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Abstract: Breast cancer is the most common cancer diagnosed in women and the leading cause
of cancer-related deaths among women worldwide. The death rate is high because of the lack of
early signs. Due to the absence of a cure, immediate treatment is necessary to remove the cancerous
cells and prolong life. For early breast cancer detection, it is crucial to propose a robust intelligent
classifier with statistical feature analysis that considers parameter existence, size, and location. This
paper proposes a novel Multi-Stage Feature Selection with Binary Particle Swarm Optimization
(MSFS–BPSO) using Ultra-Wideband (UWB). A collection of 39,000 data samples from non-tumor and
with tumor sizes ranging from 2 to 7 mm was created using realistic tissue-like dielectric materials.
Subsequently, the tumor models were inserted into the heterogeneous breast phantom. The breast
phantom with tumors was imaged and represented in both time and frequency domains using the
UWB signal. Consequently, the dataset was fed into the MSFS–BPSO framework and started with
feature normalization before it was reduced using feature dimension reduction. Then, the feature
selection (based on time/frequency domain) using seven different classifiers selected the frequency
domain compared to the time domain and continued to perform feature extraction. Feature selection
using Analysis of Variance (ANOVA) is able to distinguish between class-correlated data. Finally,
the optimum feature subset was selected using a Probabilistic Neural Network (PNN) classifier
with the Binary Particle Swarm Optimization (BPSO) method. The research findings found that the
MSFS–BPSO method has increased classification accuracy up to 96.3% and given good dependability
even when employing an enormous data sample.

Keywords: feature selection; prediction; feature engineering; multi-stage; machine learning;
supervised learning; breast cancer

1. Introduction

Breast cancer is the most common cancer worldwide and the leading cancer compared
to other types of cancer for women [1]. It is the fifth most-frequent cancer that causes
death in women, especially in developing countries, where screening systems are limited
and sometimes nearly non-existent [2,3]. Previous studies have stated that early breast
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cancer detection or screening and accurate diagnosis and treatment could improve long-
term breast cancer survival rates while lowering treatment costs [4]. Note that cancer is a
condition in which the body replicates cells and cell responses are out of balance, resulting
in abnormal cell growth or a tumor. Note that the tumor is either benign (noncancerous)
or cancerous (malignant). Benign tumors do not spread to other body parts or invade
neighboring tissues (metastasize) [5]. On the other hand, a malignant tumor is made up of
cancer cells that can penetrate and damage surrounding tissues and affect different body
sections. Other than that, chronic problems can occur if cancer cells move to other organs.
Therefore, it is pretty apparent that early detection of the cancer cell’s presence is crucial to
cure and prevent the cell from spreading to the other part.

Numerous existing screenings and developing technology are used to diagnose breast
cancer early in its stages [6]. Current breast-cancer-screening technologies are divided
into two groups, as shown in Figure 1, body imaging-based technology and microwave
imaging-based technology. Magnetic Resonance Imaging (MRI), mammography, and
ultrasound are examples of body image-based technology that obtain the breast structure
images to be reviewed and evaluated by the radiologist [7,8]. Most clinics and hospitals
have these tools on hand. On the other side, microwave imaging-based technology has
the alternative to replace costly and invasive screening procedures [9–12]. Furthermore,
this technology is safe, durable, free of ionizing radiation exposure, and causes users
less physical harm [13,14]. Microwave tomography and radar-based imaging are two
approaches used in microwave imaging technologies [15–17]. The Ultra-Wideband (UWB)
signals were employed in both ways to categorize breast cancer based on its dielectric
properties. The main contributions of this research work are to modify the hybrid statistical
feature generator model for optimized feature selection to improve classification accuracy
and propose a complete design framework for early breast cancer detection.
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Figure 1. Breast cancer screening technology [18].

The rest of this paper is structured as follows: the related works, materials and method
are described in Sections 2 and 3, respectively, which propose a multi-feature selection
technique in detail. The results and discussions are presented in Section 4, while Section 5
concludes the study.

