Vascular Aging and Damage in Patients with Iron Metabolism Disorders
Abstract
:1. Introduction
2. Materials and Methods
3. The Pathophysiology of Vascular Aging
4. Diagnostic Tools of Vascular Damage
5. Clinical Consequences of Vascular Aging
6. Systemic and Cell Regulation of Iron Metabolism
7. Iron Metabolism Disorders as the Trigger of Oxidative Stress
7.1. Iron Overload Pathologies
7.1.1. Hemochromatosis
7.1.2. Beta Thalassemia
7.1.3. Sickle Cell Disease (SCD)
7.2. Iron Deficiency
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Health Estimates: Leading Causes of Death. Cause-Specific Mortality, 2000–2019. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 12 October 2022).
- Izzo, C.; Vitillo, P.; Di Pietro, P.; Visco, V.; Strianese, A.; Virtuoso, N.; Ciccarelli, M.; Galasso, G.; Carrizzo, A.; Vecchione, C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life 2021, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Fleg, J.L.; Strait, J. Age-associated changes in cardiovascular structure and function: A fertile milieu for future disease. Heart Fail. Rev. 2012, 17, 545–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheitlin, M.D. Cardiovascular Physiology—Changes with Aging. Am. J. Geriatr. Cardiol. 2003, 12, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Vinchi, F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid. Redox Signal. 2021, 20, 387–414. [Google Scholar] [CrossRef] [PubMed]
- Lakatta, E.G.; Wang, M.; Najjar, S.S. Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med. Clin. N. Am. 2009, 93, 583–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungvari, Z.; Kaley, G.; de Cabo, R.; Sonntag, W.E.; Csiszar, A. Mechanisms of vascular aging: New perspectives. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 1028–1041. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, 89. [Google Scholar]
- Laina, A.; Stellos, K.; Stamatelopoulos, K. Vascular ageing: Underlying mechanisms and clinical implications. Exp. Gerontol. 2018, 109, 16–30. [Google Scholar] [CrossRef]
- Brandes, R.P.; Fleming, I.; Busse, R. Endothelial aging. Cardiovasc. Res. 2005, 1, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ. 2015, 22, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.J.; Kung, G.P.; Gnana-Prakasam, J.P. Role of Iron in Aging Related Diseases. Antioxidants 2022, 11, 865. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of Vascular Aging. Circ. Res. 2018, 14, 849–867. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.A.; Jasiulionis, M.G.; Melo, F.H.M. The Role of the BH4 Cofactor in Nitric Oxide Synthase Activity and Cancer Progression: Two Sides of the Same Coin. Int. J. Mol. Sci. 2021, 22, 9546. [Google Scholar] [CrossRef] [PubMed]
- Puca, A.A.; Carrizzo, A.; Villa, F.; Ferrario, A.; Casaburo, M.; Maciąg, A.; Vecchione, C. Vascular ageing: The role of oxidative stress. Int. J. Biochem. Cell Biol. 2013, 45, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Ganz, P.; Vita, J.A. Testing endothelial vasomotor function: Nitric oxide, a multipotent molecule. Circulation 2003, 108, 2049–2053. [Google Scholar] [CrossRef] [PubMed]
- Durik, M.; Kavousi, M.; van der Pluijm, I.; Isaacs, A.; Cheng, C.; Verdonk, K.; Loot, A.E.; Oeseburg, H.; Bhaggoe, U.M.; Leijten, F.; et al. Nucleotide excision DNA repair is associated with age-related vascular dysfunction. Circulation 2012, 126, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Sequí-Domínguez, I.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Saz-Lara, A.; Mesas, A.E.; Martínez-Vizcaíno, V. Association between arterial stiffness and the clustering of metabolic syndrome risk factors: A systematic review and meta-analysis. J. Hypertens. 2021, 39, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Neubauer-Geryk, J.; Bieniaszewski, L. Wskaźnik kostka-ramię w ocenie pacjentów z ryzykiem miażdżycy. Chor. Serca I Naczyń 2007, 4, 1–5. [Google Scholar]
