAnalyser.html (accessed on 30 May 2021).
- Available online: http://www.snps3d.org (accessed on 30 May 2021).
- Available online: http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi (accessed on 30 May 2021).
- Available online: http://www.umd.be/HSF (accessed on 30 May 2021).
- Available online: https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/help (accessed on 30 May 2021).
- Available online: https://www.ensembl.org/index.htm (accessed on 30 May 2021).
- López-Bautista, F.; Posadas-Sánchez, R.; Vázquez-Vázquez, C.; Fragoso, J.M.; Rodríguez-Pérez, J.M.; Vargas-Alarcón, G. IL-37 gene and cholesterol metabolism: Association of polymorphisms with the presence of hypercholesterolemia and cardiovascular risk factors. The GEA Mexican Study. Biomolecules 2020, 10, 1409. [Google Scholar] [CrossRef]
- Wroblewski, F.; Ladue, J.S. Serum glutamic pyruvic transaminase in cardiac with hepatic disease. Proc. Soc. Exp. Biol. Med. 1956, 91, 569–571. [Google Scholar] [CrossRef]
- Wroblewski, F.; Ladue, J.S. Serum glutamic oxalacetic aminopherase (transaminase) in hepatitis. J. Am. Med. Assoc. 1956, 160, 1130–1134. [Google Scholar] [CrossRef]
- Tonelli, M.; Curhan, G.; Pfeffer, M.; Sacks, F.; Thadhani, R.; Melamed, M.L.; Wiebe, N.; Muntner, P. Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 2009, 120, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Waterworth, D.; Perry, J.R.; Lim, N.; Song, K.; Chambers, J.C.; Zhang, W.; Vollenweider, P.; Stirnadel, H.; Johnson, T.; et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 2008, 83, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, J.C.; Zhang, W.; Sehmi, J.; Li, X.; Wass, M.N.; Van der Harst, P.; Holm, H.; Sanna, S.; Kavousi, M.; Baumeister, S.E.; et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 2011, 43, 1131–1138. [Google Scholar] [CrossRef]
- Kamatani, Y.; Matsuda, K.; Okada, Y.; Kubo, M.; Hosono, N.; Daigo, Y.; Nakamure, Y.; Kamatani, N. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat. Genet. 2019, 42, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Kollerits, B.; Coassin, S.; Kiechl, S.; Hunt, S.C.; Paulweber, B.; Willeit, J.; Brandstatter, A.; Lamina, C.; Adams, T.D.; Kronenberg, F. A common variant in the adiponutrin gene influences liver enzyme values. J. Med. Genet. 2010, 47, 116–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sookoian, S.; Pirola, C.J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain-containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011, 53, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Posadas-Sánchez, R.; López-Uribe, Á.R.; Posadas-Romero, C.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Ocampo-Arcos, W.A.; Fragoso, J.M.; Cardoso-Saldaña, G.; Vargas-Alarcón, G. Association of the I148M/PNPLA3 (rs738409) polymorphism with premature coronary artery disease, fatty liver, and insulin resistance in type 2 diabetic patients and healthy controls. The GEA study. Immunobiology 2017, 222, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Lake, A.C.; Sun, Y.; Li, J.L.; Kim, J.E.; Johnson, J.W.; Li, D.; Revett, T.; Shih, H.H.; Liu, W.; Paulsen, J.E.; et al. Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J. Lipid. Res. 2005, 46, 2477–2487. [Google Scholar] [CrossRef] [Green Version]
- Romeo, S.; Sentinelli, F.; Dash, S.; Yeo, G.S.H.; Savage, D.B.; Leonetti, F.; Capoccia, D.; Incani, M.; Maglio, C.; Lacovino, M.; et al. Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent. Int. J. Obes. 2009, 34, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.Y.; Lee, J.E.; Chung, G.E.; Shin, E.; Kwak, M.S.; Yang, J.I.; Yim, J.Y. A genome-wide association study on liver enzymes in Korean population. PLoS ONE 2020, 15, e0229374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, M.; Okuda, K.; Ikeda, D.D.; Hishigaki, H.; Fujiwara, T. Interaction of genetic markers associated with serum alkaline phosphatase levels in the Japanese population. Hum. Genome Var. 2015, 2, 15019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Ji, H.; Cai, Y.; Ayana, D.A.; Lv, P.; Liu, M.; Jiang, Y. Serum interleukin-37 concentrations and HBeAg seroconversion in chronic HBV patients during telbivudine treatment. J. Interferon Cytokine Res. 2013, 33, 612–618. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Controls | pCAD | p |