2. Related Works

Many other researchers have conducted studies on breast cancer detection using the Ultra-
Wideband (UWB) [19]. This includes Khondker Jahid Reza et al. [20], who proposed an early
breast cancer detection technique by developing a system integrating a small-size UWB biomed-
ical antenna and feature extraction technique for the Artificial Neural Network (ANN) [21], in
which the system can detect tumor existence and measure the size. Forward scattering signals
comprise four characteristic features for pattern recognition and tumor signature investigation,
including maximum, minimum, average, and standard deviation.
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On the other hand, Nouralhuda et al. [22] proposed a computational method for the
detection of breast tumors using UWB microwave technology. The proposed technique
uses ANN feedforward backpropagation for detecting and recognizing tumors based on
the dielectric properties of human mammary tissues. The research used a sample of a
fixed tumor-sized diameter of 2.5 mm and was placed in various locations. Note that the
database consists of only 118 datasets, with a single feature extraction using Fast Fourier
Transform (FFT) to classify the tumor in the breast phantom. However, they could only
demonstrate one tumor size during the procedure. Therefore, various tumor sizes are
recommended for data analysis to mimic the actual tumor in the breast phantom, thus
making more accurate predictions.

According to work published in recent years, R.C. Conceicao et al. [23] presented a
classification of breast tumor models of varying sizes and shapes using signals collected
with a monostatic UWB radar microwave imaging prototyped with machine learning
algorithms. The classification was evaluated with Principal Component Analysis (PCA) as
a feature extraction method and tuned Naïve Bayes (NB), Decision Tree (DT), and k-Nearest
Neighbor (kNN) as the classifier.

Bifta et al. [24] proposed an Artificial Neural Network (ANN) technique with single-
stage feature extractions using small data samples. Hence, more data samples needed to be
collected and tested through the proposed statistical feature generator method to prove it
can perform well for the larger-size dataset. Their paper investigated early breast cancer
detection based on UWB hardware and used a Feedforward Backpropagation Neural
Network (FFBPNN) in three dimensions with the “feedforward net” function. This paper
only discussed a single feature extraction method to minimize the data size feature from
1632 data points to only 4 data features before it moved to ANN for classification. A vast
number of valuable data will be lost during the procedure, and it is suggested to have an
MSFS to ensure that only essential data will be processed during the training procedure.

Vijayasarveswari et al. proposed a Multi-Stage Feature Selection (MSFS) method that ex-
tracts significant features statistically for breast cancer size detection using data normalization
techniques with 6750 data samples [25]. Note that the proposed algorithm has four parts—
comprising data normalization methods, feature extraction, dimensional reduction, and
feature fusion. The output is fused to generate different datasets, namely, 8-HybridFeature, 9-
HybridFeature, and 10-HybridFeature datasets. The classification performance of the datasets
is tested using the Support Vector Machine (SVM), Probabilistic Neural Network (PNN), and
NB classifiers for breast cancer size classification. The research findings discovered that the
8-HybridFeature dataset performs better than the other two datasets, although it has specific
statistical feature analysis in terms of the complete framework. The summary of the previous
study on breast cancer detection using UWB is shown in Table 1.

The capabilities of a machine learning model depend on the characteristics utilized
during training. The selection of the characteristics is based on the diverse approaches
to feature selection offered by different researchers. According to the prior study, the
standard feature selection approach adopted by researchers is essentially a single-stage
method. Typically, researchers collect features by extraction, selection, or normalization.
This strategy, however, adds to an increase in the misclassification rate due to inadequate
data processing. In addition, the exploration and exploitation of the data are insufficient
during the feature selection, since the features are decreased based on the starting condition,
causing the selected features to be redundant or some beneficial characteristics to be lost.
Exploration involves the discovery of characteristics through a multi-stage process, whereas
exploitation entails the addition of relevant information to the prior optimal solution.



Diagnostics 2022, 12, 2870 4 of 19

Table 1. Summary of the previous study on breast cancer detection using UWB.

