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Abstract: Background and Motivation: Diagnosis of Parkinson’s disease (PD) is often based on
medical attention and clinical signs. It is subjective and does not have a good prognosis. Artificial
Intelligence (AI) has played a promising role in the diagnosis of PD. However, it introduces bias
due to lack of sample size, poor validation, clinical evaluation, and lack of big data configuration.
The purpose of this study is to compute the risk of bias (RoB) automatically. Method: The PRISMA
search strategy was adopted to select the best 39 AI studies out of 85 PD studies closely associated
with early diagnosis PD. The studies were used to compute 30 AI attributes (based on 6 AI clusters),
using AP(ai)Bias 1.0 (AtheroPointTM, Roseville, CA, USA), and the mean aggregate score was
computed. The studies were ranked and two cutoffs (Moderate-Low (ML) and High-Moderate (MH))
were determined to segregate the studies into three bins: low-, moderate-, and high-bias. Result:
The ML and HM cutoffs were 3.50 and 2.33, respectively, which constituted 7, 13, and 6 for low-,
moderate-, and high-bias studies. The best and worst architectures were “deep learning with sketches
as outcomes” and “machine learning with Electroencephalography”, respectively. We recommend
(i) the usage of power analysis in big data framework, (ii) that it must undergo scientific validation
using unseen AI models, and (iii) that it should be taken towards clinical evaluation for reliability
and stability tests. Conclusion: The AI is a vital component for the diagnosis of early PD and the
recommendations must be followed to lower the RoB.

Keywords: PD; AI; bias; mean score; cutoff; recommendations

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder; James Parkinson first por-
trayed it in 1817 [1,2]. Globally, over 2% of the population is more than 65 years of age, and
around 5–20 people per 100,000 each year are affected by this illness, demonstrating its
predominance and frequency rate with maturity [3–5]. The registered PD cases reported in
the UK were more than 1.45 million [6]. In India, approximately one million cases have had
similar experiences for symptoms of PD [7]. Besides these challenges, the pharmaceutical
industry has been slow in producing PD drugs. The last invention in this area was in
1967 [8].

PD illness is described by the disturbing dopaminergic cycle of the nerve cells of sub-
stantianigra [9–11]. A piece of the mind can create neurotransmitters such as “dopamine”,
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which fills in as a synapse for controlling developments in various body segments. The
degenerative interaction begins from the foundation of the mind that prompts the an-
nihilation of olfactory bulbs [12]. It is trailed by the lower cerebrum stem, affecting the
susbstantianigra and mid-cerebrum [13]. Ultimately, it obliterates the limbic framework
and front-facing neocortex, worsening physical and mental side effects.

The symptoms related to PD can be categorized in two ways (i) verifying the patient’s
PD biomarkers, and (ii) by physically observing the differential response from the patient’s
body parts [14,15]. Examples of PD indications are the forced closure of eyelids during eye
tests [16], lack of breathing during lung tests [17], muscle stiffness during muscle tests [2],
and movement of patients while walking [10]. Figure 1 shows various PD symptoms,
namely, constipation problems, feelings of anxiety, depression, and abnormalities in breath-
ing [18]. Other symptoms include difficulty in speaking [5], voice tone changes [17], and
difficulty in swallowing food [19].

Artificial Intelligence (AI) has recently dominated healthcare, particularly in med-
ical imaging [20–22]. Machine learning (ML) has further enhanced the ability to ac-
curately and swiftly make the decisions in the diagnosis of several diseases such as
diabetes [23,24], stroke [25–27], coronary artery disease prediction [28], and cancer de-
tection in the thyroid [29,30] liver [31], prostate [32,33], and ovaries [34,35]. Recently, there
have been attempts to diagnose PD early using AI, especially using ML and DL algo-
rithms [9,11,18,36,37]. The ML/DL algorithms are sensitive to the sample size during the
training model generation, and further, due to lack of (i) scientific validation, (ii) clinical
evaluation of these AI strategies, and (iii) big data configuration [36], leads to bias in the AI.
Thus, when PD symptoms (or risk factors) are considered as input to the AI model, one
must ensure that the AI system is reliable, accurate, and has minimal AI bias. Therefore, the
primary objective is to automatically identify the AI studies that have bias. In the secondary
objective, the goal is to automatically detect the studies that lie in the three categories of
bias, such as low, moderate, and high bias. Further, there is a need to understand the
AI architectures used in these studies and link them with the AI attributes for different
categories of AI bias. Lastly, we need to identify the RoB in these AI studies and suggest
possible reduction recommendations. Further, we note that the scope does not involve
developing the correlation between PD and other medical conditions.
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Our strategy is to score the 39 AI studies using 30 AI attributes per study with the help
of an AI expert that has more than 15 years of AI experience, and then compute the mean
aggregate score. Moderate-Low (ML) cutoff was determined using the intersection of the
frequency plot of mean score vs. the cumulative frequency plot, where Moderate-Low (ML)
cutoff was determined. Further, the second High-Moderate (HM) cutoff was computed
based on the transition of slopes. The studies in low-, moderate-, and high-bias were then
analyzed for recommendations to reduce the RoB.

The layout of this review is as follows. Section 2 presents the PRISMA model for select-
ing studies along with the statistical distributions of the parameters. Section 3 presents the
AI architecture for PD diagnosis, while Section 4 presents the strategy for the computation
of bias and the ranking of the studies used for bias analysis and its analysis. Finally, the
critical discussions are presented in Section 5, leading to conclusions in Section 6.

2. Search Strategy and Statistical Distribution
2.1. PRISMA Model

An end-to-end writing search was performed utilizing PubMed, IEEE Xplore, Science
Direct, and Google scholar. The significant watchwords utilized for choosing these studies
were PD disease, neurodegenerative disease and symptoms, AI, machine learning, and
differential finding of the neurodegenerative disease. The research articles selected for the
studies consist of various parameters like detections of the PD by using machine learning,
deep learning, hybrid learning, and AI. These research articles have also shown the classifi-
cation of the normal vs. PD-affected people, the demographic analysis of the PD-affected
patients, and the classification of the PD by considering the input parameter alternative
assessment as one method to detect PD [9]. Studies unrelated to the symptomatic obser-
vation of PD are eliminated in published papers for many reasons [11,12,38]. Therefore,
studies that are not related to the symptomatic observation of PD are excluded [39].

