Autoantibodies to Oxidatively Modified Peptide: Potential Clinical Application in Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Sample
2.2. Detection of Plasma HNE Adducts
2.3. Detection of Plasma Autoantibodies against Unmodified and HNE Modified Peptide
2.4. Statistical Analysis and Machine Learning
3. Results
3.1. Measurement of Autoantibodies against HNE Modified BSA
3.2. Measurement of Autoantibodies against HNE-Modified Peptides and HNE Adducts
3.3. Optimization of Machine Learning Algorithms with Autoantibodies against HNE Modified Peptides
3.4. Optimization of Machine Learning Algorithms with Autoantibodies against HNE and MDA-Modified Peptides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Pecoits-Filho, R.; Lindholm, B. Coronary Artery Disease in End-Stage Renal Disease: No Longer a Simple Plumbing Problem. J. Am. Soc. Nephrol. 2003, 14, 1927–1939. [Google Scholar] [CrossRef]
- Vichova, T.; Motovska, Z. Oxidative stress: Predictive marker for coronary artery disease. Exp. Clin. Cardiol. 2013, 18, e88–e91. [Google Scholar]
- Zakynthinos, E.; Pappa, N. Inflammatory biomarkers in coronary artery disease. J. Cardiol. 2009, 53, 317–333. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Pillon, N.J.; Croze, M.L.; Vella, R.E.; Soulère, L.; Lagarde, M.; Soulage, C.O. The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress. Endocrinology 2012, 153, 2099–2111. [Google Scholar] [CrossRef]
- Ramana, K.V.; Srivastava, S.; Singhal, S.S. Lipid Peroxidation Products in Human Health and Disease. Oxidative Med. Cell. Longev. 2013, 2013, 583438. [Google Scholar] [CrossRef]
- Murdolo, G.; Piroddi, M.; Luchetti, F.; Tortoioli, C.; Canonico, B.; Zerbinati, C.; Galli, F.; Iuliano, L. Oxidative stress and lipid peroxidation by-products at the crossroad between adipose organ dysregulation and obesity-linked insulin resistance. Biochimie 2013, 95, 585–594. [Google Scholar] [CrossRef]
- Mihalas, B.P.; De Iuliis, G.N.; Redgrove, K.A.; McLaughlin, E.A.; Nixon, B. The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Sci. Rep. 2017, 7, 6247. [Google Scholar] [CrossRef]
- Esterbauer, H.; Eckl, P.; Ortner, A. Possible mutagens derived from lipids and lipid precursors. Mutat Res. 1990, 238, 223–233. [Google Scholar] [CrossRef]
- Giera, M.; Lingeman, H.; Niessen, W.M. Recent Advancements in the LC- and GC-Based Analysis of Malondialdehyde (MDA): A Brief Overview. Chromatographia 2012, 75, 433–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoubnasabjafari, M.; Ansarin, K.; Jouyban, A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81–128. [Google Scholar] [CrossRef]
- Csala, M.; Kardon, T.; Legeza, B.; Lizák, B.; Mandl, J.; Margittai, É.; Puskás, F.; Száraz, P.; Szelényi, P.; Bánhegyi, G. On the role of 4-hydroxynonenal in health and disease. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2015, 1852, 826–838. [Google Scholar] [CrossRef]
