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Abstract: Background: Sleep stage classification is a crucial process for the diagnosis of sleep or
sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG)
analysis, which is resource-intensive and error-prone. Various machine learning models have been
recommended to standardize and automate the analysis process to address these problems. Materials
and methods: The well-known cyclic alternating pattern (CAP) sleep dataset is used to train and test
an L-tetrolet pattern-based sleep stage classification model in this research. By using this dataset, the
following three cases are created, and they are: Insomnia, Normal, and Fused cases. For each of these
cases, the machine learning model is tasked with identifying six sleep stages. The model is structured
in terms of feature generation, feature selection, and classification. Feature generation is established
with a new L-tetrolet (Tetris letter) function and multiple pooling decomposition for level creation.
We fuse ReliefF and iterative neighborhood component analysis (INCA) feature selection using a
threshold value. The hybrid and iterative feature selectors are named threshold selection-based
ReliefF and INCA (TSRFINCA). The selected features are classified using a cubic support vector
machine. Results: The presented L-tetrolet pattern and TSRFINCA-based sleep stage classification
model yield 95.43%, 91.05%, and 92.31% accuracies for Insomnia, Normal dataset, and Fused cases,
respectively. Conclusion: The recommended L-tetrolet pattern and TSRFINCA-based model push
the envelope of current knowledge engineering by accurately classifying sleep stages even in the
presence of sleep disorders.

Keywords: L-tetrolet pattern; sleep stage expert system; multiple pooling decomposition; insomnia;
EEG signal classification
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1. Introduction

People sleep an average of eight hours a day. This shows that almost one-third of
human life is spent asleep [1–3]. Therefore, sleep quality plays an important role in our
daily life. Today, people’s sleep patterns are disrupted due to factors such as stress, intense
work, and excessive use of multimedia devices [4–6]. Sleep disorders can negatively impact
concentration, reducing task processing efficiency. Signals, such as electroencephalogram
(EEG), electrocardiogram (ECG), and electrooculogram (EOG), are evaluated in people
with sleep disorders. EEG signals are especially important for evaluating brain activity.
EEG signals are also widely used in sleep scoring and the evaluation of sleep stages [7–10].

Two different standards are used for sleep scoring. They are the American Academy of
Sleep Medicine (AASM) [11] and Rechtschaffen and Kales (R&K) [10]. The R&K standard
was widely used from 1968 to 2007. Later, the sleep scoring guide was updated as the
AASM standard [12].

A sleep cycle consists of the following six sleep phases: 1-W: wakefulness, 2–5-Stages (1–4):
from light sleep to deep sleep, 6-REM: rapid eye movement. While the R&K standard
accepts sleep stages according to this order, S3 and S4 are accepted as single stages in
the AASM standard [13]. Manual identification of these stages is common during sleep
disorders and sleep-related illness diagnoses [14]. This practice causes a high workload
for human experts. Systems that automate sleep stage scoring are widely reported in
the scientific literature [15–17]. These studies share the hypothesis that automated sleep
stage classification can reduce the workload of human experts and ensure that errors
due to environmental parameters are reduced [18–20]. However, automated sleep stage
classification is difficult for machine learning and pattern recognition because sleep EEG
datasets are heterogeneous.

We propose an L-tetrolet pattern-based sleep stage classification model that can extract
transferable knowledge from heterogeneous EEG data. The popular cyclic alternating
pattern (CAP) sleep EEG dataset was used to establish the sleep stage classification model.
This dataset contains information from both insomniac and normal subjects, such as phase
and sleep stages. Three cases were created to denote the general results of this dataset,
and these cases consist of EEG signals of the insomniac subjects, normal subjects, and both
insomniac and normal subjects, respectively. The proposed model could classify six sleep
stages with an accuracy of 95.43%, 91.05%, and 92.31% for Insomnia, Normal dataset, and
Fused cases, respectively.

Our main motivations were to propose a game-based feature extraction function and,
by applying this function, present a new EEG signal classification model. To achieve
that highly accurate learning model, a new L-tetrolet pattern and TSRFINCA-based sleep
EEG signal classification model were created. The L-tetrolet pattern for textural feature
extraction was inspired by the Tetris game. Statistical features were also extracted to enforce
the presented feature generation method. A multilevel feature generation architecture was
created using pooling functions to generate low-level and high-level features. The presented
feature selector (TSRFINCA) incorporates three stages. In the first stage, a threshold point
is determined, and feature selection is carried out by deploying this threshold point. ReliefF
is applied to the selected features in the second stage, and the positive weighted feature is
selected. In the last stage, iterative neighborhood component analysis (INCA) is applied
to the selected features, and the most meaningful features are selected. The selected final
features are utilized as the input of the cubic support vector machine (CSVM) classifier. To
summarize, we proposed (i) a new game-based feature extractor, (ii) a new decomposition
model by using four pooling techniques, and (iii) a hybrid high-performance feature
selector. These methods have been used in a feature engineering model [21–23] to obtain
high classification performance.

The novelties of our sleep stage classification model are given below as follows:

• L-tetrolet pattern: a new, Tetris-inspired, textural feature generation function;
• Statistical feature generator: created by fusing multiple pooling decomposers;
• TSRFINCA: a three-leveled hybrid and iterative feature selector.
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Contributions:

• A new feature engineering model has been created by proposing new generation
feature extraction, decomposition, and feature selection methods. The essential pur-
pose of the proposed feature engineering model is to extract the most informative
features from the used signals to obtain high classification performance with low
time complexity.

• This research presents a highly accurate EEG classification model for sleep stage detec-
tion. By deploying the presented classification model, sleep stage classification results
of the CAP sleep dataset are presented using three cases. Our proposal denotes general
high classification performance since we applied this model to three different datasets.

The CAP Sleep Database on PhysioNet [24] is widely used in scientific work on
sleep staging, and most of the published studies use the CAP database to establish the
sleep phase [25–33]. Table 1 summarizes selected studies on sleep stage detection using
different datasets.

Table 1. Literature review on sleep stage detection.