Figure 2 shows the PRISMA model for the selection strategy of the research articles.
The identification phase shows that nearly (246) articles were searched from the identified
sources, and 186 studies were searched from the other sources. A total of 396 study articles
were removed as they cross the study objective and have duplications. Considering the
feasibility of the objective of a selection strategy (396 studies), the articles were screened.
The non-AI-based total (168 studies) articles were removed. Many discuss irrelevant
information other than the objective of the search strategy. Most of the articles do not fulfill
domain criteria like lack of data, lack of information, and poor presentation of the articles.
Hence, the total (103 studies) studies are referred to for the analysis [40].

A study that does not include input parameter analysis, performance optimization,
attributes analysis, and benchmarking was also not evaluated. Alzheimer’s disease, Hunt-
ington’s disease, Motor neuron disease, and Adrenoleukodystrophy (ALD) disease are not
categorized as PD. Studies not performed in humans (rat, monkey, etc.) were excluded,
as well as studies that do not have a huge sufficient dataset for analysis. The primary
objective was to automatically identify the AI studies that have bias. In the secondary
objective, the goal was to automatically detect the studies that lie in the three categories
of bias, such as low, moderate, and high bias. Other exclusion criteria included having no
correlation between Parkinson’s disease with other neurological diseases mentioned in the
manuscript, and if the article was written in a different language other than English [1,41].
The information considered for the PD studies’ data extraction was (i) author name, (ii)
year of publication, (iii) objective of the studies, (iv) demographic discussion, (v) data
types, (vi) data source, (vii) diagnosis method, (viii) bias studies, and (ix) attribute studies.
The selected studies were evaluated with the novel and unique implementation of the
AI, hybrid AI, twin diagnosis approach, telemedicine approach, and biomarker-based
approach for diagnosing PD. Every study was evaluated with feasibility analysis and cross
verified with scientific validation [42].
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Figure 3 represents the year of publications with reference to the impact factor. From
the analysis point of view, we considered publications from the period 2016 to 2021. While
observing Figure 3, it is clear that in 2019, the maximum publications are related to the
early detection of PD and have a good impact factor. The use of datasets from open-source
repositories to minimize research costs also leads to improved performance and overall
applicability of the selected model. There is the risk of the bias coming out as High-
Moderate (MH) if the model fails to adopt the appropriateness of the open-source data.
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2.2. Statistical Distribution

The study objectives include the term exposure of “Parkinson’s disease”. The statis-
tical distribution of the selected studies separates the main AI terms into ML, DL, and
HDL [11,12]. The majority of the studies used ML for PD detection, and this accounts
for 74%, while 9% use SDL [43–45] and 17% use HDL. The performance indicator of the
selected algorithm plays a crucial role in bias estimation. Even though accuracy is good,
there are chances of the existence of bias or inclusion bias due to the non-clinical validation
of AI-based predictions [46–48].

Performance Metrics

Symptoms (or risk factors) of PD are considered as input to the AI model. It is
important to ensure that the AI system is reliable, accurate, and has minimal AI distortion.
The ML/DL algorithm is sensitive to sample size during training model generation and
lacks scientific validation and the clinical evaluation of these AI strategies, resulting in a
bias in the model.

The SDL (2 studies) architectures were used to detect the PD, showing an average
overall accuracy of 97.83%. The maximum accuracy was 98.28% and the minimum was
97.38% for the SDL architecture. The HDL (4 studies) represent the average accuracy of
94.42%, while the maximum accuracy was 87.90% and the minimum was 97.68%. The ML-
based model (17 studies) showed an average accuracy of 85.41%. The maximum observed
was 94.86% and the minimum was 62.99%. Figure 4a,b, respectively, indicate the average
accuracy of the studies and minimum and maximum accuracy of the individual studies.
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Figure 4. (a) Average accuracy of the various architectures for PD. (b) Minimum (red) and maximum
(green) accuracy of the different PD architecture (AI: Artificial Intelligence, SDL: Solo deep learning,
ML: Machine learning, HDL: Hybrid deep learning).

It is clear from the analysis of AI-based studies that the DL models provide the highest
accuracy, and then comes the HDL and ML-based studies [14,20,49–51]. Various models are
accessed to evaluate the performance of the studies. Most studies comment on the model’s
accuracy. Few of them represent the sensitivity, specificity, area-under-the-curve (AUC),
net present value (NPV), and F1-score. Figure 5 represents the graph of the performance
metrics versus the number of studies.
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Table 1 represents the 22 studies’ comments on the accuracy parameter, with eight
studies representing evaluation in terms of sensitivity and specificity, and the parameters
AUC (4 studies), MCC (3 studies), NPV (2 studies), F1 (one study) were mentioned in the
research articles.

Table 1. Performance metrics of selected studies.

Performance Metrics ACC SEN SPE AUC MCC NPV F1
Number of Studies 22 8 8 4 3 2 1

ACC: Accuracy, SEN: Sensitivity, SPE: Specificity, MCC: Matthew’s correlation coefficient, NPV: Negative predictor
value, F1: Dice similarity coefficient.

