Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. 18F-FDG Brain PET/CT
2.2.1. Acquisition Protocol
2.2.2. Image Reconstruction and Processing
2.3. Statistical Analysis
2.4. Classification
2.5. Execution, Data and Code Availability
3. Results
4. Discussion
Limitations and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheltens, P.; Blennow, K.; Breteler, M.M.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; van der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Goodman, R.A.; Lochner, K.A.; Thambisetty, M.; Wingo, T.S.; Posner, S.F.; Ling, S.M. Prevalence of dementia subtypes in United States Medicare fee-for-service beneficiaries, 2011–2013. Alzheimers Dement. 2017, 13, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Hebert, L.E.; Scherr, P.A.; Bienias, J.L.; Bennett, D.A.; Evans, D.A. Alzheimer disease in the US population: Prevalence estimates using the 2000 census. Arch. Neurol. 2003, 60, 1119–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Smith, G.E.; Jack, C.R., Jr. Mild cognitive impairment: Ten years later. Arch. Neurol. 2009, 66, 1447–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Shiri-Feshki, M. Rate of progression of mild cognitive impairment to dementia—Meta-analysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef]
- Schneider, J.A.; Arvanitakis, Z.; Leurgans, S.E.; Bennett, D.A. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol. 2009, 66, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Modrego, P.J. Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Curr. Alzheimer Res. 2006, 3, 161–170. [Google Scholar] [CrossRef]
- Shaffer, J.L.; Petrella, J.R.; Sheldon, F.C.; Choudhury, K.R.; Calhoun, V.D.; Coleman, R.E.; Doraiswamy, P.M. Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 2013, 266, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Eckerström, C.; Olsson, E.; Bjerke, M.; Malmgren, H.; Edman, A.; Wallin, A.; Nordlund, A. A combination of neuropsychological, neuroimaging, and cerebrospinal fluid markers predicts conversion from mild cognitive impairment to dementia. J. Alzheimers Dis. 2013, 36, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Nesteruk, M.; Nesteruk, T.; Styczyńska, M.; Mandecka, M.; Barczak, A.; Barcikowska, M. Combined use of biochemical and volumetric biomarkers to assess the risk of conversion of mild cognitive impairment to Alzheimer’s disease. Folia Neuropathol. 2016, 4, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, S.P.; Ballarini, T.; Sala, A.; Cerami, C.; Presotto, L.; Santangelo, R.; Fallanca, F.; Vanoli, E.G.; Gianolli, L.; Iannaccone, S.; et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin. 2018, 18, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Ottoy, J.; Niemantsverdriet, E.; Verhaeghe, J.; de Roeck, E.; Struyfs, H.; Somers, C.; Wyffels, L.; Ceyssens, S.; van Mossevelde, S.; van den Bossche, T.; et al. Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and 18F-FDG-PET imaging. Neuroimage Clin. 2019, 22, 101771. [Google Scholar] [CrossRef]
- Nuvoli, S.; Tanda, G.; Stazza, M.L.; Palumbo, B.; Frantellizzi, V.; De Vincentis, G.; Spanu, A.; Madeddu, G. 123I-Ioflupane SPECT and 18F-FDG PET combined use in the characterization of movement and cognitive associated disorders in neurodegenerative diseases. Curr. Alzheimer Res. 2021, 18, 196–207. [Google Scholar] [CrossRef]
- Nuvoli, S.; Tanda, G.; Stazza, M.L.; Madeddu, G.; Spanu, A. Qualitative and quantitative analyses of brain 18Fluoro-Deoxy-Glucose positron emission tomography in primary progressive aphasia. Dement. Geriatr. Cogn. Disord. 2019, 48, 250–260. [Google Scholar] [CrossRef]