- Liu, D.; Du, C.; Shao, W.; Ma, G. Diagnostic Role of Carotid Intima-Media Thickness for Coronary Artery Disease: A Meta-Analysis. Biomed Res. Int. 2020, 2020, 9879463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houben, A.J.H.M.; Martens, R.J.H.; Stehouwer, C.D.A. Assessing Microvascular Function in Humans from a Chronic Disease Perspective. J. Am. Soc. Nephrol. 2017, 28, 3461–3472. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.; Roustit, M.; Cracowski, J.L. Skin microvascular endothelial function as a biomarker in cardiovascular diseases? Pharmacol. Rep. 2015, 67, 803–810. [Google Scholar] [CrossRef]
- Sirufo, M.M.; Catalogna, A.; Raggiunti, M.; De Pietro, F.; Galeoto, G.; Bassino, E.M.; Ginaldi, L.; De Martinis, M. Capillaroscopic Evidence of Microvascular Damage in Volleyball Players. Int. J. Environ. Res. Public Health 2021, 18, 10601. [Google Scholar] [CrossRef] [PubMed]
- Molisz, A.; Faściszewska, M.; Wożakowska-Kapłon, B.; Siebert, J. Prędkość fali tętna—Wartości referencyjne i zastosowanie. Folia Cardiol. 2015, 10, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Blacher, J.; Asmar, R.; Djane, S.; London, G.M.; Safar, M.E. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999, 33, 1111–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonomidis, I.; Lekakis, J.; Papadopoulos, C.; Triantafyllidi, H.; Paraskevaidis, I.; Georgoula, G.; Tzortzis, S.; Revela, I.; Kremastinos, D.T. Incremental value of pulse wave velocity in the determination of coronary microcirculatory dysfunction in never-treated patients with essential hypertension. Am. J. Hypertens. 2008, 21, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Shokawa, T.; Imazu, M.; Yamamoto, H.; Toyofuku, M.; Tasaki, N.; Okimoto, T.; Yamane, K.; Kohno, N. Pulse wave velocity predicts cardiovascular mortality: Findings from the Hawaii-Los Angeles-Hiroshima study. Circ. J. 2005, 69, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Khoshdel, A.R.; Thakkinstian, A.; Carney, S.L.; Attia, J. Estimation of an age-specific reference interval for pulse wave velocity: A meta-analysis. J. Hypertens. 2006, 24, 1231–1237. [Google Scholar] [CrossRef]
- Maruhashi, T.; Kajikawa, M.; Kishimoto, S.; Hashimoto, H.; Takaeko, Y.; Yamaji, T.; Harada, T.; Han, Y.; Aibara, Y.; Mohamad Yusoff, F. Diagnostic Criteria of Flow-Mediated Vasodilation for Normal Endothelial Function and Nitroglycerin-Induced Vasodilation for Normal Vascular Smooth Muscle Function of the Brachial Artery. J. Am. Heart Assoc. 2020, 9, e013915. [Google Scholar] [CrossRef]
- Heiss, C.; Rodriguez-Mateos, A.; Bapir, M.; Skene, S.S.; Sies, H.; Kelm, M. Flow-mediated dilation reference values for evaluation of endothelial function and cardiovascular health. Cardiovasc. Res. 2022, cvac095. [Google Scholar] [CrossRef]
- Gori, T.; Muxel, S.; Damaske, A.; Radmacher, M.; Fasola, F.; Schaefer, S.; Schulz, A.; Jabs, A.; Parker, J.D.; Münzell, T. Endothelial function assessment: Flow-mediated dilation and constriction provide different and complementary information on the presence of coronary artery disease. Eur. Heart J. 2012, 33, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Ravani, A.; Werba, J.P.; Frigerio, B.; Sansaro, D.; Amato, M.; Tremoli, E.; Baldassarre, D. Assessment and relevance of carotid intima-media thickness (C-IMT) in primary and secondary cardiovascular prevention. Curr. Pharm. Des. 2015, 21, 1164–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geroulakos, G.; O’Gorman, D.J.; Kalodiki, E.; Sheridan, D.J.; Nicolaides, A.N. The carotid intima-media thickness as a marker of the presence of severe symptomatic coronary artery disease. Eur. Heart J. 1994, 15, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Polak, J.F.; Pencina, M.J.; Meisner, A.; Pencina, K.M.; Brown, L.S.; Wolf, P.A.; D’Agostino Sr, R.B. Associations of carotid artery intima-media thickness (IMT) with risk factors and prevalent cardiovascular disease: Comparison of mean common carotid artery IMT with maximum internal carotid artery IMT. J. Ultrasound. Med. 2010, 29, 1759–1768. [Google Scholar] [CrossRef]