Out of a total of 29 studies, 9 studies (33%) used voice as input parameter for the
detection of the PD, 5 studies (19%) used tremor data, 4 studies (15%) used sketch as
the input parameter, 2 studies (7%) used EEG, and 2 studies (7%) uses telemedicine for
diagnosis. From the studies, it is fair that the input parameter is the crucial factor for
diagnosing the disease [3,52–54]. Figure 6a indicates the various distributions of the input
dataset features for the diagnosis of PD. Figure 6b refers to the statistical distribution of the
selected studies, which separates the main AI terms into the machine, deep, and hybrid
studies. The input element for early predication of PD is important for the reckoning of
bias in the studies.
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3. Biology of Parkinson’s Disease

The declension of nerve cells in the substantianigra region of the brain causes PD. This
part of the brain is responsible for producing a neurotransmitter called dopamine, which is
originated by nerve cells. The role of dopamine is to act as a mediator between the brain
and the elements of the sensory organs that govern and regulate physical movements [20].
The abundance of dopamine in the brain is lowered when these neurons die or become
injured. This indicates that the part of the brain that controls movement cannot function
correctly, resulting in slow, unwanted, and irregular movements of the body parts [55].
The death of nerve cells is a gradual process. When somewhere around 80% of the nerve
cells in the substantianigra are damaged, signs of PD begin to appear [56]. Figure 7 depicts
the clinical biology of Parkinson’s disease [38,57]. Although additional research is desired
to find the exact cause for the loss of nerve cells associated with PD, there are no proper
explanations for why it happens [3,11]. The cause of the disease is currently linked with
a mix of environmental factors and genetic mutations. Several hereditary variables have
been demonstrated to enhance a person’s risk of getting PD, while it is unidentified how
these factors make certain people more susceptible to the disease [53,55].
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The abnormal genes are transferred down from parents to children, and PD can run
in families. However, this is a rare kind of legacy for the condition. According to some
experts, environmental variables may also enhance a person’s risk of PD [57]. The use
of pesticides and herbicides in agriculture and industrial pollution and traffic have been
suggested as impactable causes to trigger PD. The data relating external factors with PD,
on the other hand, are ambiguous [41,58].

The motor symptoms (risk factors) of PD can be used for classification (PD vs. Non-
PD) using the AI-based model. The dataset was generated while evaluating the patients
and can be easily put in a matrix form to develop the training model. The huge PD
symptomatic data are generated including motor and non-motor PD risk factors. The
symptomatic data cannot be statistically resolved, but an ML/DL/TL/HDL can be used
to better understand both data classifications, leading to better PD detection [59]. While
analyzing the symptomatic biology of PD, in-feature AI is the best option to quickly
predict PD.

4. Artificial Intelligence Architectures

The Artificial Intelligence (AI)-based detection of the PD can be achieved by using
symptoms (or risk factors) as an input parameter for the algorithm. The majority of the
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studies explain voice as a risk factor for the diagnosis of PD [52]. Tremor data are also an
important (risk factor) in detecting PD [6]. The hybrid model includes two risk factors,
which were also explained in a few articles [14,60].

4.1. A Note on Assumptions for Adaptation of the ML Algorithms

Different input parameters brought different assumptions. When the input is a tremor,
if the shaking is prevalent in one body part (say the uncontrolled movement of hand), HDL
such as ANN was preferred. Since NN could handle the augment, scale, and normalization,
it preferred HDL. In the case when the input data was a voice, ML was preferred. In the
case of voice datasets, the main assumption for the application of ML was to help diagnose
the early and subtle signs of PD. In other cases, since the gold standard was available, the
assumption was that the training models can be very powerful for the early diagnosis of
PD. A certain set of ML algorithms such as principal component analysis was adopted due
to a reduction in the dimension of the input datasets.

The features of the voice database can be better analyzed using decision tree or k-mean
clustering methods, and such classifiers can be better suited for voice data classification
for control vs. PD. Since the voice data were violating the data in components, it was
assumed that by breaking the voice data into components and then feeding it into ML
algorithms, such as hidden Markov models, then the learning of the voice data can be the
superior method, followed by the detection process. A deep convolutional neural network
classifier with transfer learning and data augmentation techniques can be used to identify
the risk of the PD. The usage of handwriting data for the prediction of the PD faces a severe
classification challenge at the preliminary stages due to the small size of data. The use of
ImageNet and MNIST datasets were used as input sources independently to achieve good
accuracy. For accurate identification of PD, other parallel PD symptoms data such as voice,
freezing, and gait can be used

4.2. Architecture Based on Voice and Sketch Input

Anitha et al. [38] proposed a methodology (Figure 8) to predict PD using a clustering
and classification algorithm. On the voice dataset, k-means, clustering and decision tree-
based ML algorithms are evaluated using R-studio. Python is used to analyze the patient’s
spiral artwork. Principal component analysis (PCA) is used to extract features from these
illustrations. X, Y, Z, Tension, Grip Angle, Timestamp, and Test ID variables are derived
from the spiral drawings. For comparison, two factors are used for the UCI dataset and
drawing the data. In the study, the accuracy was demonstrated to be 76% and 91%,
respectively. In comparison to other literature, the accuracy is low. It is feasible to improve
the model’s accuracy by combining DL with an existing algorithm [38].
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4.3. Architecture Based on Tremor

Bala et al. [6] have proposed architecture for early detection of PD by using ML-based
classification methodology (Figure 9). Two types of data elements used for analysis were the
tremor dataset and speech dataset. Data of 77 (PD) patients were used for experimentation
purposes. By using the computer algorithm Multi-Dimensional Voice Program (MDVP),
33 acoustic parameters of a voice sample were calculated. The program that can calculate
various algorithms such as K-mean, Random Forest, SVM, NB, and KNN is applied to the
dataset. In both cases, accuracy was calculated for speech signal using NB (88.05%) and
for tremor by using KNN (85.67%). The detailed design does not discuss any standard
database used [6].
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4.4. Architecture Based Speech Input with Information Gain Parameter

To predict PD, Cleick et al. [61] presented a variety of classification methods, including
Regression analysis, Support Vector Machine, Extra Trees, Gradient Boosting, and Random
Forest (Figure 10). In the classification stage, a total of 1208 voice data sizes were employed,
with 26 features gathered from PD patients and non-patients. Classification results obtained
using enlarged features beat classification obtained results using the data’s unique features.
Random forest was used to get an IG accuracy of 72.69 percent [57].
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5. Ranking of Selected Studies

Since some studies offer better AI model designs than others for early PD detection,
it is important to understand which studies are more suitable for early PD detection.
For this objective, one must rank these studies and evaluate the bias in their AI models.
These studies can then be partitioned into certain bias bins, which can have their own AI
characteristics. Note that the AI model performance is governed by the AI architecture and
its components (so-called AI attributes). Thus, a study must have an evaluation criterion by
which one can grade these AI attributes, which can then be used for evaluation or ranking.