- Guéraud, F.; Atalay, M.; Bresgen, N.; Cipak, A.; Eckl, P.M.; Huc, L.; Jouanin, I.; Siems, W.; Uchida, K. Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 2010, 44, 1098–1124. [Google Scholar] [CrossRef]
- Castro, J.P.; Jung, T.; Grune, T.; Siems, W. 4-Hydroxynonenal (HNE) modified proteins in metabolic diseases. Free Radic. Biol. Med. 2017, 111, 309–315. [Google Scholar] [CrossRef]
- Porsch, F.; Mallat, Z.; Binder, C.J. Humoral immunity in atherosclerosis and myocardial infarction: From B cells to antibodies. Cardiovasc. Res. 2021, 117, 2544–2562. [Google Scholar] [CrossRef]
- Leibundgut, G.; Witztum, J.L.; Tsimikas, S. Oxidation-specific epitopes and immunological responses: Translational biotheranostic implications for atherosclerosis. Curr. Opin. Pharm. 2013, 13, 168–179. [Google Scholar] [CrossRef]
- Binder, C.J.; Papac-Milicevic, N.; Witztum, J.L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 2016, 16, 485–497. [Google Scholar] [CrossRef]
- Tsai, K.-L.; Chang, C.-C.; Chang, Y.-S.; Lu, Y.-Y.; Tsai, I.J.; Chen, J.-H.; Lin, S.-H.; Tai, C.-C.; Lin, Y.-F.; Chang, H.-W.; et al. Isotypes of autoantibodies against novel differential 4-hydroxy-2-nonenal-modified peptide adducts in serum is associated with rheumatoid arthritis in Taiwanese women. BMC Med. Inform. Decis. Mak. 2021, 21, 49. [Google Scholar] [CrossRef]
- Crowson, C.S.; Liao, K.P.; Davis, J.M., 3rd; Solomon, D.H.; Matteson, E.L.; Knutson, K.L.; Hlatky, M.A.; Gabriel, S.E. Rheumatoid arthritis and cardiovascular disease. Am. Heart J. 2013, 166, 622–628.e621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.F.; Luo, S.F.; See, L.C.; Chou, I.J.; Chang, H.C.; Yu, K.H. Rheumatoid arthritis prevalence, incidence, and mortality rates: A nationwide population study in Taiwan. Rheumatol. Int. 2013, 33, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-C.; Tsai, I.-J.; Hsu, H.; Hsu, P.-W.; Cheng, M.-H.; Huang, Y.-L.; Chen, J.-H.; Lei, M.-H.; Lin, C.-Y. Using Anti-Malondialdehyde Modified Peptide Autoantibodies to Import Machine Learning for Predicting Coronary Artery Stenosis in Taiwanese Patients with Coronary Artery Disease. Diagnostics 2021, 11, 961. [Google Scholar] [CrossRef]
- Karpouzas, G.A.; Ormseth, S.R.; Hernandez, E.; Bui, V.L.; Budoff, M.J. Beta-2-glycoprotein-I IgA antibodies predict coronary plaque progression in rheumatoid arthritis. Semin. Arthritis Rheum. 2021, 51, 20–27. [Google Scholar] [CrossRef]
- Oksjoki, R.; Jarva, H.; Kovanen, P.T.; Laine, P.; Meri, S.; Pentikäinen, M.O. Association Between Complement Factor H and Proteoglycans in Early Human Coronary Atherosclerotic Lesions. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 630–636. [Google Scholar] [CrossRef]
- Lee, C.W.; Cheng, T.M.; Lin, C.P.; Pan, J.P. Plasma haptoglobin concentrations are elevated in patients with coronary artery disease. PLoS ONE 2013, 8, e76817. [Google Scholar] [CrossRef]