- Alan, S.; Ulgen, M.S.; Ozturk, O.; Alan, B.; Ozdemir, L.; Toprak, N. Relation between coronary artery disease, risk factors and intima-media thickness of carotid artery, arterial distensibility, and stiffness index. Angiology 2003, 54, 261–267. [Google Scholar] [CrossRef]
- Chojnowski, M.M.; Felis-Giemza, A.; Olesińska, M. Capillaroscopy—A role in modern rheumatology. Reumatologia 2016, 54, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, M.L.; Frau, A.; Losa, F.; Muggianu, E.; Mura, M.N.; Rotta, G.; Scotti, L.; Marongiu, F. Role of circulating endothelial cells in assessing the severity of systemic sclerosis and predicting its clinical worsening. Sci. Rep. 2021, 11, 2681. [Google Scholar] [CrossRef]
- Wu, P.C.; Huang, M.N.; Kuo, Y.M.; Hsieh, S.C.; Yu, C.L. Clinical applicability of quantitative nailfold capillaroscopy in differential diagnosis of connective tissue diseases with Raynaud’s phenomenon. J. Formos. Med. Assoc. 2013, 112, 482–488. [Google Scholar] [CrossRef] [Green Version]
- Girkantaite, Z.; Laucyte-Cibulskiene, A.; Ryliskyte, L.; Juceviciene, A.; Badariene, J. Laser Doppler flowmetry evaluation of skin microvascular endothelial function in patients with metabolic syndrome. Microvasc. Res. 2022, 142, 104373. [Google Scholar] [CrossRef]
- Stiefel, P.; Moreno-Luna, R.; Vallejo-Vaz, A.J.; Beltrán, L.M.; Costa, A.; Gómez, L.; Ordóñez, A.; Villar, J. Which parameter is better to define endothelial dysfunction in a test of postocclusive hyperemia measured by laser-Doppler flowmetry? Coron. Artery Dis. 2012, 23, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Walden, R.; Bass, A.; Balaciano, M.; Modan, M.; Zulty, L.; Adar, R. Laser Doppler flowmetry in lower extremity ischemia: Application and interpretation. Ann. Vasc. Surg. 1992, 6, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Roustit, M.; Millet, C.; Blaise, S.; Dufournet, B.; Cracowski, J.L. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc. Res. 2010, 80, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Cracowski, J.L.; Roustit, M. Human Skin Microcirculation. Compr. Physiol. 2020, 10, 1105–1154. [Google Scholar] [PubMed]
- Hellmann, M.; Kalinowski, L.; Cracowski, J.L. Laser speckle contrast imaging to assess microcirculation. Cardiol. J. 2022. [Google Scholar] [CrossRef] [PubMed]
- Matheus, A.S.M.; da Matta, M.F.B.; Clemente, E.L.S.; Rodrigues, M.L.G.; Valença, D.C.T.; Gomes, M.B. Sensibility and specificity of laser speckle contrast imaging according to Endo-PAT index in type 1 diabetes. Microvasc. Res. 2018, 117, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Zhu, T.; Su, Z.; Fang, X.; Lin, J.; Chen, Z.; Su, Z.; Ye, P.; Ma, J. Optical Coherence Tomography Angiography-Based Quantitative Assessment of Morphologic Changes in Active Myopic Choroidal Neovascularization During Anti-vascular Endothelial Growth Factor Therapy. Front. Med. 2021, 8, 657772. [Google Scholar] [CrossRef]
- Ahmed, D.; Stattin, M.; Graf, A.; Forster, J.; Glittenberg, C.; Krebs, I.; Ansari-Shahrezaei, S. Detection of treatment-naive choroidal neovascularization in age-related macular degeneration by swept source optical coherence tomography angiography. Retina 2018, 38, 2143–2149. [Google Scholar] [CrossRef]
- Sawada, O.; Ichiyama, Y.; Obata, S.; Ito, Y.; Kakinoki, M.; Sawada, T.; Saishin, Y.; Ohji, M. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefes. Arch. Clin. Exp. Ophthalmol. 2018, 256, 1275–1280. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Sun, G.; Yang, F.; Liu, W.; Luo, J.; Cao, X.; Yin, P.; Myers, F.L.; Zhou, L. Detection of the Microvascular Changes of Diabetic Retinopathy Progression Using Optical Coherence Tomography Angiography. Transl. Vis. Sci. Technol. 2021, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.; Qiu, H.; Kim, S.; Jjingo, D.; Hoffman, R.; Kim, C.W.; Jang, I.; Son, D.J.; Kim, D.; Pan, C.; et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J. Clin. Investig. 2014, 124, 3187–3199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, D.; Chang, J.; Lartigue, L.; Bolen, C.R.; Haddad, F.; Gaudilliere, B.; Ganio, E.A.; Fragiadakis, G.K.; Spitzer, M.H.; Douchet, I.; et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 2017, 23, 174–184. [Google Scholar] [CrossRef]