The various architectures in the studies explain the role of AI in the detection of
PD [55,59]. If the components of the AI architecture used for early detection of the PD
have low performance, then the AI models under-performs, leading to lower grading of
that study [57]. Attribute studies, combinations of the input parameter, and benchmarks
associated with the clusters of the studies are essential factors that decide the ranking of
the studies [55,56,58]. The detailed subsection explains the various parameters related to
the raking of the studies.

5.1. Grading, Scoring, and Ranking of the Studies

Every study graded correlated with the attributes; a total of 30 attributes were consid-
ered for evaluation purposes and clustered into six sections. The cluster (C1) is related to
publication and citation, (C2) is about the objective of the studies, (C3) explains the types of
AI architecture used in the model, (C4) demonstrates optimization of the AI algorithms,
(C4) analyzes the performance and evaluation of various AI models, (C6) is about clinical
evaluation, scientific validation, and benchmarking. Every attribute in the respective cluster
was evaluated for the evaluation purpose grading score method, as explained in Table A1
(Appendix A).

After interpreting the results of every cluster of the associated studies (26 studies)
mean value, the absolute score cumulative score was computed. According to the mean
value, absolute score, and cumulative score of the concerned studies, the ranking of the
studies was finalized. The ranking studies are mentioned in Table 2 [61,62]. The green,
yellow, and red flags indicate the impact of low-bias, moderate-bias, and high-bias on
individual cluster cells.

Table 2. Ranking of the selected studies.

Low-Bias Moderate-Bias High-Bias

SN Author C1 C2 C3 C4 C5 C6 Mean Absolute
Score CDF Rank

1 Aseer et al. [1] (2019) 3 4 5 4 5 4 4.17 25 0.94 1
2 Adams et al. [2] (2017) 4 4 4 4 4 3 3.83 23 0.88 2
3 Prashantha et al. [3] (2018) 3 4 4 4 4 3 3.67 22 0.84 3
4 Alzubaidi et al. [4] (2021) 3 4 4 3 3 4 3.50 21 0.78 4
5 Ahmed et al. [5] (2021) 2 3 4 4 4 4 3.50 21 0.78 5
6 Wang et al. [6] (2020) 3 3 4 4 4 3 3.50 21 0.78 6
7 Wang et al. [7] (2017) 3 3 4 4 4 3 3.50 21 0.78 7
8 Naghsh et al. [8] (2020) 3 3 4 4 3 3 3.33 20 0.71 8
9 Prashanth et al. [9] (2018) 3 3 4 3 4 3 3.33 20 0.71 9

10 Moore et al. [10] (2018) 3 3 4 3 4 3 3.33 20 0.71 10
11 Fang et al. [11] (2020) 2 2 4 4 4 3 3.17 19 0.64 11
12 Celik et al. [12] (2019) 4 4 4 3 2 2 3.17 19 0.64 12
13 Poorjam et al. [13] (2019) 4 3 4 2 3 3 3.17 19 0.64 13
14 Anitha et al. [14] (2020) 3 3 4 2 3 3 3.00 18 0.56 14
15 Maitín et al. [15] (2019) 3 4 4 3 2 2 3.00 18 0.56 15
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Table 2. Cont.

Low-Bias Moderate-Bias High-Bias

SN Author C1 C2 C3 C4 C5 C6 Mean Absolute
Score CDF Rank

16 Gallego et al. [16] (2017) 2 3 4 4 2 3 3.00 18 0.56 16
17 Mei et al. [17] (2021) 2 3 3 3 3 3 2.83 17 0.48 17
18 Wroge et al. [18] (2010) 3 3 4 2 2 3 2.83 17 0.48 18
19 White et al. [19] (2018) 4 3 3 2 1 3 2.67 16 0.40 19
20 Jaichandran et al. [20] (2020) 4 3 4 0 1 2 2.33 14 0.25 20
21 Lee et al. [21] (2021) 4 4 0 0 0 4 2.00 12 0.14 21
22 Singamaneni et al. [22] (2021) 1 3 3 2 1 2 2.00 12 0.14 22
23 Hu et al. [23] (2019) 1 2 2 1 2 3 1.83 11 0.10 23
24 Bhat et al. [22] (2019) 3 3 3 0 0 2 1.83 11 0.10 24
25 Bala et al. [24] (2020) 1 2 2 1 1 2 1.50 9 0.05 25
26 Dias et al. [10] (2016) 1 1 0 0 0 2 0.67 4 0.00 26

C1: Citation, C2: Objective and Design Methodology, C3: AI Architecture, C4: Optimization of AI Model, C5:
Performance Evaluation of AI Models, C6: Clinical Evaluation and Benchmarking, CDF: Cumulative score.

5.2. Bias Cutoff Computation

About 26 studies were selected for the bias analysis that was closely associated with
early detection of PD. Using AP(ai)Bias 1.0 (AtheroPointTM, Roseville, CA, USA), bias
analysis was carried out. Studies were ranked into three AI bias categories (low moderate
(ML) and high moderate (MH)) by computing the mean score and cumulative score for each
study, taken for the AI attributes. The comparative analysis with various AI algorithms
was carried out to determine the bias cutoff and to understand the architecture of these
studies [59,63,64].

It is seen that many of the AI models show high accuracy, but the data size used for
the testing and training of the algorithm is small, and the model fails to explain scientific
validation. Hence, it results in High-Moderate (HM) in the studies [1,5,9,37,62,65]. The
cumulative cutoff for the studies was determined by using various factors such as (i)
associated studies of the PD, (ii) impact factor, (iii) the selected data, (iv) performance
indicators, (v) clinical trials, etc. After analyzing the selected studies (26 studies), the cutoff
was finalized for the high-bias < 0.064 (8 studies), moderate-bias < 0.078 (8 studies), and
low-bias > 0.078 (7 studies).

