Investigation of SARS-CoV-2 Variants and Their Effect on SARS-CoV-2 Monoclonal Antibodies, Convalescent and Vaccine Plasma by a Novel Web Tool
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Patients
2.2. SARS-CoV-2 Viral RNA Extraction and Amplification
2.3. SARS-CoV-2 Variant Screening PCR
2.4. SARS-CoV-2 Spike Gene Sequencing, Variants and Patterns
2.5. SARS-CoV-2 mAbs Susceptibility
2.6. CP and Vaccine-Elicited Plasma Susceptibility
2.7. Ethical Approval
3. Results
3.1. Spike Variants and Mutations
3.2. MAbs Susceptibility
3.3. CP Susceptibility
3.4. VP Plasma Susceptibility
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The World Health Organization (WHO). Coronavirus Disease (COVID-19): Virus Evolution. Available online: https://www.who.int/news-room/q-a-detail/sars-cov-2-evolution (accessed on 30 December 2020).
- Baratella, E.; Ruaro, B.; Marrochio, C.; Starvaggi, N.; Salton, F.; Giudici, F.; Quaia, E.; Confalonieri, M.; Cova, M.A. Interstitial lung disease at high resolution CT after SARS-CoV-2 related acute respiratory distress syndrome according to pulmonary segmental anatomy. J. Clin. Med. 2021, 10, 3985. [Google Scholar] [CrossRef] [PubMed]
- The World Health Organization (WHO). Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 8 November 2022).
- Brant, C.A.; Tian, W.; Majerciak, V.; Majerciak, V.; Yang, W. SARS-CoV-2: From discovery to genome structure, transcription, and replication. Cell Biosci. 2021, 11, 136. [Google Scholar] [CrossRef]
- Nextstrain. Nextstrain SARS-CoV-2 Resources. Available online: Nextstrain.org/sars-cov-2 (accessed on 5 December 2021).
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Sobieszczyk, M. Antibody resistance of SARS-Cov-2 variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef]
- Volz, E.; Hill, V.; McCrone, J.T.; Price, A.; Jorgensen, D.; O’Toole, A.; Southgate, J.; Johnson, R.; Nascimento, F.F.; Rey, S.M.; et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 2021, 184, 64–75e11. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.H.; Chiang, P.Y.; Ko, S.H.; Chou, Y.C.; Lu, R.M.; Lin, H.T.; Chen, W.Y.; Lin, Y.L.; Tao, M.H.; Jan, J.T.; et al. Antibody cocktail effective against variants of SAR-CoV-2. J. Biomed. Sci. 2021, 28, 80. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Al-Ishaq, F.A.; Al-Mohannadi, F.S.; Mubarak, R.S.; Al-Hitmi, M.H.; Islam, K.R.; Chowdhury, M.E. Moratility prediction utilizing blood biomarkers to predict the severity of COVID-19 using machine learning technique. Diagnostics 2021, 11, 1582. [Google Scholar] [CrossRef]
- Banerjee, A.; Ray, S.; Vorselaars, B.; Kitson, J.; Mamalakis, M.; Weeks, S.; Baker, M.; Mackenzie, L.S. Use of machine learning and artificial intelligence to predict SARS-CoV-2 infection from full blood counts in a population. Int. Immunopharmacol. 2020, 86, 106705. [Google Scholar] [CrossRef]
- Proctor, E.A.; Dineen, S.M.; van Nostrand, S.C.; Kuhn, M.K.; Barrett, C.D.; Brubaker, D.K.; Yaffe, M.B.; Lauffenburger, D.A.; Leon, L.R. Coagulopathy signature precedes and predicts severity of end-organ heat stroke pathology in a mouse model. J. Thromb. Haemost. 2020, 18, 1900–1910. [Google Scholar] [CrossRef]
- Casadevall, A.; Henderson, J.P.; Joyner, M.J.; Pirofski, L. SARS-CoV-2 variants and convalescent plasma: Reality, fallacies, and opportunities. J. Clin. Investig. 2021, 131, E148832. [Google Scholar] [CrossRef]
- Acevedo, M.L.; Alonso-Palomares, L.; Bustamante, A.; Gaggero, A.; Paredes, F.; Cortes, C.P.; Valiente-Echeverria, F.; Scoto-Rifo, R. Infectivity and immune escape of the new SARS-CoV-2 variants of interest Lambda. medRxiv 2021. [Google Scholar] [CrossRef]