Studies Method Classifier Dataset Channels The Results (%)

Abbasi et al. [34] Convolutional
Neural Network Ensemble Collected data Multiple channels

Sensitivity: 78.44
Specificity: 96.49
Accuracy: 94.27

Li et al. [35]
Multi-Layer
Convolutional
Neural Networks

Auxiliary SHHS dataset [36] C3-A2, C4-A1,
EOG Accuracy: 85.12

Zaidi and Farooq
[37]

Fourier
Synchrosqueezed
Transform Features

Support vector
machine DREAMS dataset Cz-A1 Accuracy: 82.60

Sors et al. [38]
Deep
Convolutional
Neural Network

Convolutional
Neural Network

The Sleep Heart
Health Study
dataset [39]

C4-A1, C3-A2 Accuracy: 87.00

Goshtasbi et al.
[40]

Convolutional
Neural Network Softmax SHHS dataset [36] C4-A1, C3-A2 Accuracy: 81.30

Kappa: 74.00

Shahbakhti et al.
[41]

Nonlinear
Analysis

Linear
discriminant
analysis

DREAMS dataset
[42]

Fp1, O1, and CZ
or C3

Accuracy: 92.50
Sensitivity: 89.90
Specificity: 94.50

Zhao et al. [43] SleepContextNet Softmax
1. SHHS dataset
[36]
2. CAP dataset
[24,44]

C4-A1 and C3-A2
1. Accuracy: 86.40
Kappa: 81.00
2. Accuracy: 78.80
Kappa: 71.00

Eldele et al. [45]

Multi-Resolution
Convolutional
Neural Network,
Adaptive Feature
Recalibration

Softmax SHHS dataset [36] C4-A1 Accuracy: 84.20
Kappa: 78.00

Yang et al. [46]

One-Dimensional
Convolutional
Neural Network,
Hidden Markov
model

One-Dimensional
Convolutional
Neural Network,
Hidden Markov
model

DRM-SUB dataset
[42] Pz-Oz Accuracy: 83.23

Kappa: 76.00

To support our novelty claims and to substantiate the key contributions, we have
structured the manuscript as follows. The next section introduces the dataset used to design
and test the sleep stage classification model. Section 3 outlines the processing methods that
were used to implement and test the proposed sleep stage detection model. The model was
evaluated with a set of experiments. Section 4 specifies these experiments and provides the
corresponding results. The subsequent discussion section relates our results to the wider
sleep research area. We also list limitations and future work before concluding the paper.

2. Material and Method
2.1. Material

The CAP sleep stage dataset is a widely used benchmark dataset. The dataset consists
of EEG recordings during the Non-REM (NREM) sleep phase. These data were obtained
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from 108 polysomnographic patients registered at the Sleep Disorders Center of the Os-
pedale Maggiore of Parma in Italy [24]. The data were recorded as .edf files [47]. Sleep
data comprises at least three EEG channels, two EOGs, submentalis muscle EMG, bilateral
anterior tibial EMG, respiratory signals, and ECG. In total, 16 of the subjects were healthy,
and 92 were pathological. Table 2 shows the neurological status and number of subjects [44].
The age range of the subjects is 14–82, and the average age is 45. In total, 61% of the subjects
were men (66 people), and 38% were women (42 people).

Table 2. Neurological status and number of subjects.

The Neurological Status F M Age: Min–Max
(Average)

Number of
Patients

No pathology (controls/normal) 9 7 23–42 (32.18) 16
Nocturnal frontal lobe epilepsy (NFLE) 19 21 14–67 (30.27) 40
REM behavior disorder (RBD) 3 19 58–82 (70.72) 22
Periodic leg movements (PLM) 3 7 40–62 (55.10) 10
Insomnia 5 4 47–82 (60.88) 9
Narcolepsy 3 2 18–44 (31.60) 5
Sleep-disordered breathing (SDB) - 4 65–78(71.25) 4
Bruxism - 2 23–34 (28.50) 2
Total number of pathologies 33 59 14–82 (49.19) 92

F: female, M: male.

The CAP Sleep Database has been downloaded from Physionet [48]. Expert neurolo-
gists labeled these sleep data according to Rechtschaffen & Kales (R&K) rules using the
sleep stage (W = waking, S1–S4 = sleep stages, R = REM, MT = body movements), time,
duration, signal type data in the tag files. Each label classifies a unique (non-overlapping)
30-s data window. Data start time, hypnogram start time, and frequency information are
needed for labeling. This information was obtained from files with EDF extensions. Using
the Matlab 2019b program, the .edf files were read, and all recorded channels were listed.
Of these channels, only the F4-C4 channels were used. Due to the absence of F4-C4 (these
channels are commonly used EEG channels [43,49,50]. Therefore, we used these channels.)
channels, some of the normal recordings were ignored.

2.2. Method

This research presents a new, handcrafted feature-based EEG signal classification
model. Feature creation, feature selection, and classification are the main phases of the
presented model. The feature creation step incorporates both textural and statistical meth-
ods. Maximum pooling was used to create decomposed signals. By using the created
decomposed signals, features have been extracted at both low and high levels. Specifically,
we used absolute pooling, average pooling, and maximum absolute pooling. In the feature
selection phase, a three leveled selector (TSRFINCA) was employed. In the classification
phase, CSVM was deployed as a classifier. The general steps of this model are given below.

Step 0: Load EEG signals.
Step 1: Apply absolute average pooling, average pooling, and absolute maximum

pooling to obtain M1 (absolute average pooling), M2 (average pooling), and M3 (abso-
lute maximum pooling) signals. Herein, we used non-overlapping blocks with a length
of two to create decompressed signals. In the M1 function, the absolute value of the
used non-overlapping block was used as the decompressed signal. In M2 and M3, we
used the maximum of the absolute block values and average values of the used non-
overlapping blocks for decomposition. Equations (3)–(8) provide a mathematical definition
of these functions.

Step 2: Extract 512 textural features from each signal (raw EEG signal and the generated
M1, M2, and M3 signals). In this step, 4 × 512 = 2048 features have been generated.
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Step 3: Generate 36 statistical features from each signal and textural features by using
18 statistical moments. The used 18 statistical moments have been applied to the raw signal
and the generated textural features in Step 2.

Two main feature extraction methodologies, namely, e-textural and statistical feature
extraction, were used for handcrafted feature extraction. By deploying our proposed L-
tetrolet pattern, textural features were generated. Statistical features were extracted using
statistical moments to enforce our feature generation phase.

Step 4: Apply maximum pooling to the EEG signal and update signal. This step
defines the decomposition level.

Step 5: Repeat Steps 1–4 five times. Herein, a multilevel feature generator is created.
By using handcrafted feature extractors, only low-level features have been generated. To
create high-level features, a multilevel feature extraction model was created. Equation (1)
provides a mathematical definition of the maximum pooling operator.