The Low-Moderate (LM) studies [1,5,9,37,62,65] observations are the articles contain-
ing information such as (i) high data count of the PD vs. normal; (ii) performance measures;
(iii) comparative analysis with various ML, DL, and HDL algorithms; (iv) explanations of
the benchmarking studies. The Moderate-bias studies [1,5,9,37,62,65,66] observations were
(i) sufficient data, (ii) average impact factor, and (iii) comparison of the input parameters.
The High-Moderate (HM) studies [3,6,54,60,67,68] observations associated with the articles
were (i) a smaller number of data, (ii) insufficient dissuasion on the selected model, (iii)
improper explanation of the algorithm, (iv) insufficient performance analysis, (v) lack of
demographic discussion, and (vi) insufficient discussion on clinical evaluation. Based on
the attribute analysis, every cluster was marked. The benchmarking and attribute analysis
were not done. The algorithm with classifier optimization was not explained [15]. There are
several explanations as to why and how the articles were frittered away for the research [63].
Figure 11 shows the cumulative cutoff score for the evaluation of the selected studies.

While noting the ranking studies, it is clear that selecting the architecture model
for the proximate input is essential. It is linked with the performance of the model and
RoB [37,69,70]. In the case that more than one input was taken for the diagnosis of the PD,
the architecture paradigm and the performance of the model would change [49,68]. Hence,
it is essential to discuss the linking of the architecture concerning input parameters for
diagnosing PD [18,71,72]. Table A3 (Appendix C) discusses twelve studies linked with AI
models’ performance parameters and compared them with input risk factors.
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5.3. Linking of Bias with AI Architectures

The various databases contain the resultant features of the voice, sketch, tremor, face,
EEG, and a biomarker of the PD patients concerning the normal [73]. UCI, PubMed, IEEE,
and MJFox are the few names of the database providers. Some of the articles also include
local datasets for the analysis of PD [60,74]. Figure 12a represents the various algorithms
used for the detection of the PD studies. The SVM algorithm, along with Decision Tree,
Naive Bias, and Random Forest, was used. Few articles compare various algorithms with
each other and compare their performance evolutions [12,70,75].
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Table A2 (Appendix B) explains the various statistical significance of the input fea-
tures selection for the diagnosis of the PD and the performance parameter of various AI
architectures [19,76]. The architecture uses a model with a classifier. Optimization was
discussed in the third cluster. The fourth cluster related to evaluating the performance
includes parameters such as accuracy, AUC, MCC, and F1. The evaluation and benchmark-
ing sections discussed seen unseen data, as well as conformability of the data. Table A3
(Appendix C) represents the attribute analysis [67]. The basic model of AI consists of (a)
PD vs. normal training and (b) risk label forecasting (risk possibilities) on test scenarios. As
a result, these learning methods were categorized according to the type of results (scoring
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element) of the models, the category of classifiers, the clusters of predictor variables (risk
factors), the predictive unbiased for the short or long term, the type of cross-validation
procedure, scientific validation, and the outcome diagnosis. These aspects are crucial in
determining performance as well as hazards that lead to bias.

5.4. Bias Distribution in AI Attributes

The tri-color scheme was implemented to represent the scientific analysis for low,
moderate, and high-bias in the various attributes of the clusters. The Low-Moderate (LM)
observations were done for articles containing information such as (i) high data count of
the PD vs. normal; (ii) performance measures; (iii) comparative analysis with various ML,
DL, and HDL algorithms; (iv) explanations of the benchmarking studies; (v) Implantation
of the PRISMA model search strategy. The High-Moderate (HM) studies [3,6,54,60,67,68]
observations associated with the articles were (i) less numbers of data, (ii) insufficient
dissuasion on the selected model, (iii) improper explanation of the algorithm, (iv) insuf-
ficient performance analysis, (v) lack of demographic discussion, (vi) no comments on
clinical evaluation, and (vii) unmentioned benchmarking of the attribute. It is observed
in the bias distribution studies plot that most of the articles do not discuss the clinical
evaluation and benchmarking, which lead to an increase in the high bias of the selected
studies [3,6,54,60,67,68].

The insufficient optimization of the AI architectures with many inputs also leads to
high bias. The good accuracy of the AI model but with failed test clinical validation results
also leads to high bias. The comparative analysis with various AI algorithms was carried
out to determine the bias cutoff and to understand the architecture of these studies. The
cluster-wise bias distribution plot is shown in Figure 13.
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Methodology, C3: AI Architecture, C4: Optimization of AI Model, C5: Performance Evaluation of AI
Models, C6: Clinical Evaluation and Benchmarking).

5.5. Recommendations for Bias Reduction

The recommendation is an integral part of the study evaluation. We summarize the
key recommendations, which can potentially improve the bias in AI for early PD detection,
namely (i) Validation: the AI-based PD detection should be scientifically validated and
clinically evaluated [39,52,77]; (ii) Fusion of covariates: is recommend that the AI model
uses combinations of risk factors as an input parameter for the detection of PD [40] to
ensure non-linearity is detected; (iii) Continental databases for AI generalization: use of
the “continental multiethnic categorized dataset” and usage of power analysis (in big data
framework), which will lead to improving true accuracy of early PD predication [72,78–80];
(iv) Non-motorized symptoms: “non-motor validated data” for PD (risk factors) data
(Figure 7) are important risk factors for the AI models and must be included [58,81–83];
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(v) Comorbidities: the PD risk factors due to “comorbidities” like COVID-19 [59,84–87],
diabetes [23,24], and liver [88–90], thyroid [91,92], coronary [32,93,94], prostate [95], ovar-
ian [96], and skin cancer [97,98] must also be considered.

6. Discussion
6.1. Principal Findings

PD is a non-curable disease, but at an early stage with a correct and precise diagnosis,
we can control the progression of the disease. AI is a good option to detect an early-stage
PD compared to the conventional PD detection approaches. However, there is a risk of
bias in AI models due to lack of AI design attributes, which also includes gold standards
(risk factors) of PD. This proposed review is the first to discuss AI bias analysis in the
early detection of PD. As a result of this study, the outcomes are (i) Usage of computing
30 AI attributes (based on 6 AI clusters) scored by an AI expert, and computation of mean
aggregate score; (ii) Computation of two cutoffs (Moderate-Low (ML) and High-Moderate
(MH)) and determination of three bins: low-, moderate-, and high-bias. Additionally, (iii) it
is seen that many of the AI models show high accuracy but the sample size used for the
testing and training of the algorithm is relatively small. Further, the model fails to explain
scientific validation; hence, it results in High-Moderate (HM) bias in the studies. (iv) For
an AI system to be reliable, accurate, and to have a minimal AI distortion, the bias must
be minimal. (v) AI architecture such as deep layered neural network models and such as
the ANN model were neglected in clinical design and decisions (e.g., voice, tremor, sketch)
and indicate Moderate-Low (ML) bias in the ranking [13,62,99].