- Childs, B.G.; Baker, D.J.; Wijshake, T.; Conover, C.A.; Campisi, J.; van Deursen, J.M. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016, 354, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta 2013, 424, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Head, T.; Daunert, S.; Goldschmidt-Clermont, P.J. The Aging Risk and Atherosclerosis: A Fresh Look at Arterial Homeostasis. Front. Genet. 2017, 8, 216. [Google Scholar] [CrossRef]
- Forte, M.; Stanzione, R.; Cotugno, M.; Bianchi, F.; Marchitti, S.; Rubattu, S. Vascular ageing in hypertension: Focus on mitochondria. Mech. Ageing Dev. 2020, 189, 111267. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Sorond, F.; Merkely, B.; Csiszar, A. Mechanisms of Vascular Aging, A Geroscience Perspective: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 931–941. [Google Scholar] [CrossRef]
- Watson, N.; Bonsack, F.; Sukumari-Ramesh, S. Intracerebral Hemorrhage: The Effects of Aging on Brain Injury. Front Aging Neurosci. 2022, 14, 859067. [Google Scholar] [CrossRef]
- Wu, J.Q.; Wang, W.; Zheng, Y.H. Role of Vascular Aging in the Pathogenesis of Abdominal Aortic Aneurysm and Potential Therapeutic Targets. Acta Acad. Med. Sin. 2021, 43, 962–968. [Google Scholar]
- Pisano, C.; Balistreri, C.R.; Ricasoli, A.; Ruvolo, G. Cardiovascular Disease in Ageing: An Overview on Thoracic Aortic Aneurysm as an Emerging Inflammatory Disease. Mediat. Inflamm. 2017, 2017, 1274034. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Sun, Y.; Lu, Z.; Leak, R.K.; Zhang, F. The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res. Rev. 2017, 34, 15–29. [Google Scholar] [CrossRef] [PubMed]
- De Vis, J.B.; Hendrikse, J.; Bhogal, A.; Adams, A.; Kappelle, L.J.; Petersen, E.T. Age-related changes in brain hemodynamics; A calibrated MRI study. Hum. Brain Mapp. 2015, 36, 3973–3987. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, M.A.; Lo, E.H.; Iadecola, C. The science of stroke: Mechanisms in search of treatments. Neuron 2010, 67, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.E.; Jonasson, F.; Eiriksdottir, G.; Sigurdsson, S.; Klein, R.; Launer, L.J.; Gudnason, V.; Cotch, M.F. Age-related macular degeneration and mortality in community-dwelling elders: The age, gene/environment susceptibility Reykjavik study. Ophthalmology 2015, 122, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Love, S.; Miners, J.S. Cerebrovascular disease in ageing and Alzheimer’s disease. Acta Neuropathol. 2016, 131, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Briguglio, M.; Hrelia, S.; Malaguti, M.; Lombardi, G.; Riso, P.; Porrini, M.; Perazzo, P.; Banfi, G. The Central Role of Iron in Human Nutrition: From Folk to Contemporary Medicine. Nutrients 2020, 12, 1761. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Daniłowicz-Szymanowicz, L.; Świątczak, M.; Sikorska, K.; Starzyński, R.R.; Raczak, A.; Lipiński, P. Pathogenesis, Diagnosis, and Clinical Implications of Hereditary Hemochromatosis-The Cardiological Point of View. Diagnostics 2021, 11, 1279. [Google Scholar] [CrossRef]
- Świątczak, M.; Młodziński, K.; Sikorska, K.; Raczak, A.; Lipiński, P.; Daniłowicz-Szymanowicz, L. Chronic Fatigue Syndrome in Patients with Deteriorated Iron Metabolism. Diagnostics 2022, 12, 2057. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, A.; Pantopoulos, K. Basics and principles of cellular and systemic iron homeostasis. Mol. Asp. Med. 2020, 75, 100866. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Li, J.; Zhang, Y.; Chang, Y.Z. Cellular Iron Metabolism and Regulation. Adv. Exp. Med. Biol. 2019, 1173, 21–32. [Google Scholar] [PubMed]
- Hentze, M.W.; Muckenthaler, M.U.; Galy, B.; Camaschella, C. Two to tango: Regulation of Mammalian iron metabolism. Cell 2010, 142, 24–38. [Google Scholar] [CrossRef]
