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Abstract: Background: Non-alcoholic fatty liver disease (NAFLD) is a fast-growing pathology around
the world, being considered the most common chronic liver disease. It is diagnosed based on the
presence of steatosis in more than 5% of hepatocytes without significant alcohol consumption. This
review aims to provide a comprehensive overview of current studies of artificial intelligence (AI)
applications that may help physicians in implementing a complete automated NAFLD diagnosis
and staging. Methods: PubMed, EMBASE, Cochrane Library, and WILEY databases were screened
for relevant publications in relation to AI applications in NAFLD. The search terms included: (non-
alcoholic fatty liver disease OR NAFLD) AND (artificial intelligence OR machine learning OR neural
networks OR deep learning OR automated diagnosis OR computer-aided diagnosis OR digital
pathology OR automated ultrasound OR automated computer tomography OR automated magnetic
imaging OR electronic health records). Results: Our search identified 37 articles about automated
NAFLD diagnosis, out of which 15 articles analyzed imagistic techniques, 15 articles analyzed digital
pathology, and 7 articles analyzed electronic health records (EHC). All studies included in this review
show an accurate capacity of automated diagnosis and staging in NAFLD using Al-based software.
Conclusions: We found significant evidence demonstrating that implementing a complete automated
system for NAFLD diagnosis, staging, and risk stratification is currently possible, considering the
accuracy, sensibility, and specificity of available Al-based tools.

Keywords: non-alcoholic fatty liver disease (NAFLD); metabolic associated fatty liver disease
(MAFLD); non-alcoholic steatohepatitis (NASH); artificial intelligence (AI); machine learning; auto-
mated diagnosis

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a fast-growing pathology worldwide,
being considered the most common chronic liver disease. It is diagnosed based on the
presence of steatosis in more than 5% of hepatocytes without significant alcohol consump-
tion. The term NAFLD consists of the spectrum ranging from the benign form known as
non-alcoholic fatty liver (NAFL) and, possibly, deteriorating to the harsher form called
non-alcoholic steatohepatitis (NASH) [1-3].

Even though NAFLD is present also in normal weight patients, more than 80% of
NAFLD patients are obese, having a body mass index (BMI) > 30 kg/m? [3-6]. NAFLD
prevalence has been recently expanding globally, along with several metabolic diseases
including obesity. NAFLD is expected to become the most frequent cause for liver trans-
plant in less than a decade. Its prevalence ranges from 6%-35% of the global population,
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and approximately 30% of the United States are diagnosed with NAFLD (90 million per-
sons) [3-6].

Diagnosing NAFLD is laborious because the currently feasible serological and imagis-
tic methods are not able to make a distinction between steatosis and NASH [3-6]. Liver
biopsy is a technique capable of a precise diagnosis. Unfortunately, it is rarely recom-
mended in clinical practice because of the increased risk of severe bleeding and life-
threatening complications [3-6]. An alternative to liver biopsy are the recently developed
imagistic methods, with a high diagnosis accuracy: magnetic resonance imaging (MRI)
with proton density fat fraction (PDFF) and proton magnetic resonance spectroscopy
(1 H-MRS) [2—4].

The main domains in healthcare in which artificial intelligence (Al) applications are
being used include diagnostic imaging, laboratory data, electrodiagnosis, electronic health
records, and records from wearable devices. For this reason, our systematic review aims to
provide a comprehensive overview of important studies of Al applications, which might
help physicians in the management of NAFLD. Furthermore, we compared human expert
NAFLD diagnosis accuracy, specificity, and sensitivity with automatic diagnosis systems,
in case of the available selected studies provided this particular information.

2. Materials and Methods

PubMed, EMBASE, Cochrane Library, and WILEY databases were filtered for rele-
vant publications regarding Al applications in NAFLD. The search terms included: (non-
alcoholic fatty liver disease OR NAFLD OR NAFL) AND (artificial intelligence OR machine
learning OR neural networks OR deep learning OR automated diagnosis OR computer-
aided diagnosis OR digital pathology OR automated ultrasound OR automated computer
tomography OR automated magnetic imaging OR electronic health records). Exclusion
criteria were: case reports, abstracts, letters to the editor, conference presentations, pediatric
studies, studies written in languages other than English, and editorials (Figure 1).
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Figure 1. Flow diagram for study selection.
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Two independent authors (S.L.P and A.L) reviewed for eligibility titles, abstracts, and
full text of eligible articles. Data extraction was also conducted independently by both
reviewers. Extracted data on the “authors” names, year of publication, country or study
population, sample size, study design, gender ratio, number and percentage of NAFLD
patients, the method used to diagnose NAFLD, and artificial intelligence-based method
were reported into three separate tables. Figure 1 shows the search strategy using the
PRISMA flow diagram.

3. Results

The initial search retrieved a total of 1297 studies. We screened a total of 96 studies,
and we excluded 59 articles as follows: irrelevant original studies to this review topic
(n = 46), other languages (n = 6), conference abstracts (1 = 4), and letters to the editor
(n = 3). Finally, 37 articles fulfilled our inclusion and exclusion criteria and were included
in the systematic review as demonstrated in Figure 1. This section may be divided by
subheadings. It should provide a concise and precise description of the experimental
results, their interpretation, as well as the experimental conclusions that can be drawn.

3.1. Artificial Intelligence Based Imaging for NAFLD Diagnosis

The complex process of developing machine-learning software for automated radio-
logical diagnosis entails image reconstruction, segmentation, detection, data mining, and
quantification and, finally the clinical interpretation of raw digital information about on
shape, texture, volume, diffusion, and other parameters [7-11]. The main factors which
are accelerating the transition from traditional radiology to Al-based radiology worldwide
include reduced diagnosis errors, instant diagnosis with no delays, a higher accuracy
compared to human radiologists, and, probably the most important factor, a considerably
lower cost [7-13].

We found 15 articles analyzing automated diagnosis using imaging techniques in
NAFLD (Tables 1 and 2). In order to compare 3 automated diagnosis techniques using
ultrasound image, Cao et al. included in their study 240 subjects organized into 4 groups:
healthy controls, mild NAFLD, moderate NAFLD, and severe NAFLD [14]. The ultra-
sound images were evaluated using several methods including envelope signal, grayscale
signal, and deep-learning index. The following parameters were compared between the
4 groups: draw receiver operating characteristic (ROC) curves and the area under the
curve (AUC) [15]. The study reported that all the methods used in the study were asso-
ciated with a significant ability for an automated diagnosis in NAFLD (AUC > 0.7) and
that deep-learning index exhibited the best diagnostic capability to differentiate between
moderate and severe NAFLD (AUC = 0.958) and demonstrated best sensitivity as well as
specificity for NAFLD staging [15]. The authors concluded that deep learning software is
able to recognize and stage NAFLD using two-dimensional hepatic ultrasound images,
demonstrating the feasibility of a complete automated imagistic diagnosis [15].

