Current Developments in Corneal Topography and Tomography
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Corneal Topography
3.2. Corneal Tomography
4. Discussion
4.1. Confusion in Terminology
4.2. Limitations of Current Techniques
4.3. Future Developments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Moshirfar, M.; Duong, A.; Ronquillo, Y. Corneal imaging. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Fan, R.; Chan, T.C.; Prakash, G.; Jhanji, V. Applications of corneal topography and tomography: A review. Clin. Experiment. Ophthalmol. 2018, 46, 133–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoramnia, R.; Rabsilber, T.M.; Auffarth, G.U. Central and peripheral pachymetry measurements according to age using the pentacam rotating scheimpflug camera. J. Cataract Refract. Surg. 2007, 33, 830–836. [Google Scholar] [CrossRef]
- Swartz, T.; Marten, L.; Wang, M. Measuring the cornea: The latest developments in corneal topography. Curr. Opin. Ophthalmol. 2007, 18, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.; Ribeiro, C.; Franco, S. Corneal imaging with slit-scanning and scheimpflug imaging techniques. Clin. Exp. Optom. 2011, 94, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, K.C.; Tse, R.H.-K.; Lau, Y.T.-Y.; Chan, T.C.-Y. Advances in corneal imaging: Current applications and beyond. Asia-Pac. J. Ophthalmol. 2019, 8, 105–114. [Google Scholar] [CrossRef]
- Grzybowski, A.; Kanclerz, P. Recent developments in cataract surgery. In Current Concepts Ophthalmology; Grzybowski, A., Ed.; Springer International Publishing: Basel, Switzerland, 2020; pp. 55–97. [Google Scholar]
- Ambrósio, R., Jr.; Belin, M.W. Imaging of the cornea: Topography vs. Tomography. J. Refract. Surg. 2010, 26, 847–849. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.K.; Dharwadkar, S. Corneal topography and tomography. J. Clin. Ophthalmol. Res. 2015, 3, 45. [Google Scholar] [CrossRef]
- Gatinel, D. Corneal topography and wave front analysis. In Albert Jakobiec’s Principles and Practice of Ophthalmology; Albert, D.M., Miller, J., Azar, D., Young, L.H., Eds.; Springer International Publishing: Basel, Switzerland, 2008; pp. 921–963. [Google Scholar]
- Grzybowski, A.; Kanclerz, P. Beginnings of astigmatism understanding and management in the 19th century. Eye Contact Lens 2018, 44, S22–S29. [Google Scholar] [CrossRef]
- Placido, A. Novo instrumento de esploracao da cornea. Period. D’Oftalmol. Pract. 1880, 5, 27–30. [Google Scholar]
- Placido, A. Neue instrumente. Cent. Fur Prakt. Augenheilkd. 1881, 30–31. [Google Scholar]
- Ventura, B.V.; Al-Mohtaseb, Z.; Wang, L.; Koch, D.D.; Weikert, M.P. Repeatability and comparability of corneal power and corneal astigmatism obtained from a point-source color light–emitting diode topographer, a placido-based corneal topographer, and a low-coherence reflectometer. J. Cataract. Refract. Surg. 2015, 41, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.A. Axial curvature and the skew ray error in corneal topography. Optom. Vis. Sci. 1997, 74, 931–944. [Google Scholar] [CrossRef] [Green Version]
- Iskander, D.R.; Davis, B.A.; Collins, M.J. The skew ray ambiguity in the analysis of videokeratoscopic data. Optom. Vis. Sci. 2007, 84, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Kanellopoulos, A.J.; Asimellis, G. Distribution and repeatability of corneal astigmatism measurements (magnitude and axis) evaluated with color light emitting diode reflection topography. Cornea 2015, 34, 937–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanellopoulos, J. Asimellis comparison of placido disc and scheimpflug image-derived topography-guided excimer laser surface normalization combined with higher fluence CXL: The athens protocol, in progressive keratoconus. Clin. Ophthalmol. 2013, 7, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, S.A. Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error. Optom. Vis. Sci. 1997, 74, 945–962. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Caneiro, D.; Szczesna-Iskander, D.H.; Iskander, D.R.; Read, S.A.; Collins, M.J. Application of texture analysis in tear film surface assessment based on videokeratoscopy. J. Optom. 2013, 6, 185–193. [Google Scholar] [CrossRef] [Green Version]