D = MaxP(EEG) (1)

D(j) = max([EEG(i) EEG(i + 1)]), j ∈
{

1, 2, . . . ,
∣∣∣∣ L2
∣∣∣∣}, i ∈ {1, 3, . . . , L− 1} (2)

Herein, MaxP(.) defines the maximum pooling function, D is decomposed signal, L is
the length of the used EEG signal (EEG), and max(.) is maximum value finding function.

Step 6: Fuse the generated features.
Step 7: Summarize each feature individually.
Step 8: Determine the threshold point to eliminate redundant features.
Step 9: Apply ReliefF [51] to features and generate a weight for each feature.
Step 10: Choose positive ReliefF [51] weighted features.
Step 11: Apply INCA [52] to the positive weighted feature by selecting ReliefF in

Step 10.
Step 12: Forward the selected features to the classifier.
The twelve steps detailed above define the proposed decision support model. Steps 1–6

represent the L-tetrolet feature generation. Steps 8–11 denote TSRFINCA feature selection,
and Step 12 demonstrates the classification phase. Figure 1 shows the proposed L-tetrolet
pattern-based sleep stage classification model flow diagram. The next sections introduce
the individual model phases in detail.
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2.2.1. L-Tetrolet Pattern and Statistical Features Based Multileveled Feature
Generation Method

Feature generation/extraction is the first phase of the proposed decision support
method. Statistical and textural features were generated in this phase. Linear and nonlinear
statistical moments were used to generate statistical features, and 18 statistical features
were generated by using these moments. In the textural feature generation phase, we
present a new microstructure that was inspired by the Tetris game. The letter ‘L’ (L-tetrolet)
of the Tetris game was employed for pattern identification [53,54]. Therefore, the presented
textural feature generation function is called an L-tetrolet pattern. The L-tetrolet pattern
generates 512 features from a one-dimensional signal. Statistical features were also extracted
from the generated textural features by deploying the 18 moments.

The primary objective of the presented feature generation model is to create low-level
and high-level features. Therefore, a multileveled/multilayered method was employed
to generate these features. A pooling-based decomposer was utilized as a decomposition
method. By deploying four pooling functions – absolute average pooling, absolute maxi-
mum pooling, average pooling, and maximum pooling –, a five leveled feature generation
method was created. The steps of the presented feature generation method are given below.

Step 1: Employ average, absolute maximum, and absolute average pooling to de-
compose the raw EEG signal into M1, M2, and M3. Here, 2 size non-overlapping blocks
were used.

M1 = avp(EEG) (3)

M2 = avpab(EEG) (4)

M3 = maxab(EEG) (5)

avp(EEG) = M1(j) =
EEG(i) + EEG(i + 1)

2
, i = {1, 3, . . . , Ln− 1}, j =

{
1, 2, . . . ,

∣∣∣∣ Ln
2

∣∣∣∣} (6)

avpab(EEG) = M2(j) =
|EEG(i)|+ |EEG(i + 1)|

2
, i = {1, 3, . . . , Ln− 1} (7)

maxab(EEG) = M3(j) =

{
|EEG(i)|, |EEG(i)| ≥ |EEG(i + 1)|
|EEG(i + 1)|, |EEG(i)| < |EEG(i + 1)|

,

i = {1, 3, . . . , Ln− 1}
(8)

where avp(.), avpab(.), maxpab(.) define average pooling, absolute average pooling, and
absolute maximum pooling. EEG denotes the one-dimensional measurement signal, Ln
represents the signal length. |.| is absolute function.

Step 2: Generate features from the generated M1, M2, M3, and the raw one-dimensional
signal (EEG). In this step, both statistical moments and the presented L-tetrolet pattern
were used.

f st = st(EEG) (9)

f T = L− tetrolet(EEG) (10)

f stT = st(L− tetrolet(EEG)) (11)

In these Equations (see Equations (7) and (8)) statistical feature generation function
(st(.)) and L-tetrolet pattern (L − tetrolet(.)) are defined. fst represents 18 statistical features,
fT is 512 textural features and fstT is the statistical features of the generated textural features.
Table 3 lists the statistical moments that were used for feature extraction [55].

Here, the used 12th, 16th, 17th, and 18th moments extract nonlinear statistical features.
The presented L-tetrolet pattern was used to extract textural features. The steps of this

function are detailed as follows:
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Table 3. The statistical moments used for the generation of statistical features.

Num Equation Num Equation

1 1
Ln

Ln
∑

j=1
EEG(j) 10 max(EEG)−median(EEG)

2
√

∑Ln
i=1(EEG(i)− 1

Len ∑Len
j=1 EEG(j))

Ln− 1
11 1

Ln

Ln
∑

j=1
|EEG(j)|

3 max(EEG) 12 −
Ln
∑

j=1
log(prb(EEG(j)))2

4 min(EEG) 13 max(|EEG|)−min(|EEG|)
5 median(EEG) 14 min(|EEG|)

6 1
Ln

(
Ln
∑

i=1
(EEG(i)− 1

Ln

Ln
∑

j=1
EEG(j))

)2
15

√√√√∑Ln
i=1(|EEG(i)| − 1

Ln ∑Ln
j=1|EEG(j)|)

Ln− 1
7 1

Ln

Ln
∑

j=1
EEG(j)2 16 −

Ln
∑

j=1
prb(EEG(j)) ∗ log(prb(S(j)))

8 1
Ln

Ln
∑

i=1

∣∣∣∣∣EEG(i)− 1
Ln

Ln
∑

j=1
EEG(j)

∣∣∣∣∣ 17 Ln
∑

j=1
EEG(j)2

9 max(EEG)−min(EEG) 18 −
Ln
∑

j=1
prb(EEG(j))2 ∗ log(prb(EEG(j)))2

where prb(.) defines probability.

Step 2.1: Divide the used one-dimensional signals into overlapping blocks/windows
(blk) with a size of 16.

blk = EEG(i + t− 1), i = {1, 2, . . . , Ln− 15}, t = {1, 2, . . . , 16} (12)

Step 2.2: Create a matrix (mtr) with a size of 4 × 4 using the constructed block.

mtr(k, l) = blk(t), k = {1, 2, 3, 4}, l = {1, 2, 3, 4} (13)

Figure 2 depicts the resulting 4 × 4 matrix.
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Figure 2. The 4 × 4 matrix that was created for applying the proposed L-tetrolet pattern.