Because the imagistic differential diagnosis between fatty liver disease and cirrhosis
using ultrasound may be troublesome, Acharya et al. analyzed the possibility of automated
software-based on curvelet transform method to discriminate between the normal liver,
fatty liver disease, and cirrhosis [16]. The study protocol included the following features to
be extracted from curvelet transform coefficients: higher-order spectra (HOS) bispectrum,
HOS phase, fuzzy, Kapoor, max, Renyi, Shannon, Vajda, and Yager entropies [16]. Results
demonstrated that the automated system could diagnose normal liver and fatty liver
disease, in addition to cirrhosis through the utilization of a probabilistic neural network
classifier, reporting an accuracy, sensitivity, and specificity of 97.33%, 96%, and 100%,
respectively [16]. Those successful results were obtained using only six parameters by the
automated diagnosis neural network [16]. The study clearly demonstrates that a precise
diagnosis for chronic liver disorders is actually available for current clinical practice and
also for experimental studies.
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Table 1. Studies assessing artificial intelligence-based imaging.

Mean Age

. Publicati Stud Total . . Sex (% cpe g
First Author u Y:;i 100 Country Degig};l Pat(i)eilts (Years/)( I({I\a/[:gg + Sd) Diagnosis Nel)a(\l(e) Main Findings
For the diagnosis of NAFLD, envelope signal and
Cao et al. 2019 China Cohort 240 _ Nonalcoholic fatty 54.58% grayscale values are very important. Deep learning
[15] study liver disease (NAFLD) male presented the best results in assessing the severity
of NAFLD.
A new technique which uses a probabilistic neural
Acharva et al Retrospective network (PNN)
[1}76] ' 2016 Malaysia cohort 150 22-79 years Fatty liver disease 50% classifier, that can automatically identify NAFLD with
study an accuracy of 97.33%, specificity of 100.00%, and
sensitivity of 96.00%.
Deep Learning-based Symtosis™ system is reliable and
Normal (1 = 27) stable in comparison with support vector machine
Biswas et al. 2017 Portugal Cohort 63 B Fatty liver di_sease _ (SVM) and extreme_ lea‘rning machipe '(ELM) for Fhe
[17] study _ ultrasound categorization of hepatic tissue and risk
(n=36) N A
stratification of normal and abnormal hepatic images
containing hyper- and hypoechoic areas.
Normal (1 = 38) A new computer-aided diagnosis (CAD) system
Ribeiro et al. Cohort ; oY reported values of 93.33% for accuracy, 94.59% for
[18] 2014 Portugel study 74 - Hepatlc_steat051s - sensitivity, and 92.11% for specificity, utilizing the Bayes
(n=36) . 2 . . o~
classifier for steatosis detection and classification.
N 1(n=27) A tissue characterization system based on a class of
Kuppili et al. 2017 Portugal Cohort 63 _ F at%frlrilsergi_sease Symt.os.is for risk stratification of ul.trasonographic
[19] study _ hepatic images demonstrates superior performance
(n=36)
compared to SVM.
The development of an image analysis software that
depicts three local intensity parameters: the coefficient
Mild h . . of variation of luminance (CVL), the median luminance
1 Ez%a’;lzc;’;eatosm (ml), and the hepato-splenic attenuation index (HSAI)
Nagy et al. . Cohort Je /o 51.32% from regions of interest (ROI) in the ultrasound image
[20] 2015 Romania study 228 441138 Moderate-severe male and analyses their depth variation. The proposed

hepatic steatosis
(28.08%)

computer analysis method was found to be of use for
initial non-invasive assessment and grading of hepatic
steatosis, with the added advantage of reduced
complexity and accessibility for the computations.
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Table 1. Cont.

Mean Age

o 0
First Author Puli}:::tlon Country Setalslldg);l P;rt(i)g:ts (Years/)( I({Mean £ Sd) Diagnosis ?\Z);l(e;” Main Findings
ange)
A computer-aided diagnosis (CAD) system for
assessing hepatic steatosis grading, mainly mild,
Normal liver subjects moderate, and severe fatty liver, as well as normal liver
(n=12) tissue was developed according to the visual
Fatty liver disease interpretations of radiologists, that selected region of
Sub Cohort (n =41) ig’gere}fts (ROIs) from with}ilq the liv:cf1]"n ar}d ftrom thfe
ubramanya ; ohor . iaphragm region, in each image. The features o
etal. [21]y 2014 India study 53 - B mild (n = 14) - selgctengOIsgpertaining textuge were three-way
B moderate combined in order to obtain ratio features, inverse ratio
(n=14) features, and additive features. A DEFS (differential
- severe(n=13) evolution feature selection) algorithm and
a SVM have been used. The computer-aided diagnosis
system had the potential of being of use to the
r}z;diologists in order to asses steitosis grades.
Normal liver subjects
(n =10) : Random forests (RF) was superi
perior to support vector
5? 2}]1 il(;f)er disease machine (SVM) classifiers and proved the capability of
Mihailescu 2013 Romania Cohort 120 _ 1d (n = _ this classifier to perform well without feature selection.
etal. [14] study - mild (n=70) On the other hand, the performance of the SVM
B moderate classifier was low without feature selection, which
gé\/:efs)(n =7 improved greatly after feature selection.
Liver radiofrequency ultrasound data contains
Non- bountiful information regarding livers” microstructure
) alcoholic and its composition. Deep learning can utilize these
ilel;lgtfeer_ NAFLD Non-alcoholic Fatty I;;tg informationx in order to to assess for the presence of
Han et al. 52 years £ 14 o . nonalcoholic fatty liver disease (NAFLD). Dee
[22] 2020 USA prospec- 204 ( (}flontrols ) liver disease (12 = 140) dlseasoe learning algorit}}]1ms utilizing r(adiofreqt)wncyp
tive 46 +21) Controls (1 = 64) (58.57% for di )
study (46 years male) ultrasound data are accurate .bioth. or dlagnos!ng
Controls NAFLD and also for the quantification of hepatic fat
(65.63%) fraction, given that other causes of steatosis

were excluded.
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Table 1. Cont.