- King-Smith, P.E.; Begley, C.G.; Braun, R.J. Mechanisms, imaging and structure of tear film breakup. Ocul. Surf. 2018, 16, 4–30. [Google Scholar] [CrossRef]
- García-Marqués, J.V.; Martínez-Albert, N.; Talens-Estarelles, C.; García-Lázaro, S.; Cerviño, A. Repeatability of non-invasive keratograph break-up time measurements obtained using oculus keratograph 5M. Int. Ophthalmol. 2021, 41, 2473–2483. [Google Scholar] [CrossRef]
- Wang, M.T.M.; Craig, J.P. Comparative evaluation of clinical methods of tear film stability assessment: A randomized crossover trial. JAMA Ophthalmol. 2018, 136, 291–294. [Google Scholar] [CrossRef]
- Rozema, J.J.; Van Dyck, D.E.M.; Tassignon, M.-J. Clinical comparison of 6 aberrometers. Part 1: Technical specifications. J. Cataract Refract. Surg. 2005, 31, 1114–1127. [Google Scholar] [CrossRef]
- Rozema, J.J.; Van Dyck, D.E.M.; Tassignon, M.-J. Clinical comparison of 6 aberrometers part 2: Statistical comparison in a test group. J. Cataract. Refract. Surg. 2006, 32, 33–44. [Google Scholar] [CrossRef]
- Piñero, D.P.; Sánchez-Pérez, P.J.; Alió, J.L. Repeatability of measurements obtained with a ray tracing aberrometer. Optom. Vis. Sci. 2011, 88, 1099–1105. [Google Scholar] [CrossRef]
- Belin, M.W.; Litoff, D.; Strods, S.J.; Winn, S.S.; Smith, R.S. The PAR technology corneal topography system. Refract. Corneal Surg. 1992, 8, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Belin, M.W.; Zloty, P. Accuracy of the PAR corneal topography system with spatial misalignment. CLAO J. 1993, 19, 64–68. [Google Scholar] [CrossRef]
- Jindal, P.; Cheung, S.; Pirouzian, A.; Keates, R.H.; Ren, Q. Evaluation of the PAR corneal topography system. Ophthalmic Technol. V 1995, 2393, 10–16. [Google Scholar]
- Vos, F.M.; van der Heijde, G.L.; Spoelder, H.J.W.; van Stokkum, I.H.M.; Groen, F.C.A. A new instrument to measure the shape of the cornea based on pseudorandom color coding. IEEE Trans. Instrum. Meas. 1997, 46, 794–797. [Google Scholar] [CrossRef] [Green Version]
- Klijn, S.; Reus, N.J.; Sicam, V.A.D.P. Evaluation of keratometry with a novel color-LED corneal topographer. J. Refract. Surg. 2015, 31, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Sicam, V.A.D.P.; van der Heijde, R.G.L. Topographer Reconstruction of the Nonrotation-Symmetric Anterior Corneal Surface Features. Optom. Vis. Sci. 2006, 83, 910–918. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J.; Asimellis, G. Clinical correlation between placido, scheimpflug and LED color reflection topographies in imaging of a scarred cornea. Case Rep. Ophthalmol. 2014, 5, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Kanellopoulos, A.J.; Asimellis, G. Forme fruste keratoconus imaging and validation via novel multi-spot reflection topography. Case Rep. Ophthalmol. 2013, 4, 199–209. [Google Scholar] [CrossRef]
- Molina-Martín, A.; Piñero, D.P.; Caballero, M.T.; de Fez, D.; Camps, V.J. Comparative analysis of anterior corneal curvature and astigmatism measurements obtained with three different devices. Clin. Exp. Optom. 2020, 103, 618–624. [Google Scholar] [CrossRef]