- Kakhlon, O.; Cabantchik, Z.I. The labile iron pool: Characterization, measurement, and participation in cellular processes. Free Radic. Biol. Med. 2002, 33, 1037–1046. [Google Scholar] [CrossRef]
- Chiabrando, D.; Vinchi, F.; Fiorito, V.; Mercurio, S.; Tolosano, E. Heme in pathophysiology: A matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharmacol. 2014, 5, 61. [Google Scholar] [CrossRef] [Green Version]
- Schaer, D.J.; Vinchi, F.; Ingoglia, G.; Tolosano, E.; Buehler, P.W. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front. Physiol. 2014, 5, 415. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.P.; Levy, J.E.; Kalet-Litman, S.; Miller-Lotan, R.; Levy, N.S.; Asaf, R.; Guetta, J.; Yang, C.; Purushothaman, K.R.; Fuster, V.; et al. Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Seals, D.R.; Jablonski, K.L.; Donato, A.J. Aging and vascular endothelial function in humans. Clin. Sci. 2011, 120, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Valenti, L.; Dongiovanni, P.; Motta, B.M.; Swinkels, D.W.; Bonara, P.; Rametta, R.; Burdick, L.; Frugoni, C.; Fracanzani, A.L.; Fargion, S. Serum hepcidin and macrophage iron correlate with MCP-1 release and vascular damage in patients with metabolic syndrome alterations. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Stadler, N.; Lindner, R.A.; Davies, M.J. Direct detection and quantification of transition metal ions in human atherosclerotic plaques: Evidence for the presence of elevated levels of iron and copper. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 949–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, E.; Eaton, J.W.; Jeney, V.; Soares, M.P.; Varga, Z.; Galajda, Z.; Szentmiklósi, J.; Méhes, G.; Csonka, T.; Smith, A.; et al. Red cells, hemoglobin, heme, iron, and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Vinchi, F.; Porto, G.; Simmelbauer, A.; Altamura, S.; Passos, S.T.; Garbowski, M.; Silva, A.M.N.; Spaich, S.; Seide, S.E.; Sparla, R.; et al. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur. Heart J. 2020, 41, 2681–2695. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019, 20, 247–260. [Google Scholar] [CrossRef]
- Emerit, J.; Beaumont, C.; Trivin, F. Iron metabolism, free radicals, and oxidative injury. Biomed. Pharmacother. 2001, 55, 333–339. [Google Scholar] [CrossRef]
- Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr. 2017, 106 (Suppl. 6), 1567S–1574S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beale, A.L.; Meyer, P.; Marwick, T.H.; Lam, C.S.P.; Kaye, D.M. Sex Differences in Cardiovascular Pathophysiology: Why Women Are Overrepresented in Heart Failure with Preserved Ejection Fraction. Circulation 2018, 138, 198–205. [Google Scholar] [CrossRef]
- Kim, C.; Nan, B.; Kong, S.; Harlow, S. Changes in iron measures over menopause and associations with insulin resistance. J. Womens Health 2012, 21, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Creighton, M.T.; McClain, D.A. Diabetes and hemochromatosis. Curr. Diab. Rep. 2014, 14, 488. [Google Scholar] [CrossRef]
- Beckman, J.A.; Creager, M.A. Vascular Complications of Diabetes. Circ. Res. 2016, 118, 1771–1785. [Google Scholar] [CrossRef] [Green Version]
- McClain, D.A.; Abraham, D.; Rogers, J.; Brady, R.; Gault, P.; Ajioka, R.; Kushner, J.P. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis. Diabetologia 2006, 49, 1661–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterlin, B.; Globocnik, P.M.; Makuc, J.; Hawlina, M.; Petrovic, D. A hemochromatosis-causing mutation C282Y is a risk factor for proliferative diabetic retinopathy in Caucasians with type 2 diabetes. J. Hum. Genet. 2003, 48, 646–649. [Google Scholar] [CrossRef] [Green Version]
