Automatized Detection and Categorization of Fissure Sealants from Intraoral Digital Photographs Using Artificial Intelligence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Photographic Images
2.3. Categorization of Sealants (Reference Standard)
2.4. Programming and Configuration of the Deep-Learning-Based CNN for Sealant Detection and Categorization (Test Method)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Bejnordi, B.E.; Litjens, G.; van der Laak, J.A. Machine learning compared with pathologist assessment-reply. JAMA 2018, 319, 1726. [Google Scholar] [CrossRef] [PubMed]
- Cantu, A.G.; Gehrung, S.; Krois, J.; Chaurasia, A.; Rossi, J.G.; Gaudin, R.; Elhennawy, K.; Schwendicke, F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J. Dent. 2020, 100, 103425, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Geetha, V.; Aprameya, K.S.; Hinduja, D.M. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Inf. Sci. Syst. 2020, 8, 8, (eCollection Dec). [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Haider, M.A.; Ansari, H.A.; Ishaq, H.; Kiyani, A.; Sohail, K.; Muhammad, M.; Khurram, S.A. Automated feature detection in dental periapical radiographs by using deep learning. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 131, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J. Periodontal Implant Sci. 2018, 48, 114–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.J.; Park, J.B. History and application of artificial neural networks in dentistry. Eur. J. Dent. 2018, 12, 594–601. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef]
- Vinayahalingam, S.; Kempers, S.; Limon, L.; Deibel, D.; Maal, T.; Hanisch, M.; Bergé, S.; Xi, T. Classification of caries in third molars on panoramic radiographs using deep learning. Sci. Rep. 2021, 11, 12609. [Google Scholar] [CrossRef] [PubMed]
- Askar, H.; Krois, J.; Rohrer, C.; Mertens, S.; Elhennawy, K.; Ottolenghi, L.; Mazur, M.; Paris, S.; Schwendicke, F. Detecting white spot lesions on dental photography using deep learning: A pilot study. J. Dent. 2021, 107. online ahead of print. [Google Scholar] [CrossRef]
- Kühnisch, J.; Meyer, O.; Hesenius, M.; Hickel, R.; Gruhn, V. Caries detection on intraoral images using artifical intelligence. J. Dent. Res. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Moutselos, K.; Berdouses, E.; Oulis, C.; Maglogiannis, I. Recognizing Occlusal Caries in Dental Intraoral Images Using Deep Learning. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 1617–1620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liang, Y.; Li, W.; Liu, C.; Gu, D.; Sun, W.; Miao, L. Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Dis. 2020, 26. online ahead of print. [Google Scholar] [CrossRef]
- You, W.; Hao, A.; Li, S.; Wang, Y.; Xia, B. Deep learning-based dental plaque detection on primary teeth: A comparison with clinical assessments. BMC Oral Health 2020, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Jordan, R.A.; Micheelis, W. Fünfte Deutsche Mundgesundheitsstudie (DMS V); Institut der deutschen Zahnärzte (IDZ): Köln, Germany, 2016; ISBN 978-3-7691-0020-4. [Google Scholar]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.; et al. STARD Group. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015, 351, h5527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwendicke, F.; Singh, T.; Lee, J.H.; Gaudin, R.; Chaurasia, A.; Wiegand, T.; Uribe, S.; Krois, J.; IADR e-oral health network and the ITU WHO focus group AI for Health. Artificial intelligence in dental research: Checklist for Authors, Reviewers, Readers. J. Dent. 2021, 107. [Google Scholar] [CrossRef] [PubMed]
- Heinrich-Weltzien, R.; Kühnisch, J. Häufigkeit und Qualität der Fissurenversiegelung bei 8- und 14-jährigen. Prophyl. Impuls 1999, 3, 6–14. [Google Scholar]
- Simonsen, R.J. Retention and effectiveness of dental sealants after 15 years. JADA 1991, 122, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. IEEE Conf. Comput. Vis. Pattern Recognit. 2017, 5987–5995. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014, 15, 1929–1958. [Google Scholar]
- Matthews, D.E.; Farewell, V.T. Using and Understanding Medical Statistics, 5th ed.; Karger: Basel, Switzerland, 2015; ISBN 3318054585. [Google Scholar]
- Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. Available online: https://arxiv.org/pdf/1312.6034.pdf (accessed on 26 July 2021).
Diagnostic Categories | True Positives (TP) | True Negatives (TN) | False Positives (FP) | False Negatives (FN) | Diagnostic Performance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | ACC | SE | SP | NPV | PPV | AUC | |
Overall sealant detection | 94 | 20.0 | 371 | 78.8 | 3 | 0.6 | 3 | 0.6 | 98.7 | 96.9 | 99.2 | 99.2 | 96.9 | 0.996 |
Identification of intact sealants | 141 | 29.9 | 281 | 59.7 | 33 | 7.0 | 16 | 3.4 | 89.6 | 89.8 | 89.5 | 94.6 | 81.0 | 0.951 |
Identification of sufficient sealants | 99 | 21.0 | 293 | 62.2 | 33 | 7.0 | 46 | 9.8 | 83.2 | 68.3 | 89.9 | 86.4 | 75.0 | 0.888 |
Identification of insufficient sealants | 52 | 11.0 | 383 | 81.3 | 16 | 3.4 | 20 | 4.3 | 92.4 | 72.2 | 96.0 | 95.0 | 76.5 | 0.942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlickenrieder, A.; Meyer, O.; Schönewolf, J.; Engels, P.; Hickel, R.; Gruhn, V.; Hesenius, M.; Kühnisch, J. Automatized Detection and Categorization of Fissure Sealants from Intraoral Digital Photographs Using Artificial Intelligence. Diagnostics 2021, 11, 1608. https://doi.org/10.3390/diagnostics11091608
Schlickenrieder A, Meyer O, Schönewolf J, Engels P, Hickel R, Gruhn V, Hesenius M, Kühnisch J. Automatized Detection and Categorization of Fissure Sealants from Intraoral Digital Photographs Using Artificial Intelligence. Diagnostics. 2021; 11(9):1608. https://doi.org/10.3390/diagnostics11091608
Chicago/Turabian StyleSchlickenrieder, Anne, Ole Meyer, Jule Schönewolf, Paula Engels, Reinhard Hickel, Volker Gruhn, Marc Hesenius, and Jan Kühnisch. 2021. "Automatized Detection and Categorization of Fissure Sealants from Intraoral Digital Photographs Using Artificial Intelligence" Diagnostics 11, no. 9: 1608. https://doi.org/10.3390/diagnostics11091608
APA StyleSchlickenrieder, A., Meyer, O., Schönewolf, J., Engels, P., Hickel, R., Gruhn, V., Hesenius, M., & Kühnisch, J. (2021). Automatized Detection and Categorization of Fissure Sealants from Intraoral Digital Photographs Using Artificial Intelligence. Diagnostics, 11(9), 1608. https://doi.org/10.3390/diagnostics11091608