- Hidalgo, I.R.; Rozema, J.J.; Dhubhghaill, S.N.; Zakaria, N.; Koppen, C.; Tassignon, M.-J. Repeatability and inter-device agreement for three different methods of keratometry: Placido, scheimpflug, and color LED corneal topography. J. Refract. Surg. 2015, 31, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Ribeiro, F. Comparability and repeatability of different methods of corneal astigmatism assessment. Clin. Ophthalmol. 2017, 12, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, T.B.; Ribeiro, F.J. A novel color-led corneal topographer to assess astigmatism in pseudophakic eyes. Clin. Ophthalmol. 2016, 10, 1521–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klijn, S.; Reus, N.J.; van der Sommen, C.M.; Sicam, V.A.D.P. Accuracy of total corneal astigmatism measurements with a scheimpflug imager and a color light-emitting diode corneal topographer. Am. J. Ophthalmol. 2016, 167, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Piñero, D.P.; Camps, V.J.; de Fez, D.; García, C.; Caballero, M.T. Validation of posterior corneal curvature measurements with color light-emitting diode topography. Eur. J. Ophthalmol. 2020, 30, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- García-García, Á.; Melián, R.; Carreras, H.; Rodríguez-Hernández, V.; Reñones, J.; Estévez, B. Corneal dioptric power and astigmatism: A comparison between colour light-emitting diode based (cassini) and scheimpgflug technology (pentacam) topography. Arch. Soc. Esp. Oftalmol. 2019, 94, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.-H.; Yoo, Y.-S.; An, Y.; Joo, C.-K. Comparison of keratometric measurements between color light-emitting diode topography and scheimpflug camera. BMC Ophthalmol. 2019, 19, 98. [Google Scholar] [CrossRef] [PubMed]
- Piñero, D.P.; Molina-Martín, A.; Camps, V.J.; de Fez, D.; Caballero, M.T. Validation of corneal topographic and aberrometric measurements obtained by color light-emitting diode reflection topography in healthy eyes. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 2437–2447. [Google Scholar] [CrossRef]
- Auffarth, G.U.; Wang, L.; Völcker, H.E. Keratoconus evaluation using the orbscan topography system. J. Cataract Refract. Surg. 2000, 26, 222–228. [Google Scholar] [CrossRef]
- Ambrósio, R., Jr.; Valbon, B.F.; Faria-Correia, F.; Ramos, I.; Luz, A. Scheimpflug imaging for laser refractive surgery. Curr. Opin. Ophthalmol. 2013, 24, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Faria-Correia, F.; Ambrósio Júnior, R. Clinical applications of the scheimpflug principle in ophthalmology. Rev. Bras. Oftalmol. 2016, 75, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Rabsilber, T.M.; Khoramnia, R.; Auffarth, G.U. Anterior chamber measurements using pentacam rotating scheimpflug camera. J. Cataract Refract. Surg. 2006, 32, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Łabuz, G.; Varadi, D.; Khoramnia, R.; Auffarth, G.U. Central and mid-peripheral corneal astigmatism in an elderly population: A retrospective analysis of scheimpflug topography results. Sci. Rep. 2021, 11, 7968. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, A.; Kanclerz, P. Clarifying the methods of fixation of intraocular lenses. Clin. Anat. 2018, 31, 2–3. [Google Scholar] [CrossRef]
- Grzybowski, A.; Kanclerz, P. Population-based analysis of intraocular lens exchange and repositioning. J. Cataract. Refract. Surg. 2017, 43, 1484. [Google Scholar] [CrossRef]
- Gaurisankar, Z.S.; van Rijn, G.A.; Luyten, G.P.M.; Beenakker, J.-W.M. Differences between scheimpflug and optical coherence tomography in determining safety distances in eyes with an iris-fixating phakic intraocular lens. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 231–238. [Google Scholar] [CrossRef]
