Low Arousal Threshold Estimation Predicts Failure of Mandibular Advancement Devices in Obstructive Sleep Apnea Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Setting, and Participants
2.2. Statistical Methods
3. Results
4. Discussion
- (1)
- The absence of sufficient time for the respiratory drive to recruit the pharyngeal muscles and reopen the airways before arousal;
- (2)
- Reduced partial pressure of carbon dioxide, which promotes dynamic ventilatory instability, contributing to the perpetuation of respiratory events;
- (3)
- Fragmentation of sleep, which does not allow the individual to achieve slow wave sleep (i.e., to stabilize sleep).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OSAS | Obstructive sleep apnea syndrome |
PAP or CPAP | Positive airway pressure or continuous positive airway pressure |
MADs | Mandibular advancement devices |
Low ArTH | Low arousal threshold |
OA | Oral appliances |
AASM | American Academy of Sleep Medicine |
AHI | Apnea-hypopnea index |
PSG | Polysomnographic |
P crit | Critical pressure of collapse |
References
- Javaheri, S.; Barbe, F.; Campos-Rodriguez, F.; Dempsey, J.A.; Khayat, R.; Javaheri, S.; Malhotra, A.; Martinez-Garcia, M.A.; Mehra, R.; Pack, A.I.; et al. Types, Mechanisms, and Clinical Cardiovascular Consequences. J. Am. Coll. Cardiol. 2017, 69, 841–858. [Google Scholar] [CrossRef] [PubMed]
- Ruaro, B.; Baratella, E.; Confalonieri, M.; Antonaglia, C.; Salton, F. Editorial: Obstructive sleep apnea syndrome (OSAS). What’s new? Front. Med. 2022, 9, 1009410. [Google Scholar] [CrossRef] [PubMed]
- Eckert, D.J.; White, D.P.; Jordan, A.S.; Malhotra, A.; Wellman, A. Defining Phenotypic Causes of Obstructive Sleep Apnea. Identification of Novel Therapeutic Targets. Am. J. Respir. Crit. Care Med. 2013, 188, 996–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, T. Risk Factors for Obstructive Sleep Apnea in Adults. JAMA 2004, 291, 2013. [Google Scholar] [CrossRef]
- Edwards, B.A.; Eckert, D.J.; McSharry, D.G.; Sands, S.A.; Desai, A.; Kehlmann, G.; Bakker, J.P.; Genta, P.R.; Owens, R.L.; White, D.P.; et al. Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2014, 190, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Bosi, M.; De Vito, A.; Kotecha, B.; Viglietta, L.; Braghiroli, A.; Steier, J.; Pengo, M.; Sorrenti, G.; Gobbi, R.; Vicini, C.; et al. Phenotyping the pathophysiology of obstructive sleep apnea using polygraphy/polysomnography: A review of the literature. Sleep Breath 2018, 22, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Labarca, G.; Saavedra, D.; Dreyse, J.; Jorquera, J.; Barbe, F. Efficacy of CPAP for Improvements in Sleepiness, Cognition, Mood, and Quality of Life in Elderly Patients With OSA: Systematic Review and Meta-analysis of Randomized Controlled Trials. Chest 2020, 158, 751–764. [Google Scholar] [CrossRef]
- Lin, H.-J.; Yeh, J.-H.; Hsieh, M.-T.; Hsu, C.-Y. Continuous positive airway pressure with good adherence can reduce risk of stroke in patients with moderate to severe obstructive sleep apnea: An updated systematic review and meta-analysis. Sleep Med. Rev. 2020, 54, 101354. [Google Scholar] [CrossRef]
- Kribbs, N.B.; Pack, A.I.; Kline, L.R.; Smith, P.L.; Schwartz, A.R.; Schubert, N.M.; Redline, S.; Henry, J.N.; Getsy, J.E.; Dinges, D.F. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 1993, 147, 887–895. [Google Scholar] [CrossRef]
- Randerath, W.; Verbraecken, J.; de Raaff, C.A.L.; Hedner, J.; Herkenrath, S.; Hohenhorst, W.; Jakob, T.; Marrone, O.; Marklund, M.; McNicholas, W.T.; et al. European Respiratory Society guideline on non-CPAP therapies for obstructive sleep apnoea. Eur. Respir. Rev. 2021, 30, 210200. [Google Scholar] [CrossRef]