Step 2.3: Use two L-tetrolet based patterns by employing the 4 × 4 sized matrix.
Figure 3 shows the L-tetrolet patterns that were used for feature generation.

Step 2.4: Extract bits using P1, P2, and binary feature generation function S(., .). These
patterns (P1 and P2) are separately applied to the generated matrix. For P1 and P2, the
used a, b, c, and d values are given in Equation (14) according to Figures 2 and 3.
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c1(1) c2(1)
c1(2) c2(2)
c1(3) c2(3)
c1(4) c2(4)
d1(1) d2(1)
d1(2) d2(2)
d1(3) d2(3)
d1(4) d2(4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V1 V1
V5 V5
V9 V6
V10 V7
V4 V8
V3 V4
V2 V3
V6 V2
V16 V9
V12 V13
V8 V14
V7 V15
V13 V16
V14 V12
V15 V11
V11 V10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(14)

Herein, a1, b1, c1, d1 are belonging to P1 pattern and a2, b2, c2, d2 are belonging to P2
pattern. By using these values, feature extraction process has been conducted. The bit
generation phase has been given below.

bitt(k) = S
(
at(k), ct(k)

)
, k = {1, 2, 3, 4}, t = {1, 2} (15)

bitt(k + 4) = S
(
bt(k), dt(k)

)
(16)

S(par1, par2) =

{
0, par1− par2 < 0

1, par1− par2 ≥ 0
(17)

where par1 and par2 are the first and second parameters of the binary feature generation
(signum) function. Equations (15)–(17) were deployed to both P1 and P2, and eight bits
were extracted from each pattern. The extracted bits are named bit1 and bit2 (they are
shown using bitt in Equations (15) and (16)). The length of each bit array is equal to
eight. By deploying these bits, two novel signals were created for feature generation,
and these signals were named the first map (map1) and the second map signal (map2),
respectively. Binary to decimal conversion was used to create these signals, as shown in
Equations (18) and (19).
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Step 2.5: Create map signals employing the generated bits.

map1(i) =
8

∑
k=1

bit1(k) ∗ 2k−1 (18)

map2(i) =
8

∑
k=1

bit2(k) ∗ 2k−1 (19)

Step 2.6: Extract histograms of the map1 and map2 signals. Each histogram has
28 = 256 values.

hist1 = δ(map1) (20)

hist2 = δ(map2) (21)

where hist1 and hist2 are histograms of the first and second map signals, respectively. δ(.)
function is defined to extract histogram.

Step 2.7: Create a feature vector ( f eat) with a length of 512 by using hist1 and hist2.

f eat(h) = hist1(h), h = {1, 2, . . . , 256} (22)

f eat(h + 256) = hist2(h) (23)

Equations (19) and (20) define the feature concatenation process.
The given steps above (see Steps 2.1–2.7) are defined our proposed L-tetrolet pattern.
Step 3: Merge the generated textural, statistical, and statistical textural features of each

signal. For a one-dimensional signal, 512 + 18 + 18 = 548 features were generated. In a level,
the defined feature generation functions were applied to four signals (M1, M2, M3, and
raw signal). Therefore, these functions generate 548 × 4 = 2192 features at each level.

Step 4: Decompose the one-dimensional signal (EEG) by deploying the maximum
pooling decomposer. This step defines signal updating.

Step 5: Repeat Steps 1–4 five times utilizing decomposed signal input. This constitutes
the multilevel feature extractor.

Step 6: Merge generated features in each level and obtain 2192 × 5 = 10,960 features
from a one-dimensional signal.

2.2.2. Threshold Selection Based Relieff and Iterative Neighborhood Component Analysis

A three-layered feature selection model was used in this phase, and these layers were
threshold-based feature selection, positive ReliefF weighted features selection, and INCA
selection processes. The primary objectives of this feature selector were the following:

• Present an effective feature selector;
• Use advantages of the three feature selection methods together;
• Select the most appropriate features automatically.

Figure 4 shows a block diagram of the proposed TSRFINCA selector.
The following steps introduce the TSRFINCA functionality:
Step 1: Normalize the generated features (X) individually.

Xnorm(:, i) =
X(:, i)−min(Xnorm(:, i))

max(Xnorm(:, i))−min(Xnorm(:, i))
, i = {1, 2, . . . , 10960} (24)

where Xnorm represents normalized features by deploying min-max normalization.
Step 2: Deploy threshold-based feature selection. In this study, we used zero as

threshold (β). The mathematical descriptions of this method are given below.

tpl(j) =
D

∑
d=1

Xnorm(d, j), j = {1, 2, . . . , 10960} (25)
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X1(:, cnt) = Xnorm(:, j), cnt = cnt + 1, i f tpl(j) > β (26)

where tpl means summarization of the features, X1 is the selected features in the first layer,
and cnt is a counter.

Step 3: Employ ReliefF to X1 and generate ReliefF weights (wRF).
Step 4: Eliminate negative weighted features to obtain second layer features (X2).

X2(:, cnt) = X1(:, j), cnt = cnt + 1, i f wRF(j) > 0 (27)

Step 5: Apply INCA to X2 and obtain the final features (X3).

Diagnostics 2021, 11, x FOR PEER REVIEW 10 of 21 
 

 

Step 4: Decompose the one-dimensional signal (𝐸𝐸𝐺) by deploying the maximum 
pooling decomposer. This step defines signal updating.  

Step 5: Repeat Steps 1–4 five times utilizing decomposed signal input. This consti-
tutes the multilevel feature extractor.  

Step 6: Merge generated features in each level and obtain 2192 × 5 = 10,960 features 
from a one-dimensional signal. 

2.2.2. Threshold Selection Based Relieff and Iterative Neighborhood Component Analy-
sis 

A three-layered feature selection model was used in this phase, and these layers were 
threshold-based feature selection, positive ReliefF weighted features selection, and INCA 
selection processes. The primary objectives of this feature selector were the following: 
• Present an effective feature selector; 
• Use advantages of the three feature selection methods together; 
• Select the most appropriate features automatically. 

Figure 4 shows a block diagram of the proposed TSRFINCA selector. 

 
Figure 4. Block diagram of the TSRFINCA model. 