c L. Mean Age
. Publication Study Total . . Sex (% e e 1s
First Author Year Country Design Patients (Years/)( I({l\ad:;;l) £ Sd) Diagnosis Male) Main Findings
No liver fat (n = 5584) The liver fat quantification tool, CT-based and fully
Mild steatosis automated, allows the population-based assessment of
Graffy et al Retrospective (n = 4948) 44.36% hepatic steatosis and NAFD, giving objective data that
y ’ 2019 USA cohort 9552 57.2 years = 7.9 Moderate steatosis 27 pairs well with data obtained by manual measurement.
[23] T male . . X
study (n =1025) ) In this asymptomatic screening cohort, the prevalence
Severe steatosis of liver steatosis, of at least mild grade, was more
(n=112) than 50%.
Automated measurements of liver attenuation in CT
65 IOR . . . o scans from patients with hepatic disease, can be utilized
rapatnakul Coh 5 4yggrs (I1Q Liver disease subjects 62’51/ °  inidentifying moderate to severe hepatic steatosis. The
Jirapatnaku 2019 USA ohort 333 —69 years) (n. =24) . ma:)e automated method outlines a set region within the liver,
etal. [24] study 61 years (IQR Normal liver function 64.6% . . o
: _ located below the right lung and utilizes statistical
57-66 years) subjects (n = 319) male f : utt
sampling techniques to elimitate all
non-liver parenchyma.
An automatic ROI-based measurement (ALARM)
method for estimating the liver attenuation was
developed by combining DCNN and morphological
Hu[(é g]t al. 2019 USA E?&g;t 246 B NAFLD B operations, achieving an “excellent” accord with

manual estimation of hepatic steatosis. The entire
pipeline was implemented as a Docker container,
enabling the software users to estimate the liver
attenuation in five minutes per CT scan.
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Table 2. Animal experimental studies Assessing Artificial Intelligence Based Imaging.
c L. Mean Age
. Publication Study Total . . Sex (% s e .
First Author Year Country Design Patients (Years/)( I({Mean £ Sd) Diagnosis Male) Main Findings
ange)
The automated procedure was able to assess and
NOD.B.10foz/foz ;md measure the grade of macrovesicular steatosis, mixed
Wairgllf—? ;fgi‘e"?th inflammation, and pericellular fibrosis in steatohepatitis
De Rudder 2019 Belgium Experimental 20 _ C57B16/] mice fed 100% induced b.y'CDAA. The Procedurg represents a
et al. [26] study with a fat-rich promising quantitative technique with
choline-deficient diet high-throughput, in order to rapidly evaluate the
or fat-rich diet NAFLD activity in large preclinical studies, and for
accurate survey of disease evolution.
The CAUS methodology and software for digitally
evaluating ultrasonographically obtained hepatic
. . images could be accessible for noninvasive screening of
Starke et al. 2010 Germany Experimental 151 - German Holstein 0% hepatic steatosis in dairy herd health programs.
[27] study dairy cows—normal o . . .
Utilization of single parameter linear regression
equation can possibly be optimal for
practical applications.
Holstein-Friesian
cows
- normal liver Fatty infiltration diagnosis was best performed using
Acorda et al. 2011 Japan Experimental 158 _ (n=117) digital analysis, obtaining the highest sensitivity,
[28] p study - fatty infiltration specificity, accuracy, and PPV /NPV, followed

of the liver

by ultrasonography.
(n=41)
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Biswas et al. evaluated the efficiency of a deep learning (DL) software with a power
of seven million weights per on hepatic image obtained with ultrasound, followed by a
22 layered neural network processing [17]. The main operations performed by the Symtosis
System include convolution, pooling, rectified linear unit, dropout, and inception model.
The additional speed and accuracy are given by the optimization of tissue localization and
the precise process of removing background information [17]. The authors also compared
their results with the most frequently used conventional machine learning protocols: ELM
and SVM. In the study, liver ultrasound images were obtained from 36 patients with fatty
liver disease and 27 healthy controls [17].

The study reported that diagnosis and risk stratification accuracies of 82% for SVM,
92% for ELM, and 100% for DL systems, and a corresponding AUC of 0.79, 0.92, and 1.0,
respectively [17]. The superiority of the DL Symtosis System was further demonstrated
with the validation of two class biometric facial data showing a 99% accuracy [17]. The
authors concluded that the DL Symtosis System is an accurate tool for diagnosis and risk
stratification of fatty liver disease and can be used in clinical practice [17].

The Bayes factor is a summary of provided evidence favoring the likelihood ratio of
one particular hypothesis to the likelihood of another through a statistical model [18]. Using
objective liver ultrasound parameters which are computed in a Bayes factor, Ribeiro et al.
analyzed the efficiency of a computer-aided diagnosis (CAD) for steatosis staging [18]. The
study demonstrated that the Bayes automated classifier had an accuracy, sensitivity, and
specificity of 93.33%, 94.59%, and 92.11%, respectively [18]. This study demonstrated that
CAD system can be considered as an accurate automated system for steatosis classification
without a function for diagnosis [18].

If several studies have analyzed different Al-based software as a diagnosis tool for
NAFLD using ultrasound images, Kuppili et al. analyzed the possibility of risk stratifica-
tion in fatty liver disease using extreme learning machine (ELM), a class of Symtosis [19].
The initiative came as a reaction to the machine learning software based on support vector
machines (SVM) characterized by slow data processing and mismatch between grayscale
features, followed by diagnosis and classification errors [19]. There were 63 patients in-
cluded in the study, 36 patients with fatty liver disease and 27 healthy controls, and ELM
was used in the process of software training based on a single-layer feed-forward neural
network [19]. The study reported a significant processing speed upgrade of 40% for ELM
compared with SVM. Furthermore, ELM demonstrated an accuracy of 96.75% in compari-
son with SVM showing an accuracy of 89.01%, with AUC: 0.97 and 0.91, respectively [19].
The authors validated their automated software for risk stratification using two-class bio-
metric facial public data. The result of the final validation was an accuracy of 100%, the
highest accuracy found from all the studies we have evaluated [19].

In a prospective study on 228 patients with chronic liver disorders, Nagy et al. evalu-
ated the diagnosis values of a set of hepatic ultrasound characteristics, which were further
analyzed with the support of an SVM classifier for steatosis [20]. The results were com-
pared with the results obtained from the hepatic biopsy, which is still the “gold standard”
technique for fatty liver disease diagnosis. Three ultrasound parameters were used by the
SVM classifier: coefficient of luminance variation, median luminance, and hepato-splenic
attenuation index [20]. Results demonstrated good accuracy of 89.17% for the method, with
an AUC of 0.923 for division of liver steatosis in two stages (mild vs. moderate-severe) [20].