- Khalifa, Y.M.; Goldsmith, J.; Moshirfar, M. Bilateral explantation of visian implantable collamer lenses secondary to bilateral acute angle closure resulting from a non-pupillary block mechanism. J. Refract. Surg. 2010, 26, 991–994. [Google Scholar] [CrossRef]
- Yildirim, T.M.; Khoramnia, R.; Son, H.-S.; Mayer, C.S.; Łabuz, G.; Munro, D.J.; Auffarth, G.U. Reasons for explantation of phakic intraocular lenses and associated perioperative complications: Cross-sectional explant registry analysis. BMC Ophthalmol. 2021, 21, 80. [Google Scholar] [CrossRef]
- Gonvers, M.; Bornet, C.; Othenin-Girard, P. Implantable contact lens for moderate to high myopia. J. Cataract Refract. Surg. 2003, 29, 918–924. [Google Scholar] [CrossRef]
- Winkler von Mohrenfels, C.; Salgado, J.P.; Khoramnia, R. Keratectasia after refractive surgery. Klin. Monbl. Augenheilkd. 2011, 228, 704–711. [Google Scholar] [CrossRef] [PubMed]
- LaHood, B.R.; Goggin, M. Measurement of posterior corneal astigmatism by the IOLMaster 700. J. Refract. Surg. 2018, 34, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Rydström, E.; Westin, O.; Koskela, T.; Behndig, A. Posterior corneal astigmatism in refractive lens exchange surgery. Acta Ophthalmol. 2016, 94, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawless, M.; Hodge, C.; Sutton, G.; Barrett, G. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery: Response. Clin. Exp. Ophthalmol. 2021, 49, 88–89. [Google Scholar] [CrossRef] [PubMed]
- Lawless, M.; Jiang, J.Y.; Hodge, C.; Sutton, G.; Roberts, T.V.; Barrett, G. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery. Clin. Exp. Ophthalmol. 2020, 48, 749–756. [Google Scholar] [CrossRef]
- Fabian, E.; Wehner, W. Prediction accuracy of total keratometry compared to standard keratometry using different intraocular lens power formulas. J. Refract. Surg. 2019, 35, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Jędzierowska, M.; Koprowski, R.; Wilczyński, S.; Krysik, K. A new method for detecting the outer corneal contour in images from an ultra-fast scheimpflug camera. Biomed. Eng. Online 2019, 18, 115. [Google Scholar] [CrossRef] [Green Version]
- Leão, E.; Ing Ren, T.; Lyra, J.M.; Machado, A.; Koprowski, R.; Lopes, B.; Vinciguerra, R.; Vinciguerra, P.; Roberts, C.J.; Elsheikh, A.; et al. Corneal deformation amplitude analysis for keratoconus detection through compensation for intraocular pressure and integration with horizontal thickness profile. Comput. Biol. Med. 2019, 109, 263–271. [Google Scholar] [CrossRef]
- Wojtkowski, M.; Srinivasan, V.; Fujimoto, J.G.; Ko, T.; Schuman, J.S.; Kowalczyk, A.; Duker, J.S. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005, 112, 1734–1746. [Google Scholar] [CrossRef] [Green Version]
- Kanclerz, P.; Hoffer, K.J.; Rozema, J.J.; Przewłócka, K.; Savini, G. Repeatability and reproducibility of optical biometry implemented in a new optical coherence tomographer and comparison with a optical low-coherence reflectometer. J. Cataract Refract. Surg. 2019, 45, 1619–1624. [Google Scholar] [CrossRef]
- Kanclerz, P.; Hoffer, K.J.; Przewłócka, K.; Savini, G. Comparison of an upgraded optical biometer with 2 validated optical biometers. J. Cataract Refract. Surg. 2021, 47, 859–864. [Google Scholar] [PubMed]
- Wang, C.; Xia, X.; Tian, B.; Zhou, S. Comparison of fourier-domain and time-domain optical coherence tomography in the measurement of thinnest corneal thickness in keratoconus. J. Ophthalmol. 2015, 2015, 402925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanclerz, P. Optical biometry in a commercially available anterior and posterior segment optical coherence tomography device. Clin. Exp. Optom. 2019, 102, 533–534. [Google Scholar] [CrossRef]