- Massa, F.; Chincarini, A.; Bauckneht, M.; Raffa, S.; Peira, E.; Arnaldi, D.; Pardini, M.; Pagani, M.; Orso, B.; Donegani, M.I.; et al. Added value of semiquantitative analysis of brain FDG-PET for the differentiation between MCI-Lewy bodies and MCI due to Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1263–1274. [Google Scholar] [CrossRef]
- Palumbo, B.; Fravolini, M.L.; Nuvoli, S.; Spanu, A.; Paulus, K.S.; Schillaci, O.; Madeddu, G. Comparison of two neural network classifiers in the differential diagnosis of essential tremor and Parkinson’s disease by (123)I-FP-CIT brain SPECT. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 2146–2153. [Google Scholar] [CrossRef]
- Nuvoli, S.; Spanu, A.; Fravolini, M.L.; Bianconi, F.; Cascianelli, S.; Madeddu, G.; Palumbo, B. [123I]Metaiodobenzylguanidine (MIBG) cardiac scintigraphy and automated classification techniques in Parkinsonian disorders. Mol. Imaging Biol. 2020, 22, 703–710. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, J.; Lu, J.; Jiang, J.; Zhang, H.; Zuo, C. Radiomics: A novel feature extraction method for brain neuron degeneration disease using 18F-FDG PET imaging and its implementation for Alzheimer’s disease and mild cognitive impairment. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419838682. [Google Scholar] [CrossRef]
- Gray, K.R.; Aljabar, P.; Heckemann, R.A.; Hammers, A.; Rueckert, D. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage 2013, 65, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bicacro, E.; Silveira, M.; Marques, J.S. Alternative feature extraction methods in 3D brain image-based diagnosis of Alzheimer’s disease. In Proceedings of the 19th IEEE International Conference on Image Processing (ICIP), Orlando, FL, USA, 30 September–3 October 2012; pp. 1237–1240. [Google Scholar]
- Morgado, P.; Silveira, M.; Marques, J.S. Diagnosis of Alzheimer’s disease using 3D local binary patterns. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2013, 1, 2–12. [Google Scholar] [CrossRef]
- Padilla, P.; Lopez, M.; Gorriz, J.; Ramirez, J.; Salas-Gonzalez, D.; Alvarez, I. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Trans. Med. Imaging 2012, 31, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.; Marques, J. Boosting Alzheimer’s disease diagnosis using PET images. In Proceedings of the 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2556–2559. [Google Scholar]
- McEvoy, L.; Fennema-Notestine, C.; Roddey, J.; Hagler, D.; Holland, D.; Karow, D.; Pung, C.; Brewer, J.; Dale, A. Alzheimer disease: Quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 2009, 251, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedj, E.; Varrone, A.; Boellaard, R.; Albert, N.L.; Barthel, H.; van Berckel, B.; Brendel, M.; Cecchin, D.; Ekmekcioglu, O.; Garibotto, V.; et al. EANM procedure guidelines for brain PET imaging using [18F]FDG, version. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 632–651. [Google Scholar] [CrossRef]
- Clergue-Duval, V.; Questel, F.; Azuar, J.; Paquet, C.; Cognat, E.; Amami, J.; Queneau, M.; Dereux, A.; Barré, T.; Bellivier, F.; et al. Brain 18FDG-PET pattern in patients with alcohol-related cognitive impairment. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 281–291. [Google Scholar] [CrossRef] [PubMed]
- van Essen, D.C.; Drury, H.A.; Dickson, J.; Harwell, J.; Hanlon, D.; Anderson, C. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 2001, 8, 443–459. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.H. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003, 44, 614–619. [Google Scholar]