A study by Subramanya et al. analyzed the efficiency of CAD system for diagnosing
and staging fatty liver disease on 53 ultrasound images. The authors reported a superior
performance, publicizing the values of 84.9 £ 3.2 for mean accuracy and standard deviation,
concluding that CAD system is a convenient tool for diagnosis and staging of fatty liver
disease [21].

In a prospective study on 120 subjects with steatosis or normal liver, Mihailescu et al.
evaluated the possibility of automated steatosis staging using ultrasound images analyzed
by random forests and SVM classifiers [14]. Ground truth data was represented by the
diagnosis based on human experts’ ratings, and the staging of the steatosis was based
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on a large set of labeled images. The authors reported that random forests had better
accuracy than SVM classifier [14]. A study by Han et al. evaluated a DL system based on
radiofrequency data obtained from magnetic resonance imaging (MRI)/derived proton
density fat fraction [14].

The DL algorithms utilized one-dimensional convolutional neural networks, applying
the test group in order to to analyze the classifier for accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) [22]. An accuracy
of NAFLD diagnosis of 96% (95% CI: 90%, 99%), 98 of 102; sensitivity of 97% (95% CI:
90%, 100%), 68 of 70; specificity, 94% (95% CI: 79%, 99%), 30 of 32; PPV, 97% (95% CI:
90%, 99%), 68 of 70; NPV, 94% (95% CI: 79%, 98%) was reported, demonstrating that DL
algorithms using radiofrequency ultrasound data have a significant accuracy for NAFLD
diagnosis [22]. If the majority of the available studies are analyzing the possibility of
an automated diagnosis of NAFLD using ultrasound images, only a limited number of
studies [3] are evaluating the possibility of computer tomography (CT) NAFLD-based
diagnosis and staging.

A retrospective study by Graffy et al. analyzed an automated volume-based liver
attenuation method that was tested using three-dimensional convolutional neural net-
works [23]. In addition, CT fat fraction was also performed and was compared with human
radiology “experts” evaluations [23]. The study included 11,669 CT scans in 9552. The
authors reported that algorithm errors occurred only in 7 cases [23]. A significant number
of agreements among manual and computerized measurements were found, reporting
a mean difference of 2.7 HU with a median of 3 HU, and a value r? = 0.9230 The study
demonstrated that complete automation of NAFLD diagnosis based on CT images is possi-
ble, and the results of the automated software match significantly with the results obtained
by human radiologists [23].

Jirapatnakul et al. analyzed the accuracy of an automated method performed using
non-contrast low-dose chest CT (LDCT) for measuring liver attenuation and compared it
with human radiologists diagnosis [24]. The protocol of the study provided an algorithm,
identifying an area inferior to the right lung within the hepatic parenchyma and utilizes
a sampling strategy, allowing the exclusion of non-liver parenchyma [24]. Automated
measurements of liver attenuation from LDCT scans were demonstrated to be a precise
automated method of diagnosis, and it can be implemented in clinical practice [24]. Further,
a study by Huo et al. concluded that hepatic steatosis measured using an automatic
CT-based on automatic liver attenuation ROI-based measurement (ALARM) achieved a
significant match with the human radiologists” estimation for liver steatosis [25].

Unfortunately, few studies analyzed the possibility of automated NAFLD diagnosis
using imaging techniques applied to animal models. A study on rodents by De Rudder et al.
showed that an automated method of measurement of steatosis based on quantification of
macrovesicular steatosis area presented a significant correlation with micro-CT liver density,
hepatic fat content (r = 0.89), steatosis scores (r = 0.89), and the CD36 gene expression
(r = 0.87) [26]. The automated tool also precisely identified and quantified macrovesicular
steatosis, mixed inflammation, and pericellular fibrosis [26]. The authors concluded that
their automated method is a precise tool for monitoring fatty liver disease evolution.
Further, a study conducted by Starke et al. analyzed the automated evaluation of hepatic
ultrasound images for diagnosing fatty liver in cows [27].

The results demonstrated that computer-aided ultrasound diagnosis is able to perform
an automated diagnosis of fatty liver disease in herd health programs, and the digital tool
can be extended to other types of animals [27].

Acorda et al. performed a study on 158 Holstein-Friesian cows and made a compar-
ative evaluation of hepatic fatty infiltration using liver blood tests, ultrasound images,
and automated digital [28]. The authors reported that automated digital analysis had the
highest sensitivity, specificity, and accuracy for diagnosing fatty liver disease [28].
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3.2. NAFLD Diagnosis and Staging Using Digital Pathology

Digital pathology is defined as the process of digitizing histopathology slides, while
utilizing whole-slide scanners, enabling acquisition, automated diagnosis, risk, and prog-
nostic interpretation of pathology information generated from a digitized glass slide [29-33].
Artificial intelligence software using a considerable digital database, followed by machine
learning networks, is capable of a complete automated process of diagnosis in a wide range
of pathology [29-33].

A wide range of digital algorithms and software were introduced in the last decade
aiming for a complete automated diagnosis of steatosis using liver biopsy samples. Differ-
ent methods have been utilized on order to automatically discriminate between steatosis
and non-steatotic tissue as healthy liver tissue, hepatic tumors, blood vessels, and bile ducts.

A study by Forlano et al. was conducted on 246 consecutive patients, all with biopsy-
proven NAFLD, which were followed up by used machine learning from 2010 to 2016, in
order to create a complete automated software for diagnosing and quantifying steatosis,
inflammation, ballooning, and fibrosis from hepatic biopsy samples [34]. Machine learning
software was found to identify specific histologic NAFLD characteristics with interobserver
and intraobserver agreement levels that ranged between 0.95 to 0.99 and in a subgroup
of paired liver biopsy samples, the automated result generated by the machine learning
software was more precise than the non-alcoholic steatohepatitis Clinical Research Network
scoring system [34]. The authors of the study concluded that this software could objectively
analyze anatomopathological features of NAFLD from liver biopsy samples in an extremely
short period of time. These software results were found to correspond with results from
histopathologists, opening the opportunity for digital pathology real-time diagnosis and a
good balance between cost and efficiency [34].

Digital image analysis (DIA) is a new method for precise histological diagnosis of
NAFLD, because no inter-observer variability occurs, and it has high reproducibility [35].
For this reason, Munsterman et al. developed a new DIA algorithm implemented as a
Java plug-in in FIJI and can automatically process quantification of steatosis on whole-
slide images (WSIs) from the liver biopsy samples using the Pathomation extension [35].
The software algorithm finds a steatosis proportionate area, and logistic regression was
introduced in order to discriminate steatosis from healthy liver tissue [35]. In the study,
61 NAFLD patients and 18 healthy controls were included, and the liver biopsies were
analyzed by an expert pathologist [35].