- Shogenova, M.; Zhetisheva, R.; Karpov, A.; Efremov, E.; Masenko, V.; Naumov, V. Diagnostic value of modified immunoglobulin G determination in patients with coronary atherosclerosis. Atherosclerosis 2017, 263, e115. [Google Scholar] [CrossRef]
- Arfan, S.; Zamzam, A.; Syed, M.H.; Jain, S.; Jahanpour, N.; Abdin, R.; Qadura, M. The Clinical Utility of D-Dimer and Prothrombin Fragment (F1+2) for Peripheral Artery Disease: A Prospective Study. Biomedicines 2022, 10, 878. [Google Scholar] [CrossRef] [PubMed]
- Duran, N.E.; Duran, I.; Gürel, E.; Gündüz, S.; Göl, G.; Biteker, M.; Ozkan, M. Coronary artery disease in patients with peripheral artery disease. Heart Lung 2010, 39, 116–120. [Google Scholar] [CrossRef]
- Sveen, K.A.; Bech Holte, K.; Svanteson, M.; Hanssen, K.F.; Nilsson, J.; Bengtsson, E.; Julsrud Berg, T. Autoantibodies Against Methylglyoxal-Modified Apolipoprotein B100 and ApoB100 Peptide Are Associated with Less Coronary Artery Atherosclerosis and Retinopathy in Long-Term Type 1 Diabetes. Diabetes Care 2021, 44, 1402–1409. [Google Scholar] [CrossRef]
- Meier, L.A.; Binstadt, B.A. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front. Immunol. 2018, 9, 911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvack, M.L.; Post, M.; Palaniyar, N. IgM Promotes the Clearance of Small Particles and Apoptotic Microparticles by Macrophages. PLoS ONE 2011, 6, e17223. [Google Scholar] [CrossRef]
- Bellini, R.; Bonacina, F.; Norata, G.D. Crosstalk between dendritic cells and T lymphocytes during atherogenesis: Focus on antigen presentation and break of tolerance. Front. Cardiovasc. Med. 2022, 9, 934314. [Google Scholar] [CrossRef]
- Dalleau, S.; Baradat, M.; Guéraud, F.; Huc, L. Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013, 20, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Chapple, S.J.; Cheng, X.; Mann, G.E. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biol. 2013, 1, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Oehler, B.; Kloka, J.; Martin, C.; Brack, A.; Blum, R.; Rittner, H.L. Antinociception by the anti-oxidized phospholipid antibody E06. Br. J. Pharmacol. 2018, 175, 2940–2955. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ruiz, I. Immune system and cardiovascular disease. Nat. Rev. Cardiol. 2016, 13, 503. [Google Scholar] [CrossRef]
- Azmi, J.; Arif, M.; Nafis, M.T.; Alam, M.A.; Tanweer, S.; Wang, G. A systematic review on machine learning approaches for cardiovascular disease prediction using medical big data. Med. Eng. Phys. 2022, 105, 103825. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhao, Y. LightGBM: An Effective miRNA Classification Method in Breast Cancer Patients. In Proceedings of the Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics, Newark, NJ, USA, 18–20 October 2017; pp. 7–11. [Google Scholar]