- Torbati, E.; Krause, K.L.; Ussher, J.E. The immune response to SARS-CoV-2 and variants of Concern. Viruses 2021, 13, 1911. [Google Scholar] [CrossRef]
- Nyberg, T.; Ferguson, N.M.; Nash, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative analysis of the risks of hospitalized and death associated with SARS-CoV-2 Omicron (B.1.1.529) and delta (b.1.617) variants in England: A cohort study. Lancet 2022, 22, 462–469. [Google Scholar]
- Ulloa, A.C.; Buchan, S.A.; Daneman, N.; Brown, K.A. Estimates of SARS-CoV-2 Omicron Variant Severity in Ontario, Canada. JAMA 2022, 327, 1286–1288. [Google Scholar] [CrossRef]
- Veneti, L.; Boas, H.; Kristoffersen, A.B.; Stalcrantz, J.; Bragstand, K.; Hungnes, O.; Storm, M.L.; Storm, M.L.; Aasand, N.; Rø, G.; et al. Reduced risk of hospitalization among reported COVID-19 cases infected with the SARS-CoV-2 Omicron BA.1 variant compared with the Delta variant, Norway, December 2021 to January 2022. Eurosurveillance 2022, 27, 2200077. [Google Scholar] [CrossRef]
- Bandony, D.J.D.R.; Weimer, B.C. Analysis of SARS-CoV-2 genomic epidemiology reveals disease transmission coupled to variant emergence and allelic variation. Sci. Rep. 2021, 1, 7380. [Google Scholar] [CrossRef]
- Fark, A.S.C.; Mella, A.; turgeon, M.; Haigh, J.J. A novel SARS-CoV-2 viral sequence bioinformatics pipeline has found genetic evidence that the viral 3′ untranslated region (UTR) evolves and generates increased viral diversity. Front. Microbiol. 2021, 12, 665041. [Google Scholar] [CrossRef] [PubMed]
- Tzou, L.P.; Tao, K.; Nouthin, J.; Rhee, S.Y.; Hu, B.D.; Pai, S.; Parkin, N.; Shafer, R.W. Coronavirus Antiviral Research Database (CoV-RDB: An online database designed to facilitate comparisons between candidate anti-coronavirus compounds. Viruses 2021, 12, 1006. [Google Scholar] [CrossRef] [PubMed]
- Sayan, M.; Arikan, A.; Isbilen, M. Variant analysis of SARS-CoV-2 strains with phylogenetic analysis and Coronavirus Antiviral and Resistance Database. J. Comp. Eff. Res. 2021, 11, 157–167. [Google Scholar] [CrossRef]
- Stanford University. SAR-CoV-2 Sequence analysis. Available online: https://covdb.stanford.edu/sierra/sars2/by-sequences/ (accessed on 7 December 2021).
- WHO. Coronavirus Disease: Vaccines. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-vaccines (accessed on 17 May 2022).
- Mascellino, M.T.; Di Timoteo, F.; de Angelis, M.; Oliva, A. Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy, and safety. Infect. Drug Resist. 2021, 31, 3459–3476. [Google Scholar] [CrossRef] [PubMed]
- Korukluoglu, G.; Kolukirik, M.; Bayrakdar, F.; Girgin, G.; Atlas, A.; Cosgun, Y.; Kolukirik, C.Z. 40 minutes RT-QPCR assay for screening spike N51Y and HV69–70del mutations. bioRxiv 2021. [Google Scholar] [CrossRef]
- Stanford University. Susceptibility Data. Available online: https://covdb.stanford.edu/page/susceptibility-data/ (accessed on 29 November 2021).
- Antibody Society. COVID-19 Biological tracker. Available online: https://www.antibodysociety.org/covid-19-biologics-tracker/ (accessed on 1 June 2022).
- Aleem, A.; Slenker, A.K. Monoclonal Antibody Therapy for High-Risk Coronavirus (COVID-19) Patients with Mild to Moderate Disease Presentations. [Updated 2021 Oct 26]. StatPearls. January 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570603/ (accessed on 1 October 2021).
- Stanford University. SARS-CoV-2 Monoclonal Antibodies Tracker. Available online: https://covdb.stanford.edu/page/mab-tables/ (accessed on 7 December 2021).