The software was programmed to find potential steatotic hepatocytes and to differen-
tiate them from bile ducts, blood vessel and tissue tearing, using criteria of size, roundness,
and color [35]. Steatotic hepatocytes were found using the following criteria: white color,
specific size range, and round shape [35]. Results demonstrated an accuracy of 91.9%
for the new software, and the AUC of properly identified steatosis was 0.970 (95% CI
0.968-0.973), p < 0.001 [35]. The authors concluded that the novel digital analysis could
be used for quantification of steatosis in clinical practice but also in clinical trial studies of
NAFLD [35].
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Table 3. Studies assessing automated digital pathology.

Publication

First Author Y.
ear

Country

Study
Design

Total
Patients

Mean Age
(Years) (Mean + Sd)
/(Range)

Diagnosis

?\EI);IS;O Main Findings

United
Kingdom

Griffin et al.

[29] 2017

Review

Combining whole slide imaging with other digital tools
such as digital dictation, specimen trackin, and
barcoding, can simplify the histopathology workflow,
from specimen accession to report sign-out, enhancing
the safety, quality, and efficiency of
histopathology departments.

Bera et al.
[30] 2019 USA

Review
(Opinion)

The opportunity of digitalization whole-slide tissue
images has contributed to the appearance of artificial
intelligence and machine learning tools in digital
pathology, enabling the search for subvisual
morphometric phenotypes, hopefully improving
patient management.

Stathonikos The Neder-
etal. [31] 2020 lands

Review

The 2020 COVID-19 crisis led to several implications
affecting healthcare providers, including staffing
shortages and the necessity to work from home. An
asset digital diagnostic could allow pathologists,
residents, molecular biologists, and pathology
assistants to participate in the diagnostic process.

Ortega et al.

(32] 2020 USA

Review

Using hyperspectral imaging (HSI) and multispectral
imaging (MSI) technologies can add spatial information
for creating computer-aided diagnostic tools for
histological samples, both stained and unstained.
- HIS/MSI is associated with new possibilities in
histological samples evaluation such as digital staining
or mitigating the variability of digitized samples
between different laboratories, compared to the
traditional RGB analysis method.

Mendelsohn

etal. [33] 2016 USA

Review

CYDAC (cytophotometric data converter) is a new
modality, depending on computer analysis of cell
- images that can be applied to blood cell and
chromosome discrimination.
This specific modality to pictorial data processing can
possibly have utilizations in other scientific areas.
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Mean Age

o N
First Author Pul%}::;tlon Country Sgﬂg}; Pgt(;zﬂt s (Years/)( I({l\a/I:;g £ Sd) Diagnosis ?\Z);l(e;" Main Findings
An algorithm was developed through machine learning,
by utilizing liver specimens obtained through biopsy
Retrospective from NAFLD patients, for quantifying the ammount of
Forlano et al. 2020 United Coh(I))rt 246 51 (19-77) Biopsy-proven 69% fat, inflammation, ballooning, and collagen. The
[34] Kingdom stud NAFLD algorithm proved predictability and sensitivity for the
Y detection of modifications compared with traditional
scores, in a cohort of paired specimens from
liver biopsies.
Validation study for the development of a digital
Control subiects automated system for quantification of steatosis on
Case- -~ ) whole-slide images (WSIs) of liver tissue. This
Munsterman 2019 The Neder- control 79 _ (n =18) _ aleorith lsob lied wh isine th
etal. [35] lands NAFLD subjects gorithm can also be applied when appraising the
study (n = 61) degree of liver steatosis is warranted, such as clinical
trials assessing the effectiveness of new therapeutic
interventions in NAFLD.
Computational simulations multiphoton imaging, and
three-dimensional digital reconstructions were applied,
B o achieving geometrical and functional spatially rendered
Segovia- Cohort 36685(?;9_?6%) I}I{(;r;ﬂﬁlycco)g;(él ((nnz_ 46)) %g";z models of human liver tissue from various
Miranda 2019 Germany stud 25 42 (34-51) Steatosis (1 = 8) 63% non-alcoholic fatty liver disease (NAFLD) stages. The
et al. [36] y 51 (39-58) Early NASH (1 = 7) 14% proposed models can define quantitative
y - multiparametric signatures for cells and tissues,
assessing disease progression and providing new
patophysiologic insights into NAFLD.
Normal liver histology
subjects (n = 20)
NAFLD subjects Automatic quantification of cardinal NAFLD histologic
Vanderbeck Case- (n=27) of varying lesions can be acce§s1ble and may possibly be used for
etal. [37] 2015 USA control 47 - severity: - further c'ievel'opmg other automated met‘hod's fo'r
study - simple steatosis pathologists, in order to assess NAFLD biopsies in

n=19)
- NASH (n = 8)

clinical practice and clinical trials.
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Mean Age

First Author Pul%:::tlon Country Setalslldg);l P;rt(i)g:ts (Years/)( I({Mean £ Sd) Diagnosis Main Findings
ange)
A method linking topological data analysis with linear
Teramoto 2020 Japan Cohort 80 B NAFLD subjects machine learning techniques was devised and tested for
etal. [38] p study (n=79) classifying liver tissue images, using Matteoni
classification, into NAFLD subtypes.
An integrated artificial intelligence-based automated
Gawrieh 2020 USA Cohort 18 _ NAFLD (liver tool was developed and tested to identify and evaluate
etal. [39] study biopsies) hepatic fibrosis and its patterns in liver biopsies
of NAFLD.
An automatic classification of steatosis was proposed
that included the basic features of NAFLD compared to
other regions that appear as white in images of liver
Vanderbeck Case- _Normal liver biopsies samples stained with hematoxylin and eosin
etal, [40] 2014 USA control 47 - histology (n = 20) (macrosteatosis, portal arteries, portal veins, central
: study NAFLD (n =27) veins, sinusoids, and bile ducts). The precise