- Moczulski, D.K.; Grzeszczak, W.; Gawlik, B. Role of hemochromatosis C282Y and H63D mutations in HFE gene in development of type 2 diabetes and diabetic nephropathy. Diabetes Care 2001, 24, 1187–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, R.; Novials, A.; Sánchez, M.; Villa, M.; Ingelmo, M.; Recasens, M.; Ascaso, C.; Bruguera, M.; Gomis, R. The HFE gene is associated to an earlier age of onset and to the presence of diabetic nephropathy in diabetes mellitus type 2. Endocrine 2004, 24, 111–114. [Google Scholar] [CrossRef]
- Gaenzer, H.; Marschang, P.; Sturm, W.; Neumayr, G.; Vogel, W.; Patsch, J.; Weiss, G. Association between increased iron stores and impaired endothelial function in patients with hereditary hemochromatosis. J. Am. Coll. Cardiol. 2002, 40, 2189–2194. [Google Scholar] [CrossRef] [Green Version]
- Failla, M.; Giannattasio, C.; Piperno, A.; Vergani, A.; Grappiolo, A.; Gentile, G.; Meles, E.; Mancia, G. Radial artery wall alterations in genetic hemochromatosis before and after iron depletion therapy. Hepatology 2000, 32, 569–573. [Google Scholar] [CrossRef]
- Needs, T.; Gonzalez-Mosquera, L.F.; Lynch, D.T. Beta Thalassemia; StatPearls Publishing: Treasure Island, CA, USA, 2022. [Google Scholar]
- Barbero, U.; Ajassa, M.; Gaglioti, C.M.; Piga, A.; Ferrero, G.B.; Longo, F. The Influence of Cardiovascular Risk Factors and Hypogonadism on Cardiac Outcomes in an Aging Population of Beta-Thalassemia Patients. J. Cardiovasc. Dev. Dis. 2021, 9, 3. [Google Scholar] [CrossRef]
- Kukongviriyapan, V.; Somparn, N.; Senggunprai, L.; Prawan, A.; Kukongviriyapan, U.; Jetsrisuparb, A. Endothelial dysfunction and oxidant status in pediatric patients with hemoglobin E-beta thalassemia. Pediatr. Cardiol. 2008, 29, 130–135. [Google Scholar] [CrossRef]
- Bayraktar, N.; Erkurt, M.A.; Aydoğdu, İ.; Başaran, Y. The levels of nitric oxide in beta-thalassemia minor. Turk. J. Haematol. 2008, 25, 187–189. [Google Scholar]
- Sedrak, A.; Kondamudi, N.P. Sickle Cell Disease; StatPearls Publishing: Treasure Island, CA, USA, 2021. [Google Scholar]
- Usmani, A.; Machado, R.F. Vascular complications of sickle cell disease. Clin. Hemorheol. Microcirc. 2018, 68, 205–221. [Google Scholar] [CrossRef]
- Donadee, C.; Raat, N.J.; Kanias, T.; Tejero, J.; Lee, J.S.; Kelley, E.E.; Zhao, X.; Liu, C.; Reynolds, H.; Azarov, I.; et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 2011, 124, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, R.T.; Fernandez, P.L.; Mourao-Sa, D.S.; Porto, B.N.; Dutra, F.F.; Alves, L.S.; Oliveira, M.F.; Oliveira, P.L.; Graça-Souza, A.V.; Bozza, M.T. Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 2007, 282, 20221–20229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranque, B.; Menet, A.; Boutouyrie, P.; Diop, I.B.; Kingue, S.; Diarra, M.; N’Guetta, R.; Diallo, D.; Diop, S.; Diagne, I.; et al. Arterial Stiffness Impairment in Sickle Cell Disease Associated with Chronic Vascular Complications: The Multinational African CADRE Study. Circulation 2016, 134, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Zhang, X.; Culver, B.; Chew, H.G., Jr.; Kelley, R.O.; Ren, J. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: Involvement of nitric oxide synthase and protein tyrosine nitration. Clin. Sci. 2005, 109, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Nisoli, E.; Clementi, E.; Paolucci, C.; Cozzi, V.; Tonello, C.; Sciorati, C.; Bracale, R.; Valerio, A.; Francolini, M.; Moncada, S.; et al. Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide. Science 2003, 299, 896–899. [Google Scholar] [CrossRef]
- Brown, G.C. NO says yes to mitochondria. Science 2003, 299, 838–839. [Google Scholar] [CrossRef]
Imaging Techniques | Description | Vessel Diameter That Can Be Examined | Sensitivity | Specificity |
---|---|---|---|---|
Pulse wave velocity (PWV) | Measures the velocity of arterial pressure waves along the aorta and large arteries; it is usually calculated by dividing the distance by the time of passage of the pressure wave at two points of arterial recording [26]. Depending on the caliber of the vessels, PWV can be divided into carotid-femoral (cfPWV) and brachial-femoral (baPWV) [20]. | Large arteries (carotid, brachial, and femoral arteries) |