- Xu, B.Y.; Mai, D.D.; Penteado, R.C.; Saunders, L.; Weinreb, R.N. Reproducibility and agreement of anterior segment parameter measurements obtained using the CASIA2 and spectralis OCT2 optical coherence tomography devices. J. Glaucoma 2017, 26, 974–979. [Google Scholar] [CrossRef]
- Chen, S.; Gao, R.; McAlinden, C.; Ye, J.; Wang, Y.; Chen, M.; Huang, J.; Sun, Y.; Yu, A.-Y. Comparison of anterior ocular biometric measurements using swept-source and time-domain optical coherence tomography. J. Ophthalmol. 2020, 2020, 9739878. [Google Scholar] [CrossRef]
- Porporato, N.; Baskaran, M.; Tun, T.A.; Sultana, R.; Tan, M.; Quah, J.H.; Allen, J.C.; Perera, S.; Friedman, D.S.; Cheng, C.Y.; et al. Understanding diagnostic disagreement in angle closure assessment between anterior segment optical coherence tomography and gonioscopy. Br. J. Ophthalmol. 2020, 104, 795–799. [Google Scholar] [CrossRef]
- Ortiz, S.; Siedlecki, D.; Remon, L.; Marcos, S. Optical coherence tomography for quantitative surface topography. Appl. Opt. 2009, 48, 6708–6715. [Google Scholar] [CrossRef] [Green Version]
- Karnowski, K.; Kaluzny, B.J.; Szkulmowski, M.; Gora, M.; Wojtkowski, M. Corneal topography with high-speed swept source OCT in clinical examination. Biomed. Opt. Express 2011, 2, 2709–2720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Rho, C.R.; Cho, Y.W.; Shin, J. Comparison of corneal thickness measurements using ultrasound pachymetry, noncontact tonopachy, pentacam HR, and fourier-domain OCT. Medicine 2021, 100, e25638. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Yap, T.E.; Archer, T.J.; Gobbe, M.; Silverman, R.H. Comparison of corneal epithelial thickness measurement between fourier-domain OCT and very high-frequency digital ultrasound. J. Refract. Surg. 2015, 31, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivannaboon, S.; Chotikavanich, S.; Chirapapaisan, C.; Kasemson, S.; Po-ngam, W. Precision analysis of posterior corneal topography measured by visante omni: Repeatability, reproducibility, and agreement with orbscan II. J. Refract. Surg. 2012, 28, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gjerdrum, B.; Gundersen, K.G.; Lundmark, P.O.; Aakre, B.M. Repeatability of OCT-based versus scheimpflug- and reflection-based keratometry in patients with hyperosmolar and normal tear film. Clin. Ophthalmol. 2020, 14, 3991–4003. [Google Scholar] [CrossRef]
- Szalai, E.; Berta, A.; Hassan, Z.; Módis, L., Jr. Reliability and repeatability of swept-source fourier-domain optical coherence tomography and scheimpflug imaging in keratoconus. J. Cataract Refract. Surg. 2012, 38, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Savini, G.; Schiano-Lomoriello, D.; Hoffer, K.J. Repeatability of automatic measurements by a new anterior segment optical coherence tomographer combined with placido topography and agreement with 2 scheimpflug cameras. J. Cataract Refract. Surg. 2018, 44, 471–478. [Google Scholar] [CrossRef]
- Li, Y.; Chamberlain, W.; Tan, O.; Brass, R.; Weiss, J.L.; Huang, D. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography. J. Cataract Refract. Surg. 2016, 42, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Kawamorita, T.; Uozato, H.; Kamiya, K.; Bax, L.; Tsutsui, K.; Aizawa, D.; Shimizu, K. Repeatability, reproducibility, and agreement characteristics of rotating scheimpflug photography and scanning-slit corneal topography for corneal power measurement. J. Cataract Refract. Surg. 2009, 35, 127–133. [Google Scholar] [CrossRef]
- Corneal Topography—EyeWiki. Available online: https://eyewiki.aao.org/Corneal_Topography#cite_note-:1-1 (accessed on 9 June 2021).