identification of microscopic anatomical landmarks in
liver samples, can ease critical ensuing tasks, (locating
other histological anomalies)
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Table 4. Animal experimental studies assessing artificial intelligence-based imaging.
. o Mean Age
First Publicat . Total . . Sex (% s oo o
Aultrhor uYeI;: 100 Country Study Design Pat‘;e;;ts (Years/)( 1({1;’[:;:) + Sd) Diagnosis I\;EI):ll(e) Main Findings
Experiment with High-fat diet (HFD):
16 C57BL /6] male
mice, divided in 6 groups: . _
normal diet; HFD 10% (wt/wt) A. glegp learnlng Al algquthm was qeveloped by
dietary broccoli; HFD10% (wt/wt) dietary utilizing glass slides of liver from mice models for
broccoli stalks. nonalcoholic fatty liver disease, quantifying
. Experiment with High cholesterol and cholate hepatic fatty vacuoles, while differentiating them
eg{;r.n[ztl] 2020 Israel Exp Strlllrél}e,ntal 32 mice - diet (HCD): ) 100% from lumina of liver blood vessels and bile ducts.
16 C57BL/6] male mice, divided in 4 groups: Utilizing deep learning algorithms for difficult
normal diet; diet high in fat high assessments utilized in microscope-based
cholesterol (1%) and cholate (0.5%) (HCD; pathology can advance outputs of workflows
atherogenic regarding toxicologic pathology.
diet); HCD 15% (wt/wt) dietary broccoli;
HCD
15% (wt/wt) dietary broccoli stalks.
Male C57BL/6J, ob/ob and db/db mice A rapid and reprodu.cible modal.it'y fqr hi§t010gic
divided into 7 groups: assessment of hepatic fat deposition in different
models of hepatic steatosis in mice, based on
- C(:)ntrol quantitative digital analysis of Oil Red O (ORO)
Geetal Experimental - 10 0/ o Ethanol accumulation in fresh-frozen hepatic sections was
cona 2010 USA penimenta 42 mice - 14% Ethanol - developed. The process involved defining
[42] study - 18% Ethanol i i i
: ! appropiate regions for analysis, followed by
- high-fat diet (HFD) iod ic imaoi ;
& digital photographic imaging of these regions and
- Ob/ob subsequently by the digital determination of the
- Db/db portion of the identified area (Area Fraction)
exhibiting ORO staining.
Accurate identification of macro- and
microsteatosis in FLD in mice is critical in
understanding the pathophysiology of the disease,
and in the detection of potential hepatotoxic
signatures which can be applied in drug
development and quantifying the effects of
Normal liver histology (1 =9) different therapies.
Sethunath 2018 USA Experimental 27 mi _ Mild steatosis (n = 10) _ Automated classifiers were developed employing
etal. [43] study fice Moderate steatosis (1 = 4) both image processing techniques and machine
Severe fatty liver (n = 4) learning techniques, in order to study the

correlation between automated quantification of
macrosteatosis and semi-quantitative grades
given by expert pathologists. The developed
classifier proved high accuracy and sensitivity for
indentifying macrosteatosis in fatty liver disease
in mice.
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A significant step forward was made by a new approach of NAFLD diagnosis us-
ing multiphoton imaging, digital three-dimensional reconstructions, and computational
simulations, concerning the creation of a spatially-resolved geometrical model describing
the structure of the liver, with the purpose of precise analysis of evolutive stages of fatty
liver disease [36]. The study protocol provided new perspectives for the identification of
multi-parametric cellular and tissue signatures in NAFLD pathophysiology and digital
pathology. Several techniques were used for high-resolution reconstruction of sinusoidal
networks, nuclei, lipid droplets, and hepatocytes from fluorescent image stacks of fixated
liver tissue, tinted using fluorescent molecules of small size and specific antibodies [36].
In order to analyze nuclear texture, four essential features were measured: contrast, en-
tropy, homogeneity (angular second moment), and local homogeneity (inverse difference
moment) [36].

3D spatially-resolved quantitative analysis of liver biopsy was reported to uncover
new morphological features in NAFLD: specific in nuclear texture in pericentral hepato-
cytes; quantitative changes of lipid droplets size distribution; alterations of hepatocytes
apical plasma membrane; pericentral hepatocytes alteration of dipeptidyl-peptidase-4 [36].

Further, biliary fluid dynamic simulations made a statistically significant prediction of
micro-cholestasis in parallel with elevated cholestasis blood tests [36]. The results of the
study contribute to the expansion of high-definition medicine by introducing new concepts
and histologic criteria in the process of automated NAFLD diagnosis [36].

A study conducted by Vanderbeck et al. evaluated liver biopsy samples from 59 NAFLD
patients [37]. Furthermore, automatic quantification of lobular inflammation and balloon-
ing was introduced in new software that analyzed digital images of slides involving liver
biopsy samples stained using hematoxylin and eosin [37]. The study demonstrated that
the automated classifier detected and quantified macrosteatosis with a precision greater
than or equal to 95%, demonstrating that the implementation of automated digital pathol-
ogy diagnosis for NAFLD is feasible [37]. Teramoto et al. tested an automated system
for the diagnosis and classification of NAFLD liver biopsy samples based on Matteoni
classification [38].

The system was depended on topological data analysis methodology in combination
with linear machine learning techniques [38]. In the study were included 79 patients with
NAFLD, and digital images of liver tissue samples, tinted with hematoxylin and eosin,
were used to train the automated system [38]. An accuracy rate of > 90% for differentiating
between the two NAFLD groups was obtained (NASH and non-NASH, respectively), and
the greatest AUC from ROC analysis reached 0.946 for the purpose of identifying NASH
and NAFL2 (Matteoni type 2), utilizing both 0-dimensional and 1-dimensional persistence
images [38].

A study conducted by Gawrieh et al. aimed to develop automated software with
the purpose of detection and quantification of hepatic fibrosis from liver biopsy samples
obtained from NAFLD patients [39].

A total of 987 observations of fibrosis characteristics were obtained by two expert
pathologists and were further used to train and test the machine learning models to
detect fibrosis [39]. The study reported a significant correlation between the artificial
intelligence-based system and the human pathologist score of fibrosis stage: the models’
calculated areas under the ROC were >90% for the purpose of detection of normal fibrosis
and bridging fibrosis; 86.4% for portal fibrosis; 83.3% for pericellular fibrosis; 78.6% for
periportal fibrosis [39].

The authors concluded that the excellent accuracy of the artificial intelligence-based
system permits an integrated automated tool for the quantification of hepatic fibrosis in
clinical practice and also in clinical trials [39].

Vanderbeck et al. conducted a study on 27 NAFLD patients and 20 healthy controls
using supervised machine learning classifiers with the purpose of automatizing the clas-
sification of steatosis in NAFLD patients and other hepatic areas, which are colored in
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white in images of hematoxylin and eosin-stained biopsy [40]. A percentage of 89% overall
accuracy of the classification algorithm was demonstrated [40].

Furthermore, macrosteatosis, bile ducts, portal veins, and sinusoids were precisely
detected in >82% [40]. The high accuracy of automated identification and staging of
steatosis obtained with this algorithm brings additional evidence for the feasibility of a
complete automated diagnosis of NAFLD [40].