- Food and Drug Administration. Emergency Use Authorization. Available online: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization (accessed on 16 September 2022).
- The World Health Organization (WHO). Vaccines. Available online: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_11Nov2021.pdf (accessed on 11 November 2021).
- COVID-19 Vaccine Tracker and Landscape. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 3 December 2021).
- The Food and Drug Administration (FDA), COVDI-19 Vaccines. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines#eua-vaccines (accessed on 30 November 2021).
- The World Health Organization (WHO). Status of Vaccine. Available online: https://extranet.who.int/pqweb/key-resources/documents/status-covid-19-vaccines-within-who-eulpq-evaluation-process (accessed on 11 November 2021).
- Hourdel, V.; Kwasiborski, A.; Baliere, C.; Matheus, S.; Batejat, C.F.; Manuguerra, J.C.; Vanhomwegen, J.; Caro, V. Sequencing through comparison of MinION and Illumina iSeq100TM system. Front. Microbiol. 2020, 11, 571328. [Google Scholar] [CrossRef]
- Zekri, A.R.N.; Amer, K.E.; Hafez, M.M.; Hassan, Z.K.; Ahmed, O.S.; Soliman, H.K.; Bahnasy, A.A.; Hamid, W.A. Genomic characterization of SARS-CoV-2 in Egypt. J. Adv. Res. 2021, 30, 123–132. [Google Scholar] [CrossRef]
- Badaoui, B.; Sadki, K.; Talbi, C.; Salah, D.; Tazi, L. Genetic diversity and genomic epidemiology of SARS-CoV-2 in Morocco. Bio Safe Health 2021, 3, 124–127. [Google Scholar] [CrossRef] [PubMed]
- The World Health Organization (WHO). Weekly Epidemiological Update on COVID-19–27 April 2021. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19–27-april-2021 (accessed on 25 April 2021).
- The World Health Organization. Weekly Update on COVID-19 23 November 2021. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---23-november-2021 (accessed on 23 November 2021).
- WHO. Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 6 July 2021).
- Planas, D.; Baidaliuk, A.; Staropoli, I.; Rajah, F.G.; Planhais, C.; Porrot, F.; Robillard, N. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Peng, P.; Liu, B.Z.; Fang, L.; Luo, Y.F.; Jin, A.S.; Tang, N.; Huang, A.I. Emerging SARS-CoV-2 variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies. Cell Mol. Immunol. 2021, 18, 1061–1063. [Google Scholar] [CrossRef]
- Kemp, S.A.; Collier, D.A.; Datir, R.; Ferreira, I.A.T.M.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C. Neutralizing antibodies in spike mediated SARS-CoV-2 adaption. Nature 2021, 592, 277–282. [Google Scholar] [CrossRef]
- Baum, A.; Fulton, B.O.; Wloga, E.; Copin, R.; Pascal, K.E.; Russo, V.; Stephanie, G.; Lanza, K.; Negron, N. Antibody cocktails to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 2020, 369, 1014–1018. [Google Scholar] [CrossRef]
- Chemaitelly, H.; Yassine, H.M.; Benslimane, F.M.; Al Khatib, H.A.; Tang, P.; Hasan, M.R.; Malek, J.A.; Coyle, P.; Ayoub, H.H.; Al Kanaani, Z.; et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat. Med. 2021, 27, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Puranik, A.; Lenehan, P.J.; Silvert, E.; Niesen, M.M.; Corchado-Garcai, J.; O’Horo, J.C.; Virk, A.; Swift, M.S. Comparison of two highly effective m RNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv 2021. [Google Scholar] [CrossRef]