The following steps introduce the TSRFINCA functionality: 
Step 1: Normalize the generated features (𝑋) individually. 𝑋(: , 𝑖) = 𝑋(: , 𝑖) − 𝑚𝑖𝑛൫𝑋(: , 𝑖)൯𝑚𝑎𝑥൫𝑋(: , 𝑖)൯ − 𝑚𝑖𝑛൫𝑋(: , 𝑖)൯ , 𝑖 = {1,2, … ,10960} (24) 

where 𝑋 represents normalized features by deploying min-max normalization. 
Step 2: Deploy threshold-based feature selection. In this study, we used zero as 

threshold (β). The mathematical descriptions of this method are given below. 𝑡𝑝𝑙(𝑗) =  𝑋(𝑑, 𝑗), 𝑗 = {1,2, … ,10960}
ௗୀଵ  (25) 𝑋ଵ(: , 𝑐𝑛𝑡) = 𝑋(: , 𝑗), 𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1, 𝑖𝑓 𝑡𝑝𝑙(𝑗) > 𝛽 (26) 

where 𝑡𝑝𝑙 means summarization of the features, 𝑋ଵ is the selected features in the first 
layer, and 𝑐𝑛𝑡 is a counter. 

Step 3: Employ ReliefF to 𝑋ଵ and generate ReliefF weights (𝑤ோி). 
Step 4: Eliminate negative weighted features to obtain second layer features (𝑋ଶ). 𝑋ଶ(: , 𝑐𝑛𝑡) = 𝑋ଵ(: , 𝑗), 𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1, 𝑖𝑓 𝑤ோி(𝑗) > 0 (27) 
Step 5: Apply INCA to 𝑋ଶ and obtain the final features (𝑋ଷ).  

Figure 4. Block diagram of the TSRFINCA model.

INCA is an iterative selector, and it can select features of various sizes and hence it
is applicable to a wide range of problem solutions. In this work, we progress now to the
classification algorithm that was used for sleep stage detection.

2.2.3. Classification

Classification is the last phase of the presented sleep stage classification model. Here,
we used a CSVM classification algorithm. The hyper-parameters of this classifier are given
below as follows:

• Training and testing method: 10-fold cross-validation;
• Kernel: Third-degree polynomial order (Cubic);
• Box constraint level (C value): One;
• Multiclass method: One-vs-one.

3. Results
3.1. Experimental Setup

The CAP dataset was downloaded from Physionet to train and test the presented
L-tetrolet pattern and TSRFINCA-based sleep stage classification model. This research
focused on the sleep stages of insomniacs and normal subjects. The sleep stage datasets
are generally heterogeneous. Therefore, high classification rates do not reflect the model
performance. A balanced EEG dataset has been created to overcome this problem by
randomly selecting EEG signals from each subject. By creating these three datasets, the
following three cases were defined, and these are explained below:

Case 1: This dataset was collected from the insomnia subjects. It includes the following
six classes: wake, stage 1, stage 2, stage 3, stage 4, and REM. This dataset contains 1356 EEG
signals (each class has 226 EEG signals). F4-C4 channels have been used in this case.
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Case 2: This case uses EEG signals from normal subjects. A homogenous dataset was
created in this case. There are 1698 EEG signals in this dataset (each class has 283 EEG
signals). F4-C4 channels have been used in this case.

Case 3: In this case, a merged dataset is used. This dataset was created by merging datasets
of Cases 1–2. Therefore, it contains 3054 EEG signals (each class has 283 + 226 = 509 EEG
signals). F4-C4 channels have been used in this case.

These three balanced datasets were used to define three distinct sleep stage identifi-
cation tasks. The MATLAB (2020a) programming environment was used to calculate test
results and implement the proposed decision support model. The used functions were
named main, L-tetrolet pattern, statistical feature generator, TSRFINCA, and classification.
In the main function, the EEG signals were read, and other functions were called in the
main function to classify sleep stages. The proposed model was implemented on a basic
desktop computer, and parallel programming or hardware acceleration was not used.

3.2. Results

The model quality was obtained by assessing the classification results according to the
rules of 10-fold cross-validation. Here, six classification results were presented. Accuracy,
F1-score, average precision, and geometric mean results were calculated. Table 4 lists the
calculated results for each case.

Table 4. The calculated performance results of the presented L-tetrolet pattern and TSRFINCA model.

Case Accuracy F1-Score Average Precision Geometric Mean Sensitivity Specificity

Case 1 95.43% 95.42% 95.46% 95.36% 90.27 98.94

Case 2 91.05% 90.01% 90.08% 89.95% 86.22 97.17

Case 3 92.31% 92.29% 92.29% 92.23% 87.03 97.96

As can be seen from Table 4, the recommended method yielded 95.43%, 91.05%, and
92.31% classification accuracies for Case 1, Case 2, and Case 3, respectively. A 10-fold
cross-validation was used to calculate these results. Table 5 details the fold-by-fold results.

Table 5. Fold-by-fold accuracies in % for the three cases.

Fold Case 1 Case 2 Case 3

Fold-1 86.03 80.59 84.26

Fold-2 97.06 94.12 92.46

Fold-3 100.0 98.24 95.74

Fold-4 88.97 93.53 93.77

Fold-5 97.06 85.29 87.87

Fold-6 94.85 95.88 95.08

Fold-7 97.06 86.47 91.80

Fold-8 100.0 95.88 98.36

Fold-9 98.53 90.00 91.48

Fold-10 94.70 90.48 92.23

Overall 95.43 91.05 92.31

3.3. Computational Complexity Analysis

Computational complexity is a crucial property that determines the practicality of
the proposed model. A lower computational complexity is more resource-efficient, which
translates into less energy usage and lower cost. The presented model consists of three al-
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gorithms. Therefore, the time complexities of these algorithms should be calculated [56,57].
Table 6 introduces these calculations in detail.

Table 6. The time complexity calculation of the presented model.

Phase Steps Computational Complexity

Feature generation

Pooling-based decomposition O(ndlognd)
Statistical feature generation O(ndlognd)
Textural feature generation (L-tetrolet pattern) O(ndlognd)
Statistical features extraction of the textural features O(ndlognd)

TSRFINCA
Threshold feature selection O(kd)
ReliefF-based selection O(kd)
INCA O

(
Ik3d

)
Classification SVM O

(
k3d
)

Total O
(
4ndlognd + 2kd + Ik3d + k3d

) ∼= O
(
ndlognd + Ik3d

)
In this table (see Table 6), the used coefficients are given as follows. n is the length

of the signal, d defines the number of observations, k represents the time complexity
coefficient of the used feature selection and classification models, and I defines the number
of iterations for iterative feature selection.