- Kapur Vishesh, K.; Auckley Dennis, H.; Susmita, C.; Kuhlmann David, C.; Reena, M.; Kannan, R.; Harrod Christopher, G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef] [PubMed]
- Sharples, L.D.; Clutterbuck-James, A.L.; Glover, M.J.; Bennett, M.S.; Chadwick, R.; Pittman, M.A.; Quinnell, T.G. Meta-analysis of randomised controlled trials of oral mandibular advancement devices and continuous positive airway pressure for obstructive sleep apnoea-hypopnoea. Sleep Med. Rev. 2016, 27, 108–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnadoux, F.; Fleury, B.; Vielle, B.; Pételle, B.; Meslier, N.; N’Guyen, X.L.; Trzepizur, W.; Racineux, J.L. Titrated mandibular advancement versus positive airway pressure for sleep apnoea. Eur. Respir. J. 2009, 34, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marklund, M.; Carlberg, B.; Forsgren, L.; Olsson, T.; Stenlund, H.; Franklin, K.A. Oral Appliance Therapy in Patients with Daytime Sleepiness and Snoring or Mild to Moderate Sleep Apnea: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1278–1285. [Google Scholar] [CrossRef]
- Sutherland, K.; Vanderveken, O.M.; Tsuda, H.; Marklund, M.; Gagnadoux, F.; Kushida, C.A.; Cistulli, P.A. Oral Appliance Treatment for Obstructive Sleep Apnea: An Update. J. Clin. Sleep Med. 2014, 10, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [Green Version]
- Petit, F.-X.; Pépin, J.-L.; Bettega, G.; Sadek, H.; Raphaël, B.; Lévy, P. Mandibular advancement devices: Rate of contraindications in 100 consecutive obstructive sleep apnea patients. Am. J. Respir. Crit. Care Med. 2002, 166, 274–278. [Google Scholar] [CrossRef]
- Ahrens, A.; McGrath, C.; Hägg, U. A systematic review of the efficacy of oral appliance design in the management of obstructive sleep apnoea. Eur. J. Orthod. 2011, 33, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, K.; Phillips, C.L.; Davies, A.; Srinivasan, V.K.; Dalci, O.; Yee, B.J.; Darendeliler, M.A.; Grunstein, R.R.; Cistulli, P.A. CPAP Pressure for Prediction of Oral Appliance Treatment Response in Obstructive Sleep Apnea. J. Clin. Sleep Med. 2014, 10, 943–949. [Google Scholar] [CrossRef]
- Chen, H.; Eckert, D.J.; van der Stelt, P.F.; Guo, J.; Ge, S.; Emami, E.; Almeida, F.R.; Huynh, N.T. Phenotypes of responders to mandibular advancement device therapy in obstructive sleep apnea patients: A systematic review and meta-analysis. Sleep Med. Rev. 2020, 49, 101229. [Google Scholar] [CrossRef]
- Neelapu, B.C.; Kharbanda, O.P.; Sardana, H.K.; Balachandran, R.; Sardana, V.; Kapoor, P.; Gupta, A.; Vasamsetti, S. Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: A systematic review and meta-analysis of cephalometric studies. Sleep Med. Rev. 2017, 31, 79–90. [Google Scholar] [CrossRef]
- Edwards, B.A.; Andara, C.; Landry, S.; Sands, S.A.; Joosten, S.A.; Owens, R.L.; White, D.P.; Hamilton, G.S.; Wellman, A. Upper-airway collapsibility and loop gain predict the response to oral appliance therapy in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2016, 194, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Eckert, D.J.; Younes, M.K. Arousal from sleep: Implications for obstructive sleep apnea pathogenesis and treatment. J. Appl. Physiol. (Bethesda Md. 1985) 2014, 116, 302–313. [Google Scholar] [CrossRef]
- Antonaglia, C.; Passuti, G.; Giudici, F.; Salton, F.; Ruaro, B.; Radovanovic, D.; Confalonieri, M. Low arousal threshold: A common pathophysiological trait in patients with obstructive sleep apnea syndrome and asthma. Sleep Breath 2022. [Google Scholar] [CrossRef]
Variable | Patients (n = 32) |
---|---|
Age (years) | |
Mean (St. Dev.) | 57 (10) |