- Minoshima, S.; Mosci, K.; Cross, D.; Thientunyakit, T. Brain [F-18]FDG PET for Clinical Dementia Workup: Differential Diagnosis of Alzheimer’s Disease and Other Types of Dementing Disorders. Semin. Nucl. Med. 2021, 5, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Arbizu, J.; Festari, C.; Altomare, D.; Walker, Z.; Bouwman, F.; Rivolta, J.; Orini, S.; Barthel, H.; Agosta, F.; Drzezga, A.; et al. EANM-EAN task force for the prescription of FDG-PET for dementing neurodegenerative disorders. Clinical utility of FDG-PET for the clinical diagnosis in MCI. Eur. J. Nucl. Med. Mo. Imaging 2018, 45, 1497–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, L.; Li, Y.; Zhao, Y.; Hu, T.; Zhang, Z.; Yao, Z.; Hu, B. Alzheimer’ s Disease Neuroimaging Initiative (ADNI). Predicting MCI progression with FDG-PET and cognitive scores: A longitudinal study. BMC Neurol. 2020, 21, 148. [Google Scholar]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawa, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.N.; Xu, W.; Li, J.Q.; Guo, Y.; Cui, M.; Chen, K.L.; Huang, Y.Y.; Dong, Q.; Tan, L.; Yu, J.T. Alzheimer’s Disease Neuroimaging Initiative. FDG-PET as an independent biomarker for Alzheimer’s biological diagnosis: A longitudinal study. Alzheimers Res. Ther. 2019, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Tiepolt, S.; Patt, M.; Aghakhanyan, G.; Meyer, P.M.; Hesse, S.; Barthel, H.; Sabri, O. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm. Chem. 2019, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobili, F.; Arbizu, J.; Bouwman, F.; Drzezga, A.; Agosta, F.; Nestor, P.; Walker, Z.; Boccardi, M. EANM-EAN task force for the prescription of FDG-PET for dementing neurodegenerative disorders. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18 F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur. J. Neurol. 2018, 25, 1201–1217. [Google Scholar]
- Iaccarino, L.; Sala, A.; Perani, D. Alzheimer’s Disease neuroimaging initiative. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET. Ann. Clin. Transl. Neurol. 2019, 6, 1113–1120. [Google Scholar] [CrossRef] [Green Version]
- Chételat, G.; Arbizu, J.; Barthel, H.; Garibotto, V.; Law, I.; Morbelli, S.; van de Giessen, E.; Agosta, F.; Barkhof, F.; Brooks, D.J.; et al. Amyloid-PET and (18)F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020, 19, 951–962. [Google Scholar] [CrossRef]
- Tondo, G.; Carli, G.; Santangelo, R.; Mattoli, M.V.; Presotto, L.; Filippi, M.; Magnani, G.; Iannaccone, S.; Cerami, C.; Perani, D. Alzheimer’s Disease Neuroimaging Initiative. Biomarker-based stability in limbic-predominant amnestic mild cognitive impairment. Eur. J. Neurol. 2021, 28, 1123–1133. [Google Scholar] [CrossRef]
- Nuvoli, S.; Palumbo, B.; Malaspina, S.; Madeddu, G.; Spanu, A. 123I-ioflupane SPET and 123I-MIBG in the diagnosis of Parkinson’s disease and parkinsonian disorders and in the differential diagnosis between Alzheimer’s and Lewy’s bodies dementias. Hell. J. Nucl. Med. 2018, 21, 60–68. [Google Scholar] [PubMed]
- Braak, H.; Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Braak, H.; Alafuzoff, I.; Arzberger, T.; Kretzschmar, H.; Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006, 112, 389–404. [Google Scholar] [CrossRef] [Green Version]