In the last two decades, several studies using experimental animal models analyzed
novel techniques of implementing an automated computerized system for the diagnosis
and staging of NAFLD. Using a deep learning algorithm Ramot et al. analyzed glass slides
of mice liver with NAFLD, comparing the manual semiquantitative microscope-based
assessment with data output obtained from the artificial intelligence software [41].

The algorithm diagnosed precisely the fatty vacuoles percentage, showing an impor-
tant association (r = 0.87, p < 0.01) among the semiquantitative techniques performed by a
human pathologist and automated diagnosis tools [41]. The authors concluded that the
accuracy of the algorithm permits the use of the deep learning Al software in a wide range
of applications in the future [41].

On the other hand, GE et al. analyzed a modality for digital histologic assessment of
hepatic fat deposition mouse [42]. The study’s protocol described two phases: automated
identification of digital images obtained from hepatic biopsy samples from mouse; auto-
mated diagnosis of the fraction of the identified area showing Oil Red O staining [42]. The
automatization method was demonstrated to be rapid, with an average time per specimen
of less than 3 min per, highly reproducible, and the area fraction was significantly associated
with triglyceride deposition in the liver (p < 0.01) [42]. Further, Sethunath et al. analyzed
the accuracy of machine learning modalities for diagnosing macro- and microsteatosis of
fatty liver disease in murine models [43]. A fully automated diagnosis of steatosis was
obtainable in murine liver biopsies images with outstanding accuracy [43].

3.3. NAFLD Diagnosis, Staging, and Risk Stratification Using Electronic Health Records

Electronic health records (EHR) are a digital systematized collection of patients’
electronically-stored health information hosted and shared through network-connected,
enterprise-wide information systems [44]. We found seven articles analyzing the possibility
of automated diagnosis, staging, and risk stratification of NAFLD based on EHR (Table 5).

Using an algorithm based on natural language processing (NLP) to analyze unstruc-
tured data Van Vleck et al. evaluated the possibility NLP for the identification of NAFLD
patients with and to further analyze patterns of disease progression [45]. The protocol of
the study included 38,575 individuals, registered in the NLP system, which were enlisted
in the Mount Sinai BioMe cohort. The NLP system was used to find NAFLD imagistic
diagnosis in radiology reports that was not reported in parallel in clinical notes, and physi-
cian opinion of progression of NAFLD to NASH or liver cirrhosis was also automatically
analyzed [45]. The results demonstrated that NLP had better results than previous auto-
mated selection tools and breakdowns of essential information that could have slowed or
prevented later disease progression were automatically found by the software [45].

Further, Corey et al. analyzed the possibility of an automated algorithm for NAFLD
classification to be implemented in order to develop large-scale longitudinal cohorts [46].
The study reported that automated classification was better than other software’s using only
the ICD-9 data with an AUC of 0.85 against 0.75 (p < 0.0001) [46]. The authors concluded
that their method is simple to develop, easy to use, does not need individual training for
the personal using the tool, and can be rapidly applied in order to create EHR cohorts of
individuals with NAFLD [46].
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Table 5. Studies assessing artificial intelligence-based technologies on electronic health records.

Mean Age

First Author Publication Country Stu.d y T(.)tal (Years) (Mean =+ Sd) Diagnosis Sex (% Main Findings
Year Design Patients /(Range) Male)
ge
The use of NLP (natural language processing)
algorithms to appropiately evaluate unstructured data
in EHR has been extensively documented. NLP-based
Retrospective NAFLD subjects approaches were more detailed in defining NAFLD
Van Vleck 2019 cohort 12.934 59.8 (n=2281) 42% within the EHR compared to ICD/text search-based
etal. [45] USA stud ! 59.5 Control subjects methods. NLP algorithms promoted better analysis of
y (n =10,653) knowledge flow between physician and allowed
identifying certain breakdowns that conducted to key
information misplacement, information that could have
been used in slowing disease progression.
. . NAELD subjects }"l:helNAFLD cla:;s.ificlation Zlgg;j[trl{m; desigr;)e;l withinf
Corey et al. Y016 USA etrc;fpechve 20 61.6 (12.7) (n = 444) 449% ’c1 e e.ec’g.omlclme ica 1reco1i1 ( ) lc))r esta hlsn}f:rg c;
[46] cohort 58.7 (15.2) Not NAFLD subjects  46% ongltudina’ farge-scale conorts was better than 15-
study (n = 176) billing data by itself. This method proved simple to
establish and use through various institutions.
Six factors (ALT, HDL-C, triglyceride, HbAlc, white
blood cell count, and hypertension) were included in a
Retrospective NAFLD subjects machine learning model based on laboratory parameter
Yip et al. [47] 2017 Hong cohort 92 50.7 £ 9.5 (n =264) 54.2% values, in order to identify NAFLD in the general
’ Kong study 47.0 £10.8 Healthy subjects 37.4% population. The NAFLD ridge score was demonstrated
(n = 658) to be a simple modality that can be compared to current
NAFLD scores currently used in epidemiological
studies to exclude patients with NAFLD
A decision tree-based method was proposed for
risk-assessment related to NAFLD development and
progression in the Canadian population. The method
Perveen et al Retrospective used electronic medical eecords by analyzing the
48] ’ 2018 Canada cohort 40,637 61.2+14.2 NAFLD subjects 40% presence of risk factors for NAFLD. Using the proposed
study application linked to the everyday medical checkup is