Body Mass Index (BMI) Baseline | |
Mean (St. Dev.) | 26.2 (4.4) |
Gender (n,%) | |
Women | 8 (25%) |
Men | 24 (75%) |
Arterial Hypertension (n,%) | |
Presence | 14 (43.8%) |
Cardiovascular Disease (n,%) | |
Presence | 5 (15.6%) |
Diabetes Mellitus (n,%) | |
Presence | 2 (6.3%) |
Mallampati Score (n,%) (1 NA) | |
1 | 1 (3.2%) |
2 | 5 (16.1%) |
3 | 12 (37.5%) |
4 | 13 (40.6%) |
Dental occlusion (n,%) (2 NA) | |
1 | 13 (43.3%) |
2 | 16 (53.3%) |
3 | 1 (3.3%) |
mm MA (50%) (3 NA) | |
Mean (St. Dev.) | 4.1 (1.2) |
Variable | Value |
---|---|
AHI Baseline | |
Median (Min–Max) | 22.5 (7.6–76.6) |
Severity at Baseline (N,%) | |
Mild | 7 (21.9%) |
Moderate | 17 (53.1%) |
Severe | 8 (25.0%) |
ODI/h Baseline (1 NA) | |
Median (Min–Max) | 15.6 (1.5–74.4) |
Sato2 min Baseline (4 NA) | |
Median (Min–Max) | 82.5 (59.0–91.0) |
T < 90% Baseline (2 NA) | |
Median (Min–Max) | 1.6 (0.0–87.3) |
Low ArTH (0 se < 2; 1 se ≥ 2) (9 NA) | |
0 | 11 (47.8%) |
1 | 12 (52.2%) |
Classification | All | Mild | Moderate | Severe |
---|---|---|---|---|
AHI < 5 | 13 (40.6%) | 4 (57.1%) | 9 (52.9%) | 0 (0.0%) |
≥50% AHI reduction | 12 (37.5%) | 0 (0.0%) | 5 (29.4%) | 7 (87.5%) |
Responders | 25 (78.1%) | 4 (57.1%) | 14 (82.3%) | 7 (87.5%) |
p-value 0.73 | p-value 0.03 | p-value 0.11 | ||
Non-responders | 7 (21.9%) | 3 (42.9%) | 3 (17.6%) | 1 (12.5%) |
Total | 32 | 7 | 17 | 8 |
Variable | Baseline | After Treatment | p-Value |
---|---|---|---|
Total AHI (N = 32 pt) | |||
Median (Min–Max) | 22.5 (7.6–76.6) | 6.5 (0–23.6) | <0.001 |
Severity (N,%) | |||
Mild | 7 (21.9%) | 13 (40.6%) | |
Moderate | 17 (53.1%) | 15 (46.9%) | <0.001 |
Severe | 8 (25.0%) | 4 (12.5%) | |
ODI/h (N = 30 pt) | |||
Median (Min–Max) | 15.6 (1.5–74.4) | 3.4 (0.2–32.6) | <0.001 |
Sat O2 min (N = 26 pt) | |||
Median (Min–Max) | 82.5 (59.0–91.0) | 85.0 (59.0–91.0) | 0.19 |
T < 90% (2 NA) | |||
Median (Min–Max) | 1.6 (0.0–87.3) | 0.55 (0–71.4) | 0.03 |
Supine (N = 19 pt) | |||
Median (Min–Max) | 32.6 (13.1–91.3) | 8.7 (0.0–47.9) | <0.001 |
Non-Supine (N = 19 pt) | |||
Median (Min–Max) | 5.5 (0–62.4) | 2.2 (0–18.2) | 0.03 |
Classification | Without Low ArTH | With Low ArTH |
---|---|---|
AHI < 5 | 3 (27.3%) | 7 (58.3%) |
≥50% AHI reduction | 6 (54.5%) | 1 (8.3%) |
Responders | 9 (81.8%) | 8 (66.7%) |
Non-responders | 2 (18.2%) | 4 (33.3%) |
Total | 11 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonaglia, C.; Vidoni, G.; Contardo, L.; Giudici, F.; Salton, F.; Ruaro, B.; Confalonieri, M.; Caneva, M. Low Arousal Threshold Estimation Predicts Failure of Mandibular Advancement Devices in Obstructive Sleep Apnea Syndrome. Diagnostics 2022, 12, 2548. https://doi.org/10.3390/diagnostics12102548
Antonaglia C, Vidoni G, Contardo L, Giudici F, Salton F, Ruaro B, Confalonieri M, Caneva M. Low Arousal Threshold Estimation Predicts Failure of Mandibular Advancement Devices in Obstructive Sleep Apnea Syndrome. Diagnostics. 2022; 12(10):2548. https://doi.org/10.3390/diagnostics12102548
Chicago/Turabian StyleAntonaglia, Caterina, Gabriele Vidoni, Luca Contardo, Fabiola Giudici, Francesco Salton, Barbara Ruaro, Marco Confalonieri, and Martina Caneva. 2022. "Low Arousal Threshold Estimation Predicts Failure of Mandibular Advancement Devices in Obstructive Sleep Apnea Syndrome" Diagnostics 12, no. 10: 2548. https://doi.org/10.3390/diagnostics12102548
APA StyleAntonaglia, C., Vidoni, G., Contardo, L., Giudici, F., Salton, F., Ruaro, B., Confalonieri, M., & Caneva, M. (2022). Low Arousal Threshold Estimation Predicts Failure of Mandibular Advancement Devices in Obstructive Sleep Apnea Syndrome. Diagnostics, 12(10), 2548. https://doi.org/10.3390/diagnostics12102548