- Gertz, H.J.; Xuereb, J.H.; Huppert, F.A.; Brayne, C.; McGee, M.A.; Paykel, E.S.; Harrington, C.; Mukaetova-Ladinska, E.; Arendt, T.; Wischik, C.M. Examination of the validity of the hierarchical model of neuropathological staging in normal aging and Alzheimer’s disease. Acta Neuropathol. 1998, 95, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Wagatsuma, K.; Sakata, M.; Ishibashi, K.; Hirayama, A.; Kawakami, H.; Miwa, K.; Suzuki, Y.; Ishii, K. Direct comparison of brain [18F]FDG images acquired by SiPM-based and PMT-based PET/CT: Phantom and clinical studies. EJNMMI Phys. 2020, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Lindström, E.; Oddstig, J.; Danfors, T.; Jögi, J.; Hansson, O.; Lubberink, M. Image reconstruction methods affect software-aided assessment of pathologies of [18F]flutemetamol and [18F]FDG brain-PET examinations in patients with neurodegenerative diseases. Neuroimage Clin. 2020, 28, 102386. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zeng, R.; Yu, L.; Feng, Y.; Chen, C.; Li, F.; Liu, Y.; Huang, Y.; Huang, Z. Deep-learning radiomics for discrimination Conversion of Alzheimer’s Disease in patients with mild cognitive impairment: A study based on 18F-FDG PET imaging. Front. Aging Neurosci. 2021, 13, 764872. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Yan, C.; Yan, Z.; Peng, Y.; Leng, Y.; Liu, C.; Chen, S.; Jiang, X.; Zheng, J.; Yang, X. BMNet: A new region-based metric learning method for early Alzheimer’s Disease identification with FDG-PET images. Front. Neurosci. 2022, 16, 831533. [Google Scholar] [CrossRef] [PubMed]
- Alongi, P.; Laudicella, R.; Panasiti, F.; Stefano, A.; Comelli, A.; Giaccone, P.; Arnone, A.; Minutoli, F.; Quartuccio, N.; Cupidi, C.; et al. Radiomics analysis of brain [18F]FDG PET/CT to predict Alzheimer’s Disease in patients with Amyloid PET Positivity: A preliminary report on the application of SPM cortical segmentation, pyradiomics and machine-learning analysis. Diagnostics 2022, 8, 933. [Google Scholar] [CrossRef] [PubMed]
- Cascianelli, S.; Scialpi, M.; Amici, S.; Forini, N.; Minestrini, M.; Fravolini, M.L.; Sinzinger, H.; Schillaci, O.; Palumbo, B. Role of Artificial Intelligence Techniques (Automatic Classifiers) in molecular imaging modalities in neurodegenerative diseases. Curr. Alzheimer Res. 2017, 14, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, B.; Bianconi, F.; Nuvoli, S.; Spanu, A.; Fravolini, L.M. Artificial intelligence techniques support nuclear medicine modalities to improve the diagnosis of Parkinson’s disease and Parkinsonian syndromes. Clin. Transl. Imaging 2021, 9, 19–35. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, M.; Guo, C. Automatic diagnosis of Alzheimer’s Disease and mild cognitive impairment Based on CNN+SVM networks with end-to-end training. Comput. Intell. Neurosci. 2021, 13, 9121770. [Google Scholar] [CrossRef] [PubMed]
- Doroszkiewicz, J.; Mroczko, B. new possibilities in the therapeutic approach to Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 8902. [Google Scholar] [CrossRef]
- Odusami, M.; Maskeliūnas, R.; Damaševičius, R. An intelligent system for early recognition of Alzheimer’s Disease using neuroimaging. Sensors 2022, 22, 740. [Google Scholar] [CrossRef] [PubMed]
- Razzak, I.; Naz, S.; Ashraf, A.; Khalifa, F.; Bouadjenek, M.R.; Mumtaz, S. Mutliresolutional ensemble PartialNet for Alzheimer detection using magnetic resonance imaging data. Int. J. Intell. Syst. 2022, 37, 6613–6630. [Google Scholar] [CrossRef]
AD 67 cases | MCI 83 cases | |||
Age | Range 55–83 year | Mean ±standard deviation 69.5 ± 8.64 | Range 40–85 year | Mean ±standard deviation 71.4 ± 9.37 |
Sex | 29 male | 38 female | 35 male | 48 female |
Family history for dementia | Positive 25/67 | Negative 42/67 | Positive 38/83 | Negative 45/83 |
Correct Mini Mental State Examination (MMSE) | Range 9.9/30–26/30 | Mean ±standard deviation 22 ± 4.8 | Range 25.3/30–30/30 | Mean ±standard deviation 25.3 ± 3.04 |
MRI | Slight to severe atrophy: 15/67 cases | Slight to severe atrophy: 17/83 cases | ||