- Wylęgała, A.; Mazur, R.; Bolek, B.; Wylęgała, E. Reproducibility, and repeatability of corneal topography measured by Revo NX, Galilei G6 and Casia 2 in normal eyes. PLoS ONE 2020, 15, e0230589. [Google Scholar] [CrossRef] [Green Version]
- Molero-Senosiain, M.; Morales-Fernandez, L.; Saenz-Frances, F.; Perucho-Gonzalez, L.; García-Bella, J.; Garcia Feijoo, J.; Martinez-de-la-Casa, J.M. Corneal properties in primary open-angle glaucoma assessed through scheimpflug corneal topography and densitometry. J. Glaucoma 2021, 30, 444–450. [Google Scholar] [CrossRef]
- Değirmenci, C.; Palamar, M.; İsmayilova, N.; Eğrilmez, S.; Yağcı, A. Topographic evaluation of unilateral keratoconus patients. Turk. J. Ophthalmol. 2019, 49, 117–122. [Google Scholar] [CrossRef]
- de Luis Eguileor, B.; Arriola-Villalobos, P.; Pijoan Zubizarreta, J.I.; Feijoo Lera, R.; Santamaria Carro, A.; Diaz-Valle, D.; Etxebarria, J. Multicentre study: Reliability and repeatability of scheimpflug system measurement in keratoconus. Br. J. Ophthalmol. 2021, 105, 22–26. [Google Scholar] [CrossRef]
- Martin, R. Cornea and anterior eye assessment with placido-disc keratoscopy, slit scanning evaluation topography and scheimpflug imaging tomography. Indian J. Ophthalmol. 2018, 66, 360–366. [Google Scholar]
- Wegener, A.; Laser-Junga, H. Photography of the anterior eye segment according to scheimpflug’s principle: Options and limitations—A review. Clin. Exp. Ophthalmol. 2009, 37, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Boscia, F.; La Tegola, M.G.; Alessio, G.; Sborgia, C. Accuracy of orbscan optical pachymetry in corneas with haze. J. Cataract Refract. Surg. 2002, 28, 253–258. [Google Scholar] [CrossRef]
- Ha, B.J.; Kim, S.W.; Kim, S.W.; Kim, E.K.; Kim, T.-I. Pentacam and orbscan II measurements of posterior corneal elevation before and after photorefractive keratectomy. J. Refract. Surg. 2009, 25, 290–295. [Google Scholar]
- Rio-Cristobal, A.; Martin, R. Corneal assessment technologies: Current status. Surv. Ophthalmol. 2014, 59, 599–614. [Google Scholar] [CrossRef]
- Aptel, F.; Chiquet, C.; Beccat, S.; Denis, P. Biometric evaluation of anterior chamber changes after physiologic pupil dilation using pentacam and anterior segment optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4005–4010. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.W.; Srinivasan, S.; Ng, A.; Schulze, M. Diagnostic instruments. In Contact Lens Practice; Elsevier: Amsterdam, The Netherlands, 2018; pp. 327–345. [Google Scholar]
Technology | Details | Example Topographers |
---|---|---|
Placido disc | Large-cone topography | CSO Antares, CSO Sirius+ *, CSO MS-39 * Oculus Keratograph 5 M Topcon KR-1W Zeiss Atlas Ziemer Galilei * |
Placido disc | Small-cone topography | Medmont E300 Optikon Keratotron |
Color light-emitting diode | Point-to-point reconstruction of specular reflections | i-Optics Cassini i-Optics Cassini Ambient |
Technology | Light Source (Wavelength) | Example Tomographers |
---|---|---|
Scanning slit | white flash light | Orbscan II |
Scheimpflug imaging | blue-light emitting diode (470–475 nm) | CSO Sirius+ * Mediworks Scansys Oculus Pentacam Ziemer Galilei * |
OCT | superluminescent diode laser (830–845 nm) | CSO MS-39 * Optopol Revo |
SS-OCT | rapidly tuned laser with longer wavelength (1310 nm) | Heidelberg Engineering Anterion Tomey Casia SS-1000/Casia 2 Zeiss Visante OMNI * |
Corneal Topography + Ocular Aberrometry | Nidek OPD-Scan Tracey iTrace |
---|---|
Corneal topography + ocular biometry | Topcon Aladdin Lenstar LS-900 |
Corneal tomography + ocular biometry | Pentacam AXL Ziemer Galilei G6 Heidelberg Engineering Anterion |
Corneal tomography + ocular biometry + posterior segment optical coherence tomography | Optopol Revo NX |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanclerz, P.; Khoramnia, R.; Wang, X. Current Developments in Corneal Topography and Tomography. Diagnostics 2021, 11, 1466. https://doi.org/10.3390/diagnostics11081466
Kanclerz P, Khoramnia R, Wang X. Current Developments in Corneal Topography and Tomography. Diagnostics. 2021; 11(8):1466. https://doi.org/10.3390/diagnostics11081466
Chicago/Turabian StyleKanclerz, Piotr, Ramin Khoramnia, and Xiaogang Wang. 2021. "Current Developments in Corneal Topography and Tomography" Diagnostics 11, no. 8: 1466. https://doi.org/10.3390/diagnostics11081466
APA StyleKanclerz, P., Khoramnia, R., & Wang, X. (2021). Current Developments in Corneal Topography and Tomography. Diagnostics, 11(8), 1466. https://doi.org/10.3390/diagnostics11081466