Feature generation: We have used a multileveled feature generation in this study. In
each level, a maximum pooling decomposer was used to halve the signal length. The used
feature generation functions (L-tetrolet pattern and statistical feature generator) have low
computational complexity (O(n)). Therefore, the time complexity of this phase is calculated
as O(ndlognd). Here, n is the size of the EEG signal, and d represents the number of
EEG signals.

Feature selection: The TSRFINCA algorithm has three layers. The threshold-based
feature selection model is a simple and basic model. Therefore, the time complexity of it is
calculated as O(kd). Here, k is defined as the number of features. In this phase, INCA is
the most complex feature selector and O

(
Ik3d

)
is found as the computational complexity.

Here, I is the number of iterations because it is an iterative feature selector, and in each
iteration, the loss value is calculated using the SVM classifier.

Classification: A CSVM classifier, with a time complexity of O
(
k3d
)
, was employed

for classification.
As can be seen from the time complexity analysis (see Table 6), the proposed model

has a low time burden. The deep learning models have an exponential time burden, but
this model has a linear time burden. Therefore, there is no need to use extra hardware
to implement our proposal. Furthermore, this model can extract features at low and
high levels.

4. Discussion

As stated in Sect. 3, the presented model has the following three fundamental phases:
feature generation, TSRFINCA-based feature selection, and classification. The presented
model uses four pooling methods to overcome the routing problem of pooling. For instance,
the maximum pooling only routes peak values. We proposed a multiple pooling-based
decomposition model to overcome the routing problem. Both textural and statistical feature
generators have been utilized for feature extraction to create handcrafted features. By
using these feature extractors and the proposed multiple pooling function, a multileveled
feature extraction method has been presented to generate features at both low and high
levels. The presented three-layered feature selection function—TSRFINCA—selected the
top informative features from the used datasets. In this research, we have used three
datasets. The presented TSRFINCA selects a variable-sized feature vector for each dataset.
The sizes of the optimal feature sets were found to be 644, 711, and 188 for Case 1, Case 2,
and Case 3, respectively. Figure 5 documents the feature selection process.
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In this figure (see Figure 5), a number of features and loss values are demonstrated.
The proposed feature selector is an iterative feature selector and it calculates loss values
of the 901 (initial value and end value of the loop are 100 and 1000, respectively; thus,
901 = 1000 − 100 + 1 feature vectors have been evaluated for each dataset) feature vectors.
The optimal feature vectors have been selected using minimum loss values. These optimal
features were forwarded to the CSVM classifier. This classifier was utilized as both a loss
value generator (calculating misclassification rates of the chosen 901 feature vectors) and a
classifier. Figure 6 shows a confusion matrix for each case.
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Figure 6. Confusion matrix for each case.

The confusion matrices in Figure 6 denote the case-specific results.
To select the optimal classifiers, features of Case 3 were tested on the shallow variable

classifiers. These were decision tree (DT) [58], linear discriminant (LD) [59], Naïve Bayes
(NB) [60], linear SVM (LSVM) [61], CSVM [62], quadratic SVM (QSVM) [62], k nearest
neighbors (kNN) [63] and bagged tree (BT) [64]. Figure 7 introduces the accuracies achieved
with the individual classifiers.
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Figure 7. Classification accuracies of the classifier. Here, the presented L-tetrolet and maximum
pooling-based feature generation method is applied to Case 3. The first and second layers of the
TSRFINCA are applied to these features to eliminate the redundant feature, and NCA selected
1000 features for tests.

Figure 6 demonstrates that the best classifier is CSVM. Therefore, CSVM is selected as
both an error generator and a classifier.

We have compared our model with other sleep stage classification methods. Table 7
lists the comparison results.
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Table 7. The comparison results.

Study Dataset Accuracy Result (%)

Bajaj and Pachori [65] Sleep-EDF dataset [24,66] 88.47 (Pz-Oz)
Hassan et al. [67] Sleep-EDF database [24,66] 90.69 (Pz-Oz)

Jiang et al. [68] 1. Sleep-EDF database [24,66]
2. Sleep-EDF Expanded database [24]

89.40 (Fpz-Cz)
88.30 (Pz-Oz)

Kanwal et al. [69] Sleep-EDF database [24,66] 93.00 (Pz-Oz, PFz-Cz, EOG)
Basha et al. [70] Sleep-EDF database [24,66] 90.20 (PFz-Cz)

Jadhav et al. [71] Sleep-EDF Expanded database [24] 85.07 (PFz-Cz)
82.92 (Pz-Oz)

Michielli et al. [72] Sleep-EDF database [24,66] 90.80 (Pz-Oz)

Huang et al. [73] Sleep-EDF Expanded database [24] 84.60 (Fpz-Cz)
82.30 (Pz-Oz)

Kim et al. [74] CAP Sleep Database on PhysioNet [24] 73.60 (unspecified)
Shanin et al. [75] Collected data 92.00 (C3-C4)
Karimzadeh et al. [76] Sleep-EDF dataset [24,66] 88.97 (Pz-Oz)

Seifpour et al. [77] Sleep-EDF dataset [24,66] 90.60 (Fpz-Cz)
88.60 (Pz-Oz)

Sharma et al. [3] Sleep-EDF dataset [24,66] 91.50 (Pz-Oz)

Zhou et al. [78] 1. Sleep-EDF database [24,66]
2. Sleep-EDF Expanded database [24]

1. 91.80 (Fpz-Cz)
2. 85.30 (Pz-Oz)

Zhang et al. [79] 1. UCD dataset [24]
2. MIT-BIH polysomnographic database [24]

1. 88.40 (C3-A2 + C4-A1)
2. 87.60 (C3-A2 + C4-A1)

Liu et al. [80] Sleep-EDF Expanded database [24] 84.44 (Fpz-Cz + Pz-Oz)
Cai et al. method [81] Sleep-EDF database [24,66] 87.21 (Fpz-Cz)
Loh et al. [82] CAP Sleep Database [24,44] 90.46 (C4-A1/C3-A2)
Sharma et al. [49] CAP Sleep Database [24,44] 85.10 (F4-C4 + C4-A1)
Dhok et al. [83] CAP Sleep Database [24,44] 87.45 (C4-C1/C3-A2)
Sharma et al. [84] CAP Sleep Database [24,44] 83.30 (C4-A1 + F4-C4)

The proposed method CAP Sleep Database on PhysioNet [24]
Case1: 95.43 (F4-C4)
Case2: 91.05 (F4-C4)
Case3: 92.31 (F4-C4)

Table 7 shows the success of the presented L-tetrolet pattern and TSRFINCA-based model.
Moreover, prior presented models generally used a single dataset, but we tested our model on
three balanced/homogenous datasets. Our proposal attained over 90% classification accuracy
for all cases. These findings clearly demonstrate our success. The advantages of this model
are the following:

• A new game-inspired feature generation model is presented, and the effectiveness of
this approach is established through EEG-based sleep stage classification;

• To overcome the routing problem of the pooling method, a multiple pooling decomposer-
based feature generation strategy was used;

• A three-layered feature selector is presented;
• By applying these methods and CSVM, a highly accurate sleep stage classification

model is presented;
• The recommended model outperformed;
• The proposed model can be applied to a computer with basic system configurations.