- Joo, G.; Song, Y.; Im, H.; Park, J. Clinical Implication of Machine Learning in Predicting the Occurrence of Cardiovascular Disease Using Big Data (Nationwide Cohort Data in Korea). IEEE Access 2020, 8, 157643–157653. [Google Scholar] [CrossRef]
- Al’Aref, S.J.; Maliakal, G.; Singh, G.; van Rosendael, A.R.; Ma, X.; Xu, Z.; Alawamlh, O.A.H.; Lee, B.; Pandey, M.; Achenbach, S.; et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: Analysis from the CONFIRM registry. Eur. Heart J. 2020, 41, 359–367. [Google Scholar] [CrossRef]
- Kim, J.T.; Cho, S.; Lee, S.Y.; Kim, D.; Lim, S.-H.; Kang, T.S.; Lee, M.-Y. The Use of Machine Learning Algorithms for the Identification of Stable Obstructive Coronary Artery Disease. J. Am. Coll. Cardiol. 2020, 75, 254. [Google Scholar] [CrossRef]
- Tiwari, R.P.; Jain, A.; Khan, Z.; Kohli, V.; Bharmal, R.N.; Kartikeyan, S.; Bisen, P.S. Cardiac Troponins I and T: Molecular Markers for Early Diagnosis, Prognosis, and Accurate Triaging of Patients with Acute Myocardial Infarction. Mol. Diagn. Ther. 2012, 16, 371–381. [Google Scholar] [CrossRef]
- Kaura, A.; Hartley, A.; Panoulas, V.; Glampson, B.; Shah, A.S.V.; Davies, J.; Mulla, A.; Woods, K.; Omigie, J.; Shah, A.D.; et al. Mortality risk prediction of high-sensitivity C-reactive protein in suspected acute coronary syndrome: A cohort study. PLOS Med. 2022, 19, e1003911. [Google Scholar] [CrossRef] [PubMed]
- Liebetrau, C.; Hoffmann, J.; Dörr, O.; Gaede, L.; Blumenstein, J.; Biermann, H.; Pyttel, L.; Thiele, P.; Troidl, C.; Berkowitsch, A.; et al. Release Kinetics of Inflammatory Biomarkers in a Clinical Model of Acute Myocardial Infarction. Circ. Res. 2015, 116, 867–875. [Google Scholar] [CrossRef]
- Hussain, M.M.; Abdel Hady Mohammed, E.A.M.; El-Sherbeny, A.A.; Shehata, A.R. Cyclophilin A: A novel biomarker for cardiovascular disease in patients with type 2 diabetes. Egypt. J. Intern. Med. 2019, 31, 416–422. [Google Scholar] [CrossRef]
- Wang, X.-M.; Li, X.-M.; Song, N.; Zhai, H.; Gao, X.-M.; Yang, Y.-N. Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed. Pharmacother. 2019, 118, 109208. [Google Scholar] [CrossRef]
- Adamcova, M.; Šimko, F. Multiplex biomarker approach to cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. An In Vitro Diagnostic Multivariate Index Assay (IVDMIA) for Ovarian Cancer: Harvesting the Power of Multiple Biomarkers. Rev. Obs. Gynecol 2012, 5, 35–41. [Google Scholar]
- Shulman, L.P.; Francis, M.; Bullock, R.; Pappas, T. Clinical Performance Comparison of Two In-Vitro Diagnostic Multivariate Index Assays (IVDMIAs) for Presurgical Assessment for Ovarian Cancer Risk. Adv. Ther. 2019, 36, 2402–2413. [Google Scholar] [CrossRef]
- Pedersen, J.W.; Wandall, H.H. Autoantibodies as Biomarkers in Cancer. Lab. Med. 2011, 42, 623–628. [Google Scholar] [CrossRef]
- Kang, E.H.; Ha, Y.J.; Lee, Y.J. Autoantibody Biomarkers in Rheumatic Diseases. Int. J. Mol. Sci 2020, 21, 1382. [Google Scholar] [CrossRef]