Focal/diffuse gliosis: 15/67 cases | Focal/diffuse gliosis: 16/83 cases | |||
Diffuse cerebrovascular lesions and atrophy: 19/67 cases | Diffuse cerebrovascular lesions and atrophy: 20/83 cases | |||
No significant alteration: 18/67 cases | No significant alteration: 30/83 cases |
Classification Model | Grid Search Domain | Optimal Hyper-Parameters |
---|---|---|
Classification tree | SC = {“entropy”, “gini”} MD = {1, 2, 4, 6, 8} | SC = “gini” MD = 1 |
Linear SVM | C = {0.01, 0.1, 1.0, 10.0} | C = 1.0 |
Ridge classifier | α = {0.01, 0.1, 1.0, 10.0} | α = 1.0 |
Area | Diagnosis | p-Value | Significant | |
---|---|---|---|---|
AD | MCI | |||
Prefrontal Lateral R | −2.21 ± 1.23 | −1.33 ± 1.54 | <0.001 | Yes |
Prefrontal Lateral L | −2.24 ± 1.18 | −1.24 ± 1.38 | <0.001 | Yes |
Prefrontal Medial R | −1.73 ± 1.12 | −0.94 ± 1.30 | <0.001 | Yes |
Prefrontal Medial L | −1.64 ± 0.96 | −0.92 ± 1.31 | <0.001 | Yes |
Sensorimotor R | −0.93 ± 1.52 | −0.53 ± 1.51 | 0.157 | No |
Sensorimotor L | −0.89 ± 1.37 | −0.49 ± 1.48 | 0.129 | No |
Anterior Cingulate R | −1.30 ± 0.87 | −0.74 ± 1.17 | 0.003 | No |
Anterior Cingulate L | −1.27 ± 0.82 | −0.72 ± 1.22 | 0.003 | No |
Posterior Cingulate R | −2.29 ± 1.08 | −1.31 ± 1.41 | <0.001 | Yes |
Posterior Cingulate L | −2.28 ± 1.10 | −1.21 ± 1.42 | <0.001 | Yes |
Precuneus R | −2.48 ± 1.56 | −1.44 ± 1.55 | <0.001 | Yes |
Precuneus L | −2.27 ± 1.43 | −1.35 ± 1.47 | <0.001 | Yes |
Parietal Superior R | −2.15 ± 1.35 | −1.38 ± 1.54 | 0.004 | No |
Parietal Superior L | −1.76 ± 1.37 | −1.11 ± 1.60 | 0.018 | No |
Parietal Inferior R | −2.84 ± 1.32 | −1.56 ± 1.56 | <0.001 | Yes |
Parietal Inferior L | −2.76 ± 1.30 | −1.46 ± 1.51 | <0.001 | Yes |
Occipital Lateral R | −1.47 ± 1.50 | −0.65 ± 1.48 | 0.004 | No |
Occipital Lateral L | −1.70 ± 1.39 | −0.75 ± 1.54 | <0.001 | Yes |
Primary Visual R | −0.69 ± 1.27 | −0.41 ± 1.27 | 0.225 | No |
Primary Visual L | −0.68 ± 1.19 | −0.32 ± 1.36 | 0.128 | No |
Temporal Lateral R | −2.73 ± 1.22 | −1.41 ± 1.55 | <0.001 | Yes |
Temporal Lateral L | −2.74 ± 1.10 | −1.31 ± 1.46 | <0.001 | Yes |
Temporal Mesial R | −2.13 ± 1.43 | −1.36 ± 1.89 | 0.012 | No |
Temporal Mesial L | −2.56 ± 1.56 | −1.46 ± 1.90 | <0.001 | Yes |
Cerebellum Whole | −0.49 ± 1.30 | −0.37 ± 1.26 | 0.613 | No |
Classification Model | Accuracy |
---|---|
Classification tree | 76.23% (93/122) |
Linear SVM | 76.23% (93/122) |
Ridge classifier | 74.59% (91/122) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuvoli, S.; Bianconi, F.; Rondini, M.; Lazzarato, A.; Marongiu, A.; Fravolini, M.L.; Cascianelli, S.; Amici, S.; Filippi, L.; Spanu, A.; et al. Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers. Diagnostics 2022, 12, 2425. https://doi.org/10.3390/diagnostics12102425
Nuvoli S, Bianconi F, Rondini M, Lazzarato A, Marongiu A, Fravolini ML, Cascianelli S, Amici S, Filippi L, Spanu A, et al. Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers. Diagnostics. 2022; 12(10):2425. https://doi.org/10.3390/diagnostics12102425
Chicago/Turabian StyleNuvoli, Susanna, Francesco Bianconi, Maria Rondini, Achille Lazzarato, Andrea Marongiu, Mario Luca Fravolini, Silvia Cascianelli, Serena Amici, Luca Filippi, Angela Spanu, and et al. 2022. "Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers" Diagnostics 12, no. 10: 2425. https://doi.org/10.3390/diagnostics12102425
APA StyleNuvoli, S., Bianconi, F., Rondini, M., Lazzarato, A., Marongiu, A., Fravolini, M. L., Cascianelli, S., Amici, S., Filippi, L., Spanu, A., & Palumbo, B. (2022). Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers. Diagnostics, 12(10), 2425. https://doi.org/10.3390/diagnostics12102425