The drawbacks of this research are the following:

• The presented TSRFINCA is a hybrid and iterative feature selector, but the computa-
tional complexity is high. Moreover, we have used a shallow classifier. In this work,
deep classifiers can be used to increase the classification ability, or a metaheuristic
optimization model can be used to tune the hyperparameters of the used classifier;

• The datasets used are small. Therefore, when we used one dataset for training and the
other datasets for testing, we achieved a classification accuracy of about 50%. Since
these EEG signals have sick subjects (each case defines a disorder).
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Diagnoses of sleep or sleep-related diseases are time-consuming because the diag-
nostic pathway relies on manual signal analysis. A new EEG-based sleep stage detec-
tion/monitoring system can be developed soon to help medical professionals with diagno-
sis. Figure 8 denotes the intended intelligent monitoring system.
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This research presents a new game-based feature generation function. The L-tetrolet
pattern is inspired by the Tetris game. Other game-based feature generation or decomposi-
tion models can be presented in future studies, and the recommended model can be applied
to other one-dimensional signals to solve classification problems. In the future, we plan
to develop a game-based deep learning model for one-dimensional signal classification,
which might replace or augment recurrent neural networks.

5. Conclusions

In this research, we propose a new feature engineering model. The essential goal of
that model is to extract the most significant features from EEG signals. The model is based
on a new game-based feature extraction function, named L-tetrolet, which extracts textural
feature information. To generate high-level features, a multileveled feature extraction
structure is presented using a combination of four pooling techniques. This approach fuses
hybrid approximation and the advantages of pooling techniques. In the feature selection
phase, a three-layered hybrid feature selector has been used, and the selected features
have been classified using a shallow classifier. Using PhysioNet, three different sleep EEG
datasets were created, each containing six groups. Our proposed L-tetrolet-based model
attained >90% overall classification accuracy on these datasets. Moreover, our proposal
reached 95.43% classification accuracy in Case 1. These results were compared to other
recent models, showing that our model outperforms all the previous methods used for
sleep stage detection based on signals from the CAP database. These findings demonstrated
that our model achieved satisfactory classification performance and time complexity for
solving sleep stage classification problems using EEG signals.

In the future, we plan to accomplish the following:

- Propose new game-based feature extraction functions;
- Purpose self-organized feature engineering models;
- Propose a new generation of pooling/decomposition methods by using quantum

computing and superposition;
- Develop a new sleep stage classification application, which will be used in medical centers.
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Eng. Archit. Gazi Univ. 2019, 34, 2173–2185. [CrossRef]

56. Chivers, I.; Sleightholme, J. An introduction to Algorithms and the Big O Notation. In Introduction to Programming with Fortran;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 359–364.

57. Rubinstein-Salzedo, S. Big o notation and algorithm efficiency. In Cryptography; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 75–83.

58. Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674.
[CrossRef]

59. Kim, K.S.; Choi, H.H.; Moon, C.S.; Mun, C.W. Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant
analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 2011, 11, 740–745.
[CrossRef]

60. Rish, I. An empirical study of the naive Bayes classifier. In Proceedings of the IJCAI 2001 Workshop on Empirical Methods in
Artificial Intelligence, Seattle, WA, USA, 4–10 August 2001; pp. 41–46.

61. Chang, Y.-W.; Lin, C.-J. Feature ranking using linear SVM. In Proceedings of the Causation and Prediction Challenge, Hong-Kong,
China, 15 December 2007–30 April 2008; pp. 53–64.

62. Jain, U.; Nathani, K.; Ruban, N.; Raj, A.N.J.; Zhuang, Z.; Mahesh, V.G. Cubic SVM classifier based feature extraction and emotion
detection from speech signals. In Proceedings of the 2018 International Conference on Sensor Networks and Signal Processing
(SNSP), Xi’an, China, 28–31 October 2018; pp. 386–391.

63. Horton, P.; Nakai, K. Better Prediction of Protein Cellular Localization Sites with the it k Nearest Neighbors Classifier. In
Proceedings of the Ismb, Halkidiki, Greece, 12–15 June 1997; pp. 147–152.

64. Widasari, E.R.; Tanno, K.; Tamura, H. Automatic Sleep Disorders Classification Using Ensemble of Bagged Tree Based on Sleep
Quality Features. Electronics 2020, 9, 512. [CrossRef]

65. Bajaj, V.; Pachori, R.B. Automatic classification of sleep stages based on the time-frequency image of EEG signals. Comput. Methods
Programs Biomed. 2013, 112, 320–328. [CrossRef]

66. Kemp, B.; Zwinderman, A.H.; Tuk, B.; Kamphuisen, H.A.; Oberye, J.J. Analysis of a sleep-dependent neuronal feedback loop: The
slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 2000, 47, 1185–1194. [CrossRef]

67. Hassan, A.R.; Bhuiyan, M.I.H. Computer-aided sleep staging using complete ensemble empirical mode decomposition with
adaptive noise and bootstrap aggregating. Biomed. Signal Process. Control 2016, 24, 1–10. [CrossRef]

68. Jiang, D.; Lu, Y.-n.; Yu, M.; Yuanyuan, W. Robust sleep stage classification with single-channel EEG signals using multimodal
decomposition and HMM-based refinement. Expert Syst. Appl. 2019, 121, 188–203. [CrossRef]

69. Kanwal, S.; Uzair, M.; Ullah, H.; Khan, S.D.; Ullah, M.; Cheikh, F.A. An image based prediction model for sleep stage identification.
In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019;
pp. 1366–1370.