6.2. Benchmarking

Table 3 shows the benchmarking analysis of the eight selected AI studies. We have
also mentioned various important aspects of the review related to early PD detection by
using AI [100,101]. The demographic analysis of the PD is mentioned in column (B3). While
analyzing demographics, we can find important factors such as the continent/country
that is leading and lagging in major/minor cases of PD patients [43,102]. The (B4) column
benchmarking table represents the objective of the studies. Most of the studies represent the
comparative analysis of a normal person to a person diagnosed with PD [54]. Column (B4)
is related to the inclusion and exclusion criteria of the studies. As per the disease symptoms
point of view, most of the symptoms under the tree of neurodegenerative diseases such as
Alzheimer’s, Huntington’s, Adrenoleukodystrophy (ALD), and PD are similar [37,43,58].
Few symptoms of the disease among them are different. When selecting the articles for the
proposed study, we tried focusing on the symptoms related to PD [103,104]. As mentioned
in column (B5), the data extraction criteria from the various sources are important to focus
on the area of interest in the study [51,104]. The various AI models used in the studies are
mentioned in column (B6), and it has been seen that in most of the article, ML algorithms
were used to detect PD. The performance of various AI models is shown in Table A3
(Appendix C) [63]. The studies using the PRISMA model strategy for selecting the article
were verified and are shown in column (B7) [4,32]. Column (B9) represents the risk factor as
an input parameter analysis for the early detection of the PD. The early symptoms of PD are
compulsiveness in movement, voice changes, and movement problems [4,16,17]. It is easy
to predict the disease by observing the change in motion of the body parts such as freezing
of the shoulder [6,14]. The column (B10, B11, B12, B13, and B14) represents benchmarking
observations, cross-validation, bias studies, and scientific validation, respectively, but
most of the selected studies failed to explain those terminologies. The last row depicts
“Proposed”, which is about the current study. Note that we indicated “

√
” in places of

solitary benefaction in the review.
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Table 3. Benchmarking scheme for selected and proposed studies.

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 CB0 B11 B12 B13 B14
SN Citation (Year) OB DD IEC DE ME PM AA IPA BA CV BS SV RS
1 Ahlrichs et al. [25] (2013) Ns vs. PD × × × × × ×

√
× × ×

√
72

2 Bind et al. [26] (2015) Ns vs. PD × × × × × × × ×
√

× × 52
3 Maitín et al. [15] (2020) Ns vs. PD ×

√
×

√ √ √
×

√
× ×

√
37

4 Anila et al. [27] (2020) Ns vs. PD × ×
√

× × ×
√

×
√

× × 37
5 Watts et al. [28] (2020) Ns vs. PD × × × × × ×

√
× × × × 109

6 Garg et al. [29] (2021) Ns vs. PD × × × × × × × × × × × 15
7 Mei et al. [17] (2021) Ns vs. PD ×

√ √ √ √ √ √
×

√
× × 78

8 Alzubaidi et al. [4] (2021) Ns vs. PD
√ √

×
√ √ √ √

× × × × 108
9 Proposed Ns vs. PD

√ √ √ √ √ √ √ √ √ √ √
105

B1: Citation, B2: Objective, B3: Demographic discussion, B4: Inclusive and Exclusive criteria, B5: Data Extraction,
B6: Model Evaluation, B7: PRISMA Model, B8: Attribute Analysis, B9: Input parameter analysis, B10: Benchmark-
ing analysis, B11: Cross-validation, B12: Bias studies, B13: Scientific validation, B14: Reference studies, “

√
” article

includes particular benchmark, “×” article does not includes particular benchmark.

6.3. A Short Note on Bias in ML

PD is a non-curable disease, even though the treatment cost of PD is very high. To
avoid death and economic loss due to the late diagnosis of PD, early diagnosis of PD is very
important. AI is a good option to detect the early stage of PD compared to the conventional
PD detection approach, but compared to the conventional PD detection approach, there is
a risk of implementing an AI model. An AI model is evaluated based on accuracy only, but
the model fails to explain scientific validation and clinical validation. Further, there is a lack
of evidence on the generalization of AI models; hence, it results in High-Moderate (HM)
bias in the AI model. Many of the AI models show high accuracy, but the data size used for
the testing and training of the algorithm is small; thus, it results in High-Moderate (HM)
bias in the AI model. The AI-based detection of PD can be achieved by using symptoms (or
risk factors) as an input parameter for the algorithm. The majority of the studies explain
voice, tremor, gait, and sketches as risk factors for the diagnosis of PD [14,52,60]. It is seen
that the AI model uses combinations of risk factors as the input parameter for the detection
of PD, having a Low-Moderate bias.

The studies were used to compute 30 AI attributes (based on 6 AI clusters). The PD risk
is intensifying due to existing comorbidities with PD; hence, it results in High-Moderate
(HM) bias in the AI model. By adding more attributes such as comorbidities with PD,
gender studies of PD patients, and clinical validation of AI-assisted PD detection, the
grading score of the studies will be improved. Therefore, there is scope to minimize the
High-Moderate bias in the AI model [83,102].

6.4. A Short Note PD Database and Gender Studies

Figure 12c shows the demographic distribution of the various continents, American
(60 years), Europe (61 years), Australian (55 years), and Asian (56 years), and the average
age of the PD patients in these respective continents [102,105,106].

Furthermore, their risk of granularities of a database to predict the PD results High-
Moderate (HM) bias in the AI model. As lifestyle, environmental conditions, and human
factors vary with the continents, attributes of the dataset will also vary. Thus, the unavail-
ability of the continental categorized dataset of the PD AI model leads to High-Moderate
(HM) risk. The average age of the PD patient is 57.77 years, and most of the database
contains the age group of the patients between 50 to 60 [8,102]. Hence, the majority of risk
factors are probably affecting PD patients in the age group of 50 to 60 years [59,75,107].
The PD risk is intensifying due to existing comorbidities. If we eliminate the associated
comorbidities with PD to train the model, it results in High-Moderate (HM) bias in the
AI model. There is no study of Age/Gender in certain ethnicities, and without this, the
bias will erupt. Such a system that has not included the diversity in age will fail in the
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prediction models if the training is not also correct, so there is the risk of generating high
bias in the model.