|
|
Flow-mediated dilatation (FMD) | Relies on the evaluation of endothelial function in response to ischemia [31]. This test can be performed at various sites in the peripheral circulation. Arterial dilatation is defined as the percentage change in vessel diameter caused by ischemia relative to the vessel diameter before ischemia [31]. | Large arteries (carotid, brachial, and femoral arteries) | ||
Assessment of the intima-media complex (IMT) | Measures the thickness of the middle layer (tunica intima) and an inner layer (tunica media), that is, the two innermost layers of the arterial wall [34]. The measurement is usually performed with external ultrasound, and sometimes with internal, invasive ultrasound catheters [34]. | Large arteries (carotid, femoral, radial, brachial arteries) |
|
|
Capillaroscopy | A non-invasive diagnostic method based on the evaluation of capillary morphology in the skin and mucous membranes [38]. It involves viewing capillaries under a special microscop, after moistening the examined area with fluid [38]. | Capillaries (the most comprehensive application is the evaluation of the nail shaft vessels) |
|
|
Laser-Doppler Flowmetry | Enables the assessment of microvascular function by quantifying rapid changes in cutaneous blood flow in response to a given pharmacological or mechanical stimulus [41]. It has been shown that peripheral endothelial dysfunction of peripheral vessels correlates with endothelial function in coronary microvessels, suggesting that endothelial dysfunction is a globalized pathological condition [41]. | Microvascular perfusion | ||
Laser speckle contrast imaging (LSCI) | LSCI allows for non-invasive real-time monitoring of peripheral microcirculatory perfusion on a wide area of tissue with a very good spatial and temporal resolution and excellent reproducibility [44,45]. This technique coupled with vascular reactivity tests enables the assessment of endothelial function [46]. | Microvascular perfusion |
|
|
Optical coherence tomography angiography (OCTA) | A non-invasive imaging technique that uses motion contrast imaging to obtain information about volumetric blood flow [48]. It compares the decorrelation signal (differences in the intensity or amplitude of the backscattered OCT signal) between successive OCT scans taken in the same cross-section to construct a blood flow map [48]. | Retinal vessels |
|
|
Complications of Vascular Aging | Pathophysiology |
---|---|
Atherosclerotic vascular diseases | NTBIs accumulates in ECs and VSMCs, which undergo apoptosis. These cells produce elevated levels of VEGF and MCP1, which cause increased permeability and recruitment of immune cells [53]. Increased vascular permeability induces subendothelial infiltration of LDL, which promotes the development of atherosclerotic plaque [54]. In addition, impaired endothelial NO synthesis induced by iron overload promotes the activation of proatherogenic mechanisms, endothelial dysfunction, and arterial stiffness [55]. Under these conditions, monocytes recruited to the atherosclerotic plaque differentiate into M1 macrophages with a pro-inflammatory phenotype [56]. This phenotype is associated with poor cholesterol-carrying capacity and the formation of foam cells [57]. Increased necrosis of the core of the atherosclerotic plaque and its fibrosis is caused by apoptosis of VSMCs, formation of foam cells, and reduction in collagen content in the plaque. This promotes the development of CVD [58]. |
Hypertension | Vascular aging is characterized by structural changes such as increased intima-media thickness (IMT), vessel stiffening, and calcification [59]. With age, the proliferation and migration of VSMCs increases, while the elastic properties of the vessels decrease [60]. Vasorelaxation and vasoreactivity are also impaired due to impaired endothelial function. This ultimately increases the risk of developing hypertension [59]. |