70. Basha, A.J.; Balaji, B.S.; Poornima, S.; Prathilothamai, M.; Venkatachalam, K. Support vector machine and simple recurrent
network based automatic sleep stage classification of fuzzy kernel. J. Ambient Intell. Humaniz. Comput. 2020, 7191860. [CrossRef]

71. Jadhav, P.; Rajguru, G.; Datta, D.; Mukhopadhyay, S. Automatic sleep stage classification using time–frequency images of CWT
and transfer learning using convolution neural network. Biocybern. Biomed. Eng. 2020, 40, 494–504. [CrossRef]

72. Michielli, N.; Acharya, U.R.; Molinari, F. Cascaded LSTM recurrent neural network for automated sleep stage classification using
single-channel EEG signals. Comput. Biol. Med. 2019, 106, 71–81. [CrossRef]

http://doi.org/10.1016/j.bspc.2021.102581
http://doi.org/10.1016/0013-4694(92)90009-7
https://physionet.org/content/capslpdb/1.0.0
http://doi.org/10.3390/ijerph18063087
http://doi.org/10.1109/ACCESS.2019.2924181
http://doi.org/10.1016/j.jbi.2018.07.014
http://www.ncbi.nlm.nih.gov/pubmed/30031057
http://doi.org/10.1109/ACCESS.2020.2992641
http://doi.org/10.1016/j.jvcir.2010.02.011
http://doi.org/10.17341/gazimmfd.426259
http://doi.org/10.1109/21.97458
http://doi.org/10.1016/j.cap.2010.11.051
http://doi.org/10.3390/electronics9030512
http://doi.org/10.1016/j.cmpb.2013.07.006
http://doi.org/10.1109/10.867928
http://doi.org/10.1016/j.bspc.2015.09.002
http://doi.org/10.1016/j.eswa.2018.12.023
http://doi.org/10.1007/s12652-020-02188-4
http://doi.org/10.1016/j.bbe.2020.01.010
http://doi.org/10.1016/j.compbiomed.2019.01.013


Diagnostics 2022, 12, 2510 20 of 20

73. Huang, J.; Ren, L.; Zhou, X.; Yan, K. An improved neural network based on SENet for sleep stage classification. IEEE J. Biomed.
Health Inform. 2022, 26, 4948–4956. [CrossRef]

74. Kim, J.; Lee, J.; Shin, M. Sleep stage classification based on noise-reduced fractal property of heart rate variability. Procedia Comput.
Sci. 2017, 116, 435–440. [CrossRef]

75. Shahin, M.; Ahmed, B.; Hamida, S.T.-B.; Mulaffer, F.L.; Glos, M.; Penzel, T. Deep learning and insomnia: Assisting clinicians with
their diagnosis. IEEE J. Biomed. Health Inform. 2017, 21, 1546–1553. [CrossRef]

76. Karimzadeh, F.; Boostani, R.; Seraj, E.; Sameni, R. A distributed classification procedure for automatic sleep stage scoring based
on instantaneous electroencephalogram phase and envelope features. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 26, 362–370.
[CrossRef]

77. Seifpour, S.; Niknazar, H.; Mikaeili, M.; Nasrabadi, A.M. A new automatic sleep staging system based on statistical behavior of
local extrema using single channel EEG signal. Expert Syst. Appl. 2018, 104, 277–293. [CrossRef]

78. Zhou, J.; Wang, G.; Liu, J.; Wu, D.; Xu, W.; Wang, Z.; Ye, J.; Xia, M.; Hu, Y.; Tian, Y. Automatic Sleep Stage Classification With
Single Channel EEG Signal Based on Two-Layer Stacked Ensemble Model. IEEE Access 2020, 8, 57283–57297. [CrossRef]

79. Zhang, J.; Yao, R.; Ge, W.; Gao, J. Orthogonal convolutional neural networks for automatic sleep stage classification based on
single-channel EEG. Comput. Methods Programs Biomed. 2020, 183, 105089. [CrossRef] [PubMed]

80. Liu, G.-R.; Lo, Y.-L.; Malik, J.; Sheu, Y.-C.; Wu, H.-T. Diffuse to fuse EEG spectra–Intrinsic geometry of sleep dynamics for
classification. Biomed. Signal Process. Control 2020, 55, 101576. [CrossRef]

81. Cai, Q.; Gao, Z.; An, J.; Gao, S.; Grebogi, C. A Graph-Temporal fused dual-input Convolutional Neural Network for Detecting
Sleep Stages from EEG Signals. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 777–781. [CrossRef]

82. Loh, H.W.; Ooi, C.P.; Dhok, S.G.; Sharma, M.; Bhurane, A.A.; Acharya, U.R. Automated detection of cyclic alternating pattern and
classification of sleep stages using deep neural network. Appl. Intell. 2021, 52, 2903–2917. [CrossRef]

83. Dhok, S.; Pimpalkhute, V.; Chandurkar, A.; Bhurane, A.A.; Sharma, M.; Acharya, U.R. Automated phase classification in cyclic
alternating patterns in sleep stages using Wigner–Ville distribution based features. Comput. Biol. Med. 2020, 119, 103691.
[CrossRef]

84. Sharma, M.; Patel, V.; Tiwari, J.; Acharya, U.R. Automated characterization of cyclic alternating pattern using wavelet-based
features and ensemble learning techniques with eeg signals. Diagnostics 2021, 11, 1380. [CrossRef]

http://doi.org/10.1109/JBHI.2022.3157262
http://doi.org/10.1016/j.procs.2017.10.026
http://doi.org/10.1109/JBHI.2017.2650199
http://doi.org/10.1109/TNSRE.2017.2775058
http://doi.org/10.1016/j.eswa.2018.03.020
http://doi.org/10.1109/ACCESS.2020.2982434
http://doi.org/10.1016/j.cmpb.2019.105089
http://www.ncbi.nlm.nih.gov/pubmed/31586788
http://doi.org/10.1016/j.bspc.2019.101576
http://doi.org/10.1109/TCSII.2020.3014514
http://doi.org/10.1007/s10489-021-02597-8
http://doi.org/10.1016/j.compbiomed.2020.103691
http://doi.org/10.3390/diagnostics11081380

	Introduction 
	Material and Method 
	Material 
	Method 
	L-Tetrolet Pattern and Statistical Features Based Multileveled Feature Generation Method 
	Threshold Selection Based Relieff and Iterative Neighborhood Component Analysis 
	Classification 


	Results 
	Experimental Setup 
	Results 
	Computational Complexity Analysis 

	Discussion 
	Conclusions 
	References