6.5. Role of Human-Computer Interface in Early Detection of the PD

Human-computer interaction (HCI) studies the interaction among humans and com-
puters, providing indicators that may be used to assess a user’s physiological, behavioral,
and psychological states, for example. Computers, cellphones, tablets, gaming platforms,
and wearable technologies all fall under the heading of human-computer interaction (HCI).
By using HCI, it is easy to predict early PD motor symptoms, for example, by monitoring
the keyboard or touch screen of smartphone operating response from the user. There seem
to be a variety of features present during typing on a keypad, according to current studies
on PD diagnosis through different motor symptoms, including reaction speed to messages,
uneven movement of the figures, typing pattern, degradation of repetitive movements,
stiffness in figures, indications of sidedness, deterioration in repetitive motion and typing
of sequences of letters, changes of motion and signs of hand and finger muscle spasms,
and Jerkiness of movement. Therefore, the HCI parameters can be considered for the early
detection of PD [1].

6.6. Strengths, Weakness, and Extensions of Our Study

The main strength of the study is the ability to automatically compute the RoB given
the scored AI attributes by an expert in the AI field. These attributes were an amalgamation
of demographics, AI architecture, performance evaluation, scientific validation, clinical
evaluation, and big data analysis, framed into six clusters [108,109]. The second component
was to compute the aggregate score for each of the AI studies, followed by an estimation
of two cutoffs (Moderate-Low (ML) and High-Moderate (MH)) to classify the studies into
three bins: low-, moderate-, and high-bias. The study further provides new insight into the
building blocks of AI-based early PD detection such as architectural differences, input risk
factors, and limited databases, which are the key elements responsible for RoB in the AI
model. Further, the study presented a set of key recommendations for improving the RoB.
The studies lacked discussions on database size, comorbidities with PD, gender information
in PD, continental databases, and clinical validations of AI-assisted PD detection. By adding
relevant, meaningful, and quality attributes to benchmarking, the RoB of the AI model
may also be improved [7,20,86,110]. Some studies may help to observe the PD study of
problem-solving and executive function.

Due to a lack of research funding and the non-involvement of the leading worldwide
groups in the field of AI, the benchmarking section was compromised in quality. Even
though it was a pilot study, due to a lack of AI participation in the PD field, the RoB has the
potential for exhaustive analysis. Further, due to the COVID-19 pandemic, the PD research
funds are limited and, therefore, PD research has been less attractive [86,111].

We expect to see more systematic reviews using DL and HDL models. Further, other
neurological diseases such as Alzheimer’s and Adrenoleukodystrophy (A.L.D.) [112,113],
when aligned to PD, can be explored for more robust scoring, ranking, and classification
using advanced neural imaging tools [69,114,115]. Currently, the world is facing a COVID-
19 pandemic, where 26 million people are affected and 5.2 million have died due to the
coronavirus. COVID-19 has strongly affected neurological diseases due to its brain path-
way [11,116]. Further, several comorbidities like diabetes, renal disease, and coronary artery
disease have intensified in COVID-19 patients, causing pulmonary embolism [59,111]. Sev-
eral AI tools have been researched and recommended for COVID-19 applications [86,117].
Just like one can characterize the lung or pulmonary COVID-19 data [110,118], there can
be PD neurological imaging data on COVID-19 patients that can be analyzed. Recently,
bias estimation on COVID-19 patients was designed and developed [59]. In the future, we
anticipate more systematic reviews on PD-based RoB with comorbidities focusing on the
COVID-19 virus [59,84–87].
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7. Conclusions

To our knowledge, this is the unique review that contains RoB elements selected from
all 26 research articles that used machine-learning, solo deep-learning, and hybrid-learning
algorithms to diagnose PD. We shared our findings, which included studies in a high-level
summary, such as (i) the AI is an essential component for the diagnosis of the early PD
detection and the recommendations must be followed to lower the RoB; (ii) the studies were
ranked and two cutoffs (Moderate-Low (ML) and High-Moderate (MH)) were determined
to segregate the studies into three bins: low-, moderate-, and high-bias); (iii) clinical,
behavioral, and biomarker data categories were useful while verifying symptoms of the
PD; (iv) possible patients biomarkers and physical indicators that are very important for
making a more accurate diagnosis for helping healthcare decision-making. We recommend
(i) the usage of power analysis in big data framework, (ii) that it must undergo scientific
validation using unseen AI models, and (iii) further adaptation in clinical evaluation for
reliability and stability tests.

The accomplishment of AI-assisted PD diagnosis holds great promise for a more
systematic clinical decision-making system, and the use of innovative biomarkers would
lower the bias and make it easier to understand drugs. Diagnosis of PD at an early onset
will be feasible and faster with the help of AI techniques. Approaches to AI may give
clinicians more valuable information for screening, detection, and diagnosis techniques
towards the early detection of PD disease.
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Abbreviations

SN Abb* Definition SN Abb* Definition
1 AI Artificial intelligence 25 HMI Human-machine interface
2 AA Attribute Analysis 26 IEC Inclusive and Exclusive criteria
3 AUC Area under curve 27 IPA Input parameter analysis
4 ACC Accuracy 28 InParm Input parameter
5 ARC Architecture 29 MAE Mean absolute error
6 BA Benchmarking analysis 30 ME Model Evaluation
7 BN Batch normalization 31 ML Machine learning
8 BS Bias studies 32 NPV Negative predictive value
9 BI Brain interface 33 MSE Mean square error
10 OB Objective 34 PCA Principal component analysis
11 CV Cross-validation 35 PE Performance evaluation indicator
12 CT Classifier type 36 RoB Risk of bias
13 CNN Convolution neural network 37 RNN Recurrent neural network
14 CONV Convolution 38 RF Random forest
15 CVD Cardiovascular disease 39 SEN Sensitivity
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16 DL Deep learning 40 SV Scientific validation
17 DT Decision tree 41 SDL Solo deep learning
18 DE Data Extraction 42 SPE Specificity
19 DD Demographic discussion 43 SVM Support vector machine
20 DS Data set 44 P Precision
21 DSE Dataset Size 45 R Recall
22 ET Ethnicity 46 RS Reference studies
23 EEG Electroencephalography 47 PD Parkinson’s Disease
24 HAR Human activity recognition 48 Abb* Abbreviations

Appendix A

Every study graded correlated with the attributes; a total of 30 attributes were con-
sidered for evaluation purposes and clustered into six sections. The interpret grading is
applied to every cluster, according to the explanation, and every cluster was evaluated.