---|---|---|---|
n = 951 | n = 1161 | ||
Sex (% male) | 41 | 81 | <0.001 |
Age (years) | 51.5 ± 8.9 | 54.1 ± 8.1 | <0.001 |
Body mass index (kg/m2) | 28.2 ± 4.1 | 28.8 ± 4.3 | 0.56 |
Systolic blood pressure (mmHg) | 114 ± 16 | 118.7 ± 18.6 | 0.0003 |
Diastolic blood pressure (mmHg) | 71 ± 8.7 | 72.1 ± 9.7 | 0.006 |
Visceral adipose fat (cm2) | 141 (05–180) | 170 (130–218) | <0.001 |
Subcutaneous adipose fat (cm2) | 285 (215–368) | 248 (194–318) | <0.001 |
Total adipose fat (cm2) | 432 (345–535) | 428 (340–532) | 0.01 |
Total cholesterol (mg/dL) | 191.1 ± 35.8 | 166.4 ± 47.7 | <0.001 |
Triglycerides (mg/dL) | 146.2 (108–204) | 161.5 (118.2–219.4) | <0.001 |
HDL-c (mg/dL) | 46.4 ± 13.7 | 38.8 ± 10.5 | <0.001 |
LDL-c (mg/dL) | 116.6 ± 31.1 | 96.1 ± 39.1 | <0.001 |
Glucose (mg/dL) | 96.4 ± 30.3 | 111.8 ± 43.4 | <0.001 |
Insulin (μU/mL) | 16.9 (12.3–22.7) | 18.9 (13.8–26.5) | <0.001 |
HOMA-IR | 3.7 (2.58–5.48) | 4.8 (3.3–7.2) | <0.001 |
apoB (mg/dl) | 93.5 (76–113) | 79 (63–101) | <0.001 |
apoA (mg/dl) | 137.2 ± 36.1 | 121.4 ± 26.6 | <0.001 |
ALT (IU/L) | 24 (18–34) | 26 (19–36) | 0.017 |
AST (IU/L) | 25 (21–30) | 26 (22–32) | 0.001 |
ALP (IU/L) | 80 (67–96) | 77 (64–95) | 0.001 |
hs-CRP (mg/L) | 1.49 (0.8–3.0) | 1.19 (0.64–2.73) | 0.0001 |
Smoke | |||
Current n (%) | 208 (21.8) | 111 (11.6) | <0.0001 |
Past n (%) | 323 (33.9) | 622 (65.4) | |
Never n (%) | 420 (44.1) | 218 (22.9) | |
Tobacco index | 0.15 (0–1.65) | 0.65 (0.05–1.65) | <0.0001 |
Lipid lowering n (%) | 139 (14.6) | 1131 (97.4) | <0.001 |
Hypoglycemic n (%) | 74 (7.78) | 401 (34.5) | <0.001 |
Antihypertensive therapy n (%) | 98 (10.3) | 1135 (97.7) | <0.001 |
rs Number Genotypes | Chr | Chr Position | MAF * (Control/Case) | Genotype Frequencies (%) * | Localization | Effect ** | |
---|---|---|---|---|---|---|---|
Controls | Cases | ||||||
rs6717710 (TT/TC/CC) | 2 | 112912187 | 0.135/0.133 | 74.9/23/2.0 | 74.8/23/1.6 | Promotor | C → GATA or GATA6 |
rs2708961 (TT/TC/CC) | 2 | 112912248 | 0.034/0.036 | 93.1/6.7/0.1 | 93/6.7/0.2 | Promotor | T → BRCA, MYB |
rs2708947 (TT/TC/CC) | 2 | 112918642 | 0.034/0.033 | 93.3/6.4/0.2 | 93.3/6.5/0.09 | Exon 3 | T → Arginine C → Tryptophan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Bautista, F.; Posadas-Sánchez, R.; Vargas-Alarcón, G. Association of the IL-37 Polymorphisms with Transaminases and Alkaline Phosphatase Levels in Premature Coronary Artery Disease Patients and Healthy Controls. Results of the Genetics of Atherosclerotic (GEA) Mexican Study. Diagnostics 2021, 11, 1018. https://doi.org/10.3390/diagnostics11061018
López-Bautista F, Posadas-Sánchez R, Vargas-Alarcón G. Association of the IL-37 Polymorphisms with Transaminases and Alkaline Phosphatase Levels in Premature Coronary Artery Disease Patients and Healthy Controls. Results of the Genetics of Atherosclerotic (GEA) Mexican Study. Diagnostics. 2021; 11(6):1018. https://doi.org/10.3390/diagnostics11061018
Chicago/Turabian StyleLópez-Bautista, Fabiola, Rosalinda Posadas-Sánchez, and Gilberto Vargas-Alarcón. 2021. "Association of the IL-37 Polymorphisms with Transaminases and Alkaline Phosphatase Levels in Premature Coronary Artery Disease Patients and Healthy Controls. Results of the Genetics of Atherosclerotic (GEA) Mexican Study" Diagnostics 11, no. 6: 1018. https://doi.org/10.3390/diagnostics11061018
APA StyleLópez-Bautista, F., Posadas-Sánchez, R., & Vargas-Alarcón, G. (2021). Association of the IL-37 Polymorphisms with Transaminases and Alkaline Phosphatase Levels in Premature Coronary Artery Disease Patients and Healthy Controls. Results of the Genetics of Atherosclerotic (GEA) Mexican Study. Diagnostics, 11(6), 1018. https://doi.org/10.3390/diagnostics11061018