- DeMarshall, C.; Sarkar, A.; Nagele, E.P.; Goldwaser, E.; Godsey, G.; Acharya, N.K.; Nagele, R.G. Utility of autoantibodies as biomarkers for diagnosis and staging of neurodegenerative diseases. Int. Rev. Neurobiol. 2015, 122, 1–51. [Google Scholar] [CrossRef]
- Vuilleumier, N.; Montecucco, F.; Hartley, O. Autoantibodies to apolipoprotein A-1 as a biomarker of cardiovascular autoimmunity. World J. Cardiol. 2014, 6, 314–326. [Google Scholar] [CrossRef]
Variables | Shuang-Ho Hospital | Luodong Poh-Ai Hospital | ||||
---|---|---|---|---|---|---|
Stenosis Rate of Patients | ||||||
RA (n = 30) | RA-CAD (n = 30) | HC (n = 41) | <30% (n = 44) | 30–70% (n = 50) | >70% (n = 65) | |
Age (year) | 52.26 ± 4.27 | 53.65 ± 9.19 | 38.41 ± 10.42 | 62.72 ± 10.32 | 63.57 ± 9.55 | 62.79 ± 9.27 |
Male | 12 | 26 | 26 | 29 | 23 | 56 * |
Drinker | - | 11 | 11 | 5 | 12 | 10 |
Used to smoke | - | - | 1 | 15 * | 10 * | 19 |
Current smoker | - | - | 17 | 4 | 11 | 36 * |
Diabetes | - | - | - | 13 | 15 | 30 |
Hypertension | - | - | 30 | 39 | 56 | |
HNE-protein adducts | - | - | 1.010 ± 0.088 | 1.044 ± 0.097 | 1.054 ± 0.115 * | 1.120 ± 0.112 ** |
HC vs. <30% | HC vs. 30–70% | HC vs. >70% | |||
---|---|---|---|---|---|
Score | Attributes | Score | Attributes | Score | Attributes |
0.525 | IgG anti-IGKC HNE | 0.356 | IgG anti-IGKC HNE | 0.288 | IgG anti-IGKC HNE |
0.27 | IgM anti-IGKC HNE | 0.275 | IgM anti-IGKC HNE | 0.278 | IgM anti-IGKC HNE |
0.209 | IgG anti-THRB | 0.178 | IgM anti-THRB HNE | 0.172 | IgM anti-THRB HNE |
0.167 | IgG anti-THRB HNE | 0.178 | IgG anti-THRB | 0.164 | IgM anti-THRB |
0.14 | IgM anti-THRB HNE | 0.153 | IgG anti-THRB HNE | 0.156 | IgM anti-HPT |
0.127 | IgM anti-HPT | 0.128 | IgM anti-THRB | 0.143 | IgM anti-CFAH HNE |
0.126 | IgM anti-HPT | 0.128 | IgM anti-CFAH | ||
0.126 | IgM anti-HPT HNE | 0.123 | IgM anti-HPT HNE | ||
0.116 | IgG anti-THRB | ||||
0.109 | IgG anti-HPT | ||||
0.109 | IgG anti-THRB HNE | ||||
0.104 | IgG anti-CFAH HNE |
Groups | Accuracy (95%CI) | Precision (95%CI) | f1 Score (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | AUC (95%CI) | |
LGBM | IgG anti-IGKC HNE, IgM anti-CFAH, IgG anti-CFAH, IgM anti-CFAH HNE, IgG anti-CFAH HNE, IgM anti-HPT, IgM anti-HPT HNE, IgG anti-HPT HNE, IgM anti-IGKC, IgG anti-IGKC, IgM anti-IGKC HNE, IgM anti-THRB, IgG anti-THRB, IgM anti-THRB HNE, IgG anti-THRB HNE | ||||||
HC vs. <30% | 77% (64.6–89.4%) | 73% (49.5–96.5%) | 72.6% (53–92.2%) | 78.2% (54.7–101.6%) | 76.4% (57.5–95.2%) | 0.832 (0.657–1.008) | |
HC vs. 30–70% | 72.7% (59.2–86.2%) | 72.5% (52.5–92.4%) | 69.1% (52.9–85.3%) | 71.5% (49.6–93.4%) | 75.8% (57–94.6%) | 0.816 (0.665–0.967) | |
HC vs. >70% | 73% (59.1–87%) | 61% (32.5–89.6%) | 57.8% (34.6–81.1%) | 62% (33.5–90.5%) | 79.6% (64.1–95.2%) | 0.819 (0.66–0.978) | |
Groups | Accuracy (95%CI) | Precision (95%CI) | f1 Score (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | AUC (95%CI) | |