Intracerebral hemorrhages | Iron accumulation in the brain triggers a cascade of harmful reactions, such as free radical production, mitochondrial damage, and macrophage/microglia activation, disrupting cellular homeostasis, which can lead to the development of ICH [61]. |
Aneurysms | The development of inflammation that occurs under oxidative stress leads to impaired endothelial function and apoptosis of ECs and VSCMs, resulting in increased vascular stiffness and increased vulnerability [62]. The persistence of oxidative stress results in the continuous activation of inflammatory pathways, which ultimately leads to the accumulation of proteoglycans, an increase in vessel volume in the vasa vasorum, and the degradation of elastic fibers, with a consequent change in the structure and composition of the vessel’s extracellular matrix (ECM) [63]. The consequence of this phenomenon is dissection, followed by or associated with aortic wall dilatation and rupture [63]. |
Vascular cognitive impairment (VCI) | NO is a critical vasodilatory factor that contributes to the regulation of blood flow in brain blood vessels, which can be inactivated by high levels of oxygen free radicals (ROS), resulting in significant cerebral vascular dysfunction [64]. In addition to regulating cerebral blood flow (CBF), NO also inhibits platelet aggregation and endothelial apoptosis and potentiates preservation of endothelial progenitor cells and anti-inflammatory properties [15]. All these benefits of NO are attenuated by ROS. Moreover, peroxynitrite, a product of NO oxidation, causes severe cytotoxicity, leading to cell death not only in the brain vasculature but also in other cell types, including neurons [64]. In addition, the severity of atherosclerotic lesions can lead to a reduction in CBF, which can also contribute to the development of VCI [65]. If the reduction in CBF is severe and persistent, strokes and myocardial infarction can occur [66]. |
Macular degeneration | With age, numerous changes occur within the retinal vasculature, such as reduced choroidal thickness and density, increased flow resistance, and, consequently, reduced choroidal flow [67]. In addition, decreased choroidal perfusion causes ischemia and exacerbates oxidative stress, which can lead to choroidal neovascularization [67]. Ultimately, these changes contribute to macular vascular degeneration [67]. |
Alzheimer’s disease | The development of inflammation that occurs under oxidative stress leads to impaired endothelial function and apoptosis of ECs and VSMCs, resulting in increased vascular stiffness and atherosclerosis of both large and small caliber vessels [68]. These changes, combined with the adverse effects of beta amyloid (Aβ), reduce cerebral perfusion and impair the ability of the cerebral circulation to deliver energy substrates and oxygen to active areas of the brain [68]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młodziński, K.; Świątczak, M.; Rohun, J.; Wolf, J.; Narkiewicz, K.; Hellmann, M.; Daniłowicz-Szymanowicz, L. Vascular Aging and Damage in Patients with Iron Metabolism Disorders. Diagnostics 2022, 12, 2817. https://doi.org/10.3390/diagnostics12112817
Młodziński K, Świątczak M, Rohun J, Wolf J, Narkiewicz K, Hellmann M, Daniłowicz-Szymanowicz L. Vascular Aging and Damage in Patients with Iron Metabolism Disorders. Diagnostics. 2022; 12(11):2817. https://doi.org/10.3390/diagnostics12112817
Chicago/Turabian StyleMłodziński, Krzysztof, Michał Świątczak, Justyna Rohun, Jacek Wolf, Krzysztof Narkiewicz, Marcin Hellmann, and Ludmiła Daniłowicz-Szymanowicz. 2022. "Vascular Aging and Damage in Patients with Iron Metabolism Disorders" Diagnostics 12, no. 11: 2817. https://doi.org/10.3390/diagnostics12112817
APA StyleMłodziński, K., Świątczak, M., Rohun, J., Wolf, J., Narkiewicz, K., Hellmann, M., & Daniłowicz-Szymanowicz, L. (2022). Vascular Aging and Damage in Patients with Iron Metabolism Disorders. Diagnostics, 12(11), 2817. https://doi.org/10.3390/diagnostics12112817