likely to aid physicians in performing more informed
decisions about their patients’ management with
NAFLD, while reducing healthcare spending.
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C . Mean Age o
First Author Publication Country Stu.d y T(.)tal (Years) (Mean =+ Sd) Diagnosis Sex (% Main Findings
Year Design Patients Male)
/(Range)
Using lipidomic and metabolomic methods can
contribute as diagnostic biomarkers because NAFLD is
Greece, a metabolic disease. A pilot case—control study reported
Katsiki et al. Italy, and . the benefits of utilizing non-invasive methods based on
2019 : Editorial - - - - . . . . . .
[49] United omics and supervised machine learning for diagnosing
Kingdom and treating NAFLD. These models may serve as a
useful, non-invasive model, representing an attractive
alternative to liver biopsy.
Fatty liver subjects The study .rell:)orts that. machine learning rpodels,‘
Case- N especially logistic regression model are associated with
Islam et al. . 62.1 £12.55 (n=593) o . . L
2018 Taiwan control 994 : 46.37%  animproved accuracy in predicting FLD, based on data
[50] 62.07 £+ 13.52 Non-fatty liver . . .
study . found in electronic medical records and could be able to
subjects (n = 401) . .. .. .
be an essential tool for clinical decision making.
NASH subjects Longitudinal statistical properties of lab-based
' Retrospective 57.60 (13.43) (n= 17,35?) 4122 parameters (e.‘g., mean of all ALT yalues) were gsed to
Fialoke et al. Healthy subjects create supervised a machine learning model trained on
2018 USA cohort 108.139 61.36 (18.34) 40.17 .
[51] stud 61.36 (18.34) (n =17,590) 39.65 NASH and healthy patients. The proposed model
y ’ ’ Healthy subjects ’ performed better than most of the non-invasive
(n =17,590) techniques currently in practice for diagnosing NASH.
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In order to analyze and validate a machine learning method for an automated diag-
nosis of NAFLD, Yip et al. evaluated 922 individuals from a population-based screening
study where the diagnosis of NAFLD was performed using proton-magnetic resonance
spectroscopy [47]. The study protocol provided 23 routine clinical and laboratory pa-
rameters, including high-density lipoprotein cholesterol (HDL-C), triglyceride, alanine
aminotransferase (ALT), hemoglobin Alc (HbAlc), white blood cell count, and presence
of increased blood pressure [47]. NAFLD ridge score presented an area under the ROC
curve of 0.87 (95% confidence interval, 0.83-0.90) and 0.88 (0.84-0.91) in the training and
validation groups, and attained a sensitivity of 92% (86%—-96%) and specificity of 90%
(86%-93%) [47].

Perveen et al. evaluated a decision tree based method for NAFLD risk stratification
using EHR [48]. The results confirmed that the algorithm is an accurate tool for physicians
in their initiative for automated risk management of NAFLD patients using risk factors
and specific clinical parameters, which are not direct indicators of NAFLD [48].

Katsiki et al. used machine learning techniques in a study on 31 NAFLD patients
diagnosed on the histopathologic exam and 49 healthy controls in order to find an auto-
mated diagnosis alternative to biopsy, using the serum level of lipids, glycans, and other
biochemical parameters [49]. Following the study protocol, the identification of 365 lipids,
61 glycans, and 23 fatty acids was performed using liquid chromatography mass spectrom-
etry (LC-MS), where 10 lipid species had the power for a precise diagnosis of liver fibrosis
with a 98% accuracy [49]. The conclusion was that the automated method of NAFLD and
liver fibrosis diagnosis based on novel algorithmic models utilizing lipids, hormones, and
glycans is a feasible alternative for liver biopsy or hepatic imaging [49].

A prediction model using machine learning algorithms was evaluated by Islam et al.
on 994 patients with chronic liver disease [50]. The study protocol provided random forest
(RF), SVM, artificial neural network (ANN), and logistic regression (LR) as prediction
techniques for NAFLD [50]. The results demonstrated that the logistic regression method
demonstrated the best accuracy of 76.3%, sensitivity of 74.1%, and specificity of 64.9%
using EHR, compared with the other techniques that were used [50]. Further, Fialoke et al.
used the EHC from Optum Analytics in order to evaluate an automated system prediction
of NASH in NAFLD patients [51].

Alanine aminotransferase, aspartate aminotransferase, platelet counts, and type 2
diabetes status were analyzed by the automated software [51]. This study reported that
cross-validated AUROC of various models ranged from 83-88%, making the method
an accurate tool for clinicians and helping them in raising awareness on the upcoming
evolution of NAFLD and further starting a tailored treatment scheme [51].

4. Discussion

Although the first studies about methods of an automated NAFLD diagnosis were
published more than a decade ago, to our current knowledge, this is the first systematic
review to evaluate the implementation of a complete automated NAFLD diagnosis, staging,
and risk stratification using the available artificial intelligence-based software. Furthermore,
in comparison with other reviews, we analyzed not only the imagistic methods but also
the digital pathology methods and an EHC-based NAFLD diagnosis.

All the studies included in this systematic review show that their method is accu-
rate, and it can be implemented in clinical practice and, also, in clinical trials. Although
the excellent progress, the process of implementation in clinical practice is slow due to
the lack of visibility of the studies and the skepticism of clinical personnel in the overall
process of digitalization and automatization. Considering the unexpected effects of the
2020 COVID-19 crisis on the 3rd decade of the 21st century, which imply a comprehen-
sive shortage of healthcare staff, including radiology, internal medicine, gastroenterology,
general practitioners, and pathology specialists transferred in more urgent positions, a
rapid implementation of an automated diagnosis software for chronic hepatic disorders
is needed.
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Because the expectation for a high precision medicine is rising, but at the same time, the
reimbursements are dropping worldwide as a consequence of limited funds for healthcare
providers, the transition from traditional pathology to digital pathology is a mandatory
step forward. Our search identified sufficient data demonstrating that a digital pathology
diagnosis and staging is now possible for NAFLD patients.

Furthermore, lockdown laws, social distancing, and the lack of personal protective
equipment are forcing the healthcare staff and, also, the non-critical patients to avoid
hospitals and to try to obtain an online telemedicine platform consultation.

The COVID-19 pandemic lockdowns are setting a new global artificial intelligence
rush that accelerates all implementation attempts of an automated diagnosis in chronic,
non-urgent disorders, including NAFLD. If initially, Al was reserved for simple operations,
at present, the Al approach is expanding into areas that were previously thought to
be exceedingly complicated for computer software and was thought to be managed by
exclusively human experts.

Future testing and validation of the available automated NAFLD diagnosis methods
depend on international collaboration and on a confident attitude of major healthcare
corporations in adopting promising technologies.

Our systematic review has several limitations, which should be further discussed.
The best method for NAFLD diagnosis is the histopathological examination, which is the
current gold standard. Unfortunately, a considerable percent of the studies included in
this review used common imagistic methods, which could overestimate the diagnosis of
NAFLD. Another limitation of our systematic review is the insufficient studies about the
EHR-based diagnosis of NAFLD, only seven studies. Our search included only studies
about completely automated methods exclusively for NAFLD diagnosis, staging, and
risk stratification; we excluded studies analyzing automated interpretation of abdominal
imaging using ultrasound, CT, or MRL

The metabolic-dysfunction-associated fatty liver disease (MAFLD) is a recently de-
fined concept and was previously named NAFLD. MAFLD diagnosis criteria include
hepatic steatosis, overweight/obesity, type 2 diabetes mellitus, or confirmed metabolic risk
abnormalities. Unfortunately, current literature presents limited evidence about automated
MAFLD diagnosis, and the vast majority of studies use the previous term.

5. Conclusions

We found significant evidence demonstrating that implementing a complete auto-
mated system for NAFLD diagnosis, staging, and risk stratification is currently possible,
considering the accuracy, sensibility, and specificity of available Al-based tools.
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