XGB | IgG anti-IGKC HNE, IgG anti-CFAH, IgG anti-HPT, IgM anti-HPT HNE, IgM anti-IGKC, IgG anti-IGKC, IgM anti-IGKC HNE | ||||||
HC vs. <30% | 77.2% (63.6–90.8%) | 74.5% (51.9–97.2%) | 71.4% (51.1–91.7%) | 74.2% (48.9–99.5%) | 79.2% (61.4–97.1%) | 0.854 (0.684–1.024) | |
HC vs. 30–70% | 75.3% (62.6–88%) | 71.7% (52.6–90.8%) | 71.4% (54.3–88.6%) | 75.6% (53.9–97.3%) | 75.4% (58.5–92.3%) | 0.825 (0.696–0.953) | |
HC vs. >70% | 77.3% (64–90.6%) | 66.9% (38.9–94.9%) | 62.8% (38.7–86.9%) | 64.5% (37.3–91.7%) | 83.2% (68.5–98%) | 0.856 (0.729–0.982) |
Attributes | HC (n = 30) | <30% (n = 30) | 30–70% (n = 30) | >70% (n = 30) |
---|---|---|---|---|
IgG anti-A2M824–841 | 3.32 ± 5.35 | 1.51 ± 2.4 | 1.79 ± 2.01 | 1.99 ± 1.92 |
IgG anti-A2M824–841 MDA | 9.87 ± 14.34 | 6.94 ± 11.9 | 4.66 ± 2.82 | 5.29 ± 2.8 |
IgG anti-ApoB1004022–4040 | 4.22 ± 7.25 | 3.75 ± 8.75 | 1.87 ± 1.19 | 1.78 ± 1.19 |
IgG anti-ApoB1004022–4040 MDA | 1.97 ± 2.57 | 5.89 ± 15.61 | 2.21 ± 2.26 | 2.32 ± 3.87 |
IgG anti-A1AT284–298 | 3.63 ± 7.87 | 2.27 ± 2.75 | 2.39 ± 2.54 | 2.03 ± 1.16 |
IgG anti-A1AT284–298 MDA | 4.26 ± 4.51 | 2.79 ± 1.79 | 3.42 ± 2.69 | 3.04 ± 1.36 |
IgG anti-IGKC76–99 | 2.37 ± 2.55 | 2.86 ± 4.22 | 1.74 ± 2.37 | 3.09 ± 5.72 |
IgG anti-IGKC76–99 MDA | 4.41 ± 7.07 | 1.81 ± 3.02 | 1.52 ± 1.64 | 1.68 ± 1.43 |
IgM anti-A2M824–841 | 0.95 ± 0.53 | 0.6 ± 0.28 | 0.65 ± 0.52 | 0.59 ± 0.31 |
IgM anti-A2M824–841 MDA | 2.03 ± 1.36 | 1.35 ± 0.61 | 1.57 ± 1.14 | 1.37 ± 0.65 |
IgM anti-ApoB1004022–4040 | 1.41 ± 0.96 | 1.02 ± 0.63 | 1.23 ± 1.53 | 1.18 ± 1.2 |
IgM anti-ApoB1004022–4040 MDA | 1.41 ± 1.12 | 0.99 ± 0.43 | 1.18 ± 1.24 | 0.83 ± 0.36 |
IgM anti-A1AT284–298 | 1.41 ± 1.37 | 0.81 ± 0.7 | 1.8 ± 3.96 | 0.8 ± 1.09 |
IgM anti-A1AT284–298 MDA | 1.17 ± 0.5 | 0.91 ± 0.37 | 0.93 ± 0.47 | 0.78 ± 0.37 |
IgM anti-IGKC76–99 | 3.54 ± 8.99 | 1.21 ± 1.06 | 16.3 ± 79.05 | 1.15 ± 1.97 |
IgM anti-IGKC76–99 MDA | 0.88 ± 0.76 | 0.47 ± 0.26 | 0.54 ± 0.5 | 0.39 ± 0.24 |
IgM anti-CFAH1211–1230 | 17.54 ± 17.8 | 11.2 ± 9.08 | 13.26 ± 17.33 | 12.59 ± 19.43 |
IgG anti-CFAH1211–1230 | 26.13 ± 15.09 | 21.73 ± 31.63 | 23.53 ± 25.34 | 25.07 ± 25.65 |
IgM anti-CFAH1211–1230 HNE | 15.71 ± 10.27 | 12.34 ± 8.28 | 12.44 ± 9.66 | 11.01 ± 11.05 |
IgG anti-CFAH1211–1230 HNE | 26.98 ± 14.4 | 23.91 ± 28.53 | 24.71 ± 26.29 | 24.38 ± 20.02 |
IgM anti-HPT78–108 | 11.89 ± 6.34 | 10.95 ± 9.51 | 9.94 ± 7.06 | 8 ± 4.44 |
IgG anti-HPT78–108 | 37.11 ± 16.95 | 32.09 ± 36.49 | 34.67 ± 31.77 | 36.63 ± 26.47 |
IgM anti-HPT78–108 HNE | 6.73 ± 4.14 | 6.9 ± 7.13 | 5.74 ± 5.53 | 4.43 ± 2.97 |
IgG anti-HPT78–108 HNE | 27.67 ± 13.05 | 26.27 ± 27.46 | 26.6 ± 24.57 | 26.27 ± 18.45 |
IgG anti-IGKC2–19 | 29.36 ± 11.95 | 22.56 ± 19.62 | 26.27 ± 17.36 | 19.66 ± 10.1 |
IgM anti-IGKC2–19 | 44.88 ± 9.8 | 36.22 ± 11.98 | 33.87 ± 24.54 | 31.56 ± 21.59 |
IgM anti-IGKC2–19 HNE | 30.11 ± 15.84 | 18.16 ± 15.37 | 19.99 ± 24.36 | 14.96 ± 14.68 |