SARS-Cov-2 Lineage | SARS-CoV-2 Mutation Pattern | CoV-RDB, n (%) |
---|---|---|
B.1.1.7/Alpha | 134 (64) | |
N501Y, ∆69–70, ∆144 | 105 (78) | |
N501Y, ∆144 | 7 (5) | |
N501Y | 7 (5) | |
N501Y, ∆69–70, S98F, ∆144 | 2 (1.4) | |
N501Y, ∆69–70, ∆144, G181V | 2 (1.4) | |
N501Y, ∆69–70, ∆144, S155R | 2 (1.4) | |
N501Y, ∆69–70, ∆144, V289L | 2 (1.4) | |
N501Y, ∆69–70, ∆142, Y144V | 2 (1.4) | |
N501Y, S98F, ∆144 | 1 (1) | |
N501Y, ∆69–70 | 1 (1) | |
N501Y, ∆69–70, L141F, ∆144 | 1 (1) | |
N501Y, ∆69–70, ∆144, S155R, F374S | 1 (1) | |
N501Y, A67V, ∆69–70, ∆144 | 1 (1) | |
B.1.351/Beta | 7 (3) | |
D80A, D215G, ∆241–243, K417N, E484K, N501Y | 7 (100) | |
B.1.617.2/Delta | 10 (5) | |
T95I, G142D, ∆156–157, R158G, L452R, T478K | 3 (30) | |
G142D, ∆156–157, R158G, L452R, T478K | 1 (10) | |
G142D, ∆156–157, R158G, A222V, L452R, T478K | 1 (10) | |
G142D, ∆156–157, R158G, N440T, L452R | 1 (10) | |
L452R, N501Y | 1 (10) | |
T478K | 2 (20) | |
A222V | 1 (10) | |
B.1.525/Eta | 1 (1) | |
A67V, ∆69–70, ∆144, E484K | 1 (100) | |
Wild type | No mutation | 59 (27) |
Total | 211 (100) |
SAR-CoV-2 Lineage/WHO Label | Bamlanivimab b | Etesevimab b | Bamlanivimab plus Etesevimab a,b | Casirivimab b | Imdevimab b |
Casirivimab plus Imdevimab a,b | Sotrovimab b | Cligavimab c | Tixagevimab c |
Cligavimab plus Tixagevimab a | C135 d | C144 d |
C135 Plus C144 a | BRII-196 d | BRII-198 d |
BRII-196 plus BRII-198 a |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B.1.1.7/Alpha | ||||||||||||||||
Susceptible | 133 (99) | 1 (1) | 131 (98) | 134 (100) | 134 (100) | 119 (89) | 23 (17) | 134 (100) | 134 (100) | 133 (99) | 120 (90) | 6 (4) | 6 (4) | 120 (90) | 120 (90) | 113 (84) |
Intermediate | ND | 22 (16) | ND | ND | ND | 1 (1) | 111 (83) | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Resistance | 1 (1) | 111 (83) | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
No data available | - | - | 3 (2) | - | - | 14 (10) | - | - | - | 1 (1) | 14 (10) | 128 (96) | 128 (96) | 14 (10) | 14 (10) | 21 (16) |
B.1.351/Beta | ||||||||||||||||
Susceptible | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Intermediate | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Resistance | - | 7 (100) | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
No data available | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
B.1.617/Delta | ||||||||||||||||
Susceptible | 2 (20) | 7 (70) | ND | 5 (50) | 9 (90) | 8 (80) | 1 (10) | - | - | - | - | 3 (30) | 3 (30) | 1 (10) | - | - |
Intermediate | ND | ND | 1 (10) | 4 (40) | ND | 1 (10) | ND | - | - | - | - | ND | ND | ND | - | - |
Resistance | 6 (60) | 1 (10) | ND | ND | ND | ND | ND | - | - | - | - | ND | ND | ND | - | - |
No data available | 2 (20) | 2 (20) | 9 (90) | 1 (10) | 1 (10) | 1 (10) | 9 (90) | - | - | - | - | 7 (70) | 7 (70) | 9 (90) | - | - |
SARS-CoV-2 Variant | Convalescent Plasma Susceptibility, n (%) | |||
---|---|---|---|---|
Susceptible | Intermediate | Resistance | No Data | |
B.1.117/Alpha, n = 134 | ||||
N501Y, ∆69–70, ∆144 | 105 (100) | - | - | - |
N501Y, ∆144 | 7 (100) | - | - | - |
N501Y | 7 (100) | - | - | - |
N501Y, ∆69–70, S98F, ∆144 | 2 (100) | - | - | - |
N501Y, ∆69–70, ∆144, G181V | 2 (100) | - | - | - |