Table A1. Grading sheet.

Cluster Type A# Name of Attributes #A/C Grading Scheme (G*)

Cluster 1
(Publications

Details)

A1 Citation

3
5 (G = 3);
3 (G < 3);
1 (G < 2)

A2 Year of Publication

A3 Impact Factor

Cluster 2
(Objective)

A4 Objective

4

5 (G = 4);
4 (G < 3);
3 (G < 2);
1 (G = 1)

A5 Dataset Used

A6 Dataset Size

A7 Diagnosis Method

Cluster 3
(AI Architecture)

A8 AI Type

7

5 (G = 7);
4 (G < 5);
3 (G < 4);
2 (G< 3);
1 (G < 2);
0 (G = 1);

A9 Architecture Used

A10 Internal Layers Used

A11 Type of Classifiers

A12 Data Pre-Processing

A13 Feature Extraction

A14 Activation Function

Cluster 4
(Optimization)

A15 Learning/Optimization Algorithm

3
5 (G = 3);
4 (G < 2);
2 (G = 1);
0 (G = 0)

A16 Evaluation Metrics Used for Classification

A17 Comparison With

Cluster 5
(Performance)

A18 Accuracy

7

5 (G = 7);
4 (G < 5);
3 (G < 4);
2 (G < 3);
0 (G = 1)

A19 Sensitivity

A20 Specificity

A21 AUC

A22 MCC

A23 NPV

A24 F1

Cluster 6
Clinical

Evaluation and
Benchmarking

A25 Demographic

6

5 (G = 6);
4 (G < 5);
3 (G < 4);
2 (G < 3);
0 (G = 1);

A26 Age

A27 Ethnicity

A28 Validation

A29 Seen Vs. Unseen

A30 Treatment
A#: Attribute Number, A/C: # of attributes per cluster; G*: # of Qualifying attributes per cluster.

Appendix B

Attributes studies of 11 articles for the early detection of PD by using AI. To interpret
the results of every study, a systematic approach of attributes analysis and performance
indication was completed.
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Table A2. Studies vs. Attributes.

SN A0 A1 A2 A3 A4 A5 A6 A7 A8

Citations DS DSE ET Age
(yrs) InPram Arch CT ACC

(%)
1 Alzubaidi et al. [30] (2021) ACM 1011 Asian 60 Tremor HDL SVM, CNN 87.9
2 Ahmed et al. [31] (2021) UCI 104 Asian 60 Voice ML RNN 95.8
3 Mei et al. [17] (2021) PubMed, IEEE 209 Europe 60 Voice ML SVM 83.07
4 Singamaneni et al. [22] (2021) UCI 410 Asian 50 Voice ML LDR 94.86
5 Jaichandran et al. [20] (2020) UCI 129 Asian 60 Voice ML SVM, ET, K-Mean 78.34
6 Anitha et al. [6] (2020) UCI 467 Asian 50 Voice ML CNN 90.21
7 Maitín et al. [15] (2020) ACM, IEEE 780 America 60 EEG ML SVM 62.99
8 Poorjam et al. [13] (2019) PPMI 24 Australia 50 Voice HDL iHMM 96.00
9 Aseer et al. [1] (2019) MNIST 255 Asian 65 Handwriting SDL CNN 98.28

10 Naghsh et al. [35] (2019) ELAB 20 Asian 50 EEG SDL ICA, SVM, K-Mean 97.38
11 Wang et al. [6] (2017) PPMI 584 Asian 50 Biomarker HDL CNN, SVM, RF, NB, BT 96.12

DS: Dataset, DSE: Dataset Size, ET: Ethnicity, InParm: Input Parameter, ARC: Architecture, CT: Classifier Type,
ACC: Accuracy.

Appendix C

Performance parameters of 12 studies aligned with the type of input and AI archi-
tectures. The AI-based detection of the PD can be achieved by using symptoms as an
input parameter for the algorithm. The majority of the studies explain voice as an input
parameter for the diagnosis of PD. Tremor, EEG, sketch, and biomarker (chemical) data are
also important input parameters to detect the PD.

Table A3. Twelve studies showing input data type, AI architecture, and performance parameters.

Attributes (Left to Right) A0 A1 A2 A3 A4 A5 A6 A7
Citations IP AI ACC SEN SPE AUC MCC F1

Alzubaidi et al. [30] (2021) Tremor HDL 87.9 - - - 89.34 1.17
Ahmed et al. [31] (2021) Voice ML 95.8 90.24 92.3 - 92.03 96

Mei et al. [17] (2021) Voice ML 83.07 - - 0.91 - -
Singamaneni et al. [22] (2021) Voice ML 94.86 - - - - -
Jaichandran et al. [20] (2020) Voice ML 78.34 - - - - -

Anitha et al. [6] (2020) Voice ML 90.21 1.8 4.39 2.49 1.17
Maitín et al. [15] (2020) EEG ML 62.99 0.9067 0.981 - - -

Poorjam et al. [13] (2019) Voice HDL 96.00 - - - - -
Aseer et al. [1] (2019) Handwriting SDL 98.28 - - - -

Naghsh et al. [35] (2019) EEG SDL 97.38 0.9891 0.987 - - -
Wang et al. [6] (2017) Biomarker HDL 96.12 - - - - -

IP: Input Parameter, ACC: Accuracy, SEN: Sensitivity, SPE: Specificity, MCC: Matthew’s correlation coefficient.
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