IgG anti-IGKC2–19 HNE | 42.7 ± 11.69 | 33.82 ± 37.21 | 34.86 ± 28.84 | 43.94 ± 36.92 |
IgM anti-THRB328–345 | 30.08 ± 26.5 | 16.98 ± 11.87 | 23.5 ± 37.37 | 18.83 ± 26.25 |
IgG anti-THRB328–345 | 88.48 ± 32.89 | 63.24 ± 46.2 | 71.84 ± 48.89 | 74.58 ± 46.34 |
IgM anti-THRB328–345 HNE | 12.01 ± 11.93 | 7.96 ± 7.79 | 6.11 ± 5.22 | 7.23 ± 8.35 |
IgG anti-THRB328–345 HNE | 32.16 ± 13.36 | 28.59 ± 35.45 | 30.46 ± 27.26 | 30.04 ± 19.74 |
Groups | Accuracy (95%CI) | Precision (95%CI) | f1 Score (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | AUC (95%CI) | |
---|---|---|---|---|---|---|---|
LGBM | IgG anti-IGKC HNE, IgM anti-A1AT MDA, IgM anti-IGKC MDA, IgG anti-A2M MDA, IgG anti-A1AT MDA, IgM anti-CFAH HNE | ||||||
HC vs. <30% | 75.7% (62.4–88.9%) | 74.8% (52.4–97.2%) | 72% (53.6–90.4%) | 75.1% (51.7–98.6%) | 77.2% (57.5–96.9%) | 0.848 (0.706–0.99) | |
HC vs. 30–70% | 76.1% (62.6–89.6%) | 72.2% (49.3–95.1%) | 71.3% (51.7–90.9%) | 75.7% (51.6–99.7%) | 76.6% (58.1–95.2%) | 0.845 (0.687–1.002) | |
HC vs. >70% | 82.7% (72.3–93.1%) * | 74.5% (51.5–97.5%) * | 71.9% (52.2–91.5%) * | 75.2% (50.7–99.6%) * | 86.4% (73.8–99.1%) | 0.904 (0.783–1.025) * | |
Groups | Accuracy (95%CI) | Precision (95%CI) | f1 Score (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | AUC (95%CI) | |
XGB | IgG anti-IGKC HNE, IgM anti-A1AT MDA, IgM anti-IGKC MDA | ||||||
HC vs. <30% | 78.2% (64.8–91.6%) | 76.8% (55.6–98%) | 75% (57.8–92.2%) | 78.4% (57.3–99.5%) | 78.8% (59.1–98.5%) | 0.847 (0.696–0.999) | |
HC vs. 30–70% | 78.6% (66.4–90.8%) | 76.6% (55.5–97.7%) | 74.2% (56.9–91.4%) | 77.1% (55.4–98.8%) | 79.9% (62.3–97.5%) | 0.881 (0.751–1.011) | |
HC vs. >70% | 86.1% (76.2–96%) * | 81.7% (60.5–103%) * | 77.2% (59–95.5%) * | 78.6% (55.8–101.4%) * | 90.4% (79.6–101.1%) * | 0.935 (0.846–1.024) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, I.-J.; Shen, W.-C.; Wu, J.-Z.; Chang, Y.-S.; Lin, C.-Y. Autoantibodies to Oxidatively Modified Peptide: Potential Clinical Application in Coronary Artery Disease. Diagnostics 2022, 12, 2269. https://doi.org/10.3390/diagnostics12102269
Tsai I-J, Shen W-C, Wu J-Z, Chang Y-S, Lin C-Y. Autoantibodies to Oxidatively Modified Peptide: Potential Clinical Application in Coronary Artery Disease. Diagnostics. 2022; 12(10):2269. https://doi.org/10.3390/diagnostics12102269
Chicago/Turabian StyleTsai, I-Jung, Wen-Chi Shen, Jia-Zhen Wu, Yu-Sheng Chang, and Ching-Yu Lin. 2022. "Autoantibodies to Oxidatively Modified Peptide: Potential Clinical Application in Coronary Artery Disease" Diagnostics 12, no. 10: 2269. https://doi.org/10.3390/diagnostics12102269
APA StyleTsai, I. -J., Shen, W. -C., Wu, J. -Z., Chang, Y. -S., & Lin, C. -Y. (2022). Autoantibodies to Oxidatively Modified Peptide: Potential Clinical Application in Coronary Artery Disease. Diagnostics, 12(10), 2269. https://doi.org/10.3390/diagnostics12102269