N501Y, ∆69–70, ∆144, S155R | 2 (100) | - | - | - |
N501Y, ∆69–70, ∆144, V289L | 2 (100) | - | - | - |
N501Y, ∆69–70, ∆142, Y144V | 2 (100) | - | - | - |
N501Y, S98F, ∆144 | 1 (100) | - | - | - |
N501Y, ∆69–70 | 1 (100) | - | - | - |
N501Y, ∆69–70, L141F, ∆144 | 1 (100) | - | - | - |
N501Y, ∆69–70, ∆144, S155R, F374S | 1 (100) | - | - | - |
N501Y, A67V, ∆69–70, ∆144 | 1 (100) | - | - | - |
B.1.351/Beta, n = 7 | ||||
D80A, D215G, ∆241–243, K417N, E484K, N501Y | - | 7 (100) | - | - |
B.1.617.2/Delta, n = 10 | ||||
T95I, G142D, ∆156–157, R158G, L452R, T478K G142D, ∆156–157, R158G, A222V, L452R, T478K G142D, ∆156–157, R158G, N440T, L452R, T478K G142D, ∆156–157, R158G, L452R, T478K L452R, N501Y T478K A222V | - - - 1 (100) 1 (100) 2 (100) 1 (100) | 3 (100) 1 (100) 1 (100) | - - - | - - - |
B.1.525/Eta, n = 1 | ||||
A67V, ∆69–70, ∆144, E484K | 1 (100) | - | - | - |
mRNA Vaccine | Viral Vector Vaccine | Inactivated Vaccine | Recombinant Vaccine | Combined Vaccine | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SARS-CoV-2 Lineage/WHO Label | Comirnaty (Pfizer-BioNTech)a | Moderna b | AstraZeneca b | Sputnik V d | Janssen b | Bharat Biotech e | Sinopharm c | Covaxin e | Corona Vac c | Novovax b | Medigen | Comirnaty (Pfizer-BioNTech) + AstraZeneca |
B.1.1.7/Alpha | ||||||||||||
Susceptible | 134 (100) | 134 (100) | ND | 114 (85) | 114 (85) | 114 (85) | 114 (85) | 114 (85) | 114 (85) | 114 (85) | 114 (85) | ND |
Intermediate | ND | ND | 114 (85) | ND | ND | ND | ND | ND | ND | ND | ND | 114 (85) |
Resistance | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
No data available | - | - | 20 (15) | 20 (15) | 20 (15) | 20 (15) | 20 (15) | 20 (15) | 20 (15) | 20 (15) | 20 (15) | 20 (15) |
B.1.351/Beta | - | - | - | - | - | - | - | - | - | |||
Susceptible | ND | ND | None | |||||||||
Intermediate | 5 (71) | 2 (29) | 1 (14) | |||||||||
Resistance | ND | ND | ND | |||||||||
No data available | 2 (29) | 5 (71) | 6 (86) | |||||||||
B.1.617/Delta | - | - | - | - | - | - | - | - | - | - | ||
Susceptible | 7 (70) | 7 (70) | ||||||||||
Intermediate | 1 (10) | ND | ||||||||||
Resistance | ND | ND | ||||||||||
No data available | 2 (20) | 3 (30) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arikan, A.; Sayan, M. Investigation of SARS-CoV-2 Variants and Their Effect on SARS-CoV-2 Monoclonal Antibodies, Convalescent and Vaccine Plasma by a Novel Web Tool. Diagnostics 2022, 12, 2869. https://doi.org/10.3390/diagnostics12112869
Arikan A, Sayan M. Investigation of SARS-CoV-2 Variants and Their Effect on SARS-CoV-2 Monoclonal Antibodies, Convalescent and Vaccine Plasma by a Novel Web Tool. Diagnostics. 2022; 12(11):2869. https://doi.org/10.3390/diagnostics12112869
Chicago/Turabian StyleArikan, Ayse, and Murat Sayan. 2022. "Investigation of SARS-CoV-2 Variants and Their Effect on SARS-CoV-2 Monoclonal Antibodies, Convalescent and Vaccine Plasma by a Novel Web Tool" Diagnostics 12, no. 11: 2869. https://doi.org/10.3390/diagnostics12112869
APA StyleArikan, A., & Sayan, M. (2022). Investigation of SARS-CoV-2 Variants and Their Effect on SARS-CoV-2 Monoclonal Antibodies, Convalescent and Vaccine Plasma by a Novel Web Tool. Diagnostics, 12(11), 2869. https://doi.org/10.3390/diagnostics12112869