Reference Dataset Classification Technique Limitation

Lu et al., 2022
[26]

Breast phantom
(6400 data sample)

A Convolutional Neural
Network Long Short-Term

(CNN-LSTM) network

Detection and quadrant
localization only

Liu et al., 2021
[27]

Breast phantom
(11,232 data sample) SVM Detection and localization

Vijayasarveswari et. al., 2020
[25]

Breast phantom
(6750 data sample) MSFS Focus on size detection only

Bari et. al., 2020
[24]

Breast phantom
(448 data sample) FFBPNN Limited data sample

Nouralhuda et. al., 2016
[22]

Breast phantom
(118 data sample) FFBPNN Single feature extraction

Reeza et. al., 2015
[21]

Breast phantom
(1632 data points) Feature extraction and ANN

Only detect for existence and
size

Single feature technique

Alsheri et al., 2011
[28]

Breast phantom
(6400 data points) Feature extraction and ANN Single feature technique

This work is motivated by discovering and developing an MSFS–BPSO strategy that
provides an efficient machine learning model. Traditionally, a collection of robust features
is chosen following data analysis to prevent the creation of an overfitted machine learning
model. Based on past research, some researchers pick the subset of features based on the
machine learning score, while others select them during the creation of the machine learning
model. However, the selected features may not be suitable to various machine learning
model types since feature selection relies highly on machine learning. If the same feature
is utilized for several forms of machine learning, it increases the likelihood of developing
models with a high misclassification rate. Determining characteristics by employing the
inherent attributes of the data with tremendous significance and the slightest similarity is
thus an additional objective of this study. This can be accomplished by rating the traits to
determine their relative value. This allows the model’s complexity to be lowered and the
optimization problem to be addressed.

One of the main goals of breast cancer detection research is to create a thorough
framework for the identification of cancer. Developing a comprehensive framework for
breast cancer detection is one of the primary concerns in breast cancer detection research.
Only a few researchers can establish a framework from data sample collection to visu-
alization to identify breast cancer in their studies. Only a few researchers can set up an
entire framework, from data sample collecting to visualization, to identify breast cancer in
their studies. Shirazi (2017) [29], Huang (2017) [30], and R. Chtihrakkannan (2019) [31], for
instance, developed a framework to determine the presence or absence of breast cancer.

In contrast, Santorelli (2014) [32], Liu (2021) [27] and Lu (2022) [26] developed a
breast cancer detection and localization framework. Reza (2015) [33] and Vijayasarveswari
(2020) [25] merely provided a framework to estimate the breast cancer’s size, whereas
Chaurasia (2018) [34], M. Islam (2020) [35], and B. Kharthikeyan (2020) [36] only created a
framework to research the different types of cancer (benign and malignant). However, for
the most part, researchers are looking at how to create a system that can recognize every
breast cancer symptom. As a result, it’s essential to create a comprehensive framework for
breast cancer screening that incorporates many early detection criteria.

Although many single-stage feature techniques and classifiers have been proposed, the
optimized MSFS for breast cancer detection using UWB has yet to be discovered. This paper
investigated an MSFS method optimized with BPSO and singular value decomposition for
data reduction that provides the highest detection accuracy, minimizes misclassification,
and promotes high breast cancer detection reliability. This research is essential for deter-
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mining the better version of statistical features and classification algorithms that have the
potential to be used in breast cancer detection, including existence, size, and location.

3. Materials and Methods

This section presents the materials and experimental methodology used in this project.
The process started with data collection, which comprised material used for breast phantom
and tumor development. Next, the hybridization of the Multi-Stage Feature Selection with
Binary Particle Swarm Optimization (MSFS–BPSO) framework is divided into six stages:
(a) feature normalization is to convert the feature into the same scale, (b) feature dimension
reduction, which is used to transform the data from a high dimensional space into a low
dimensional space without losing important properties of the original data, (c) feature
selection (based on time/frequency domain) is used to set the best group result between
the time domain and frequency domain, (d) feature extraction is used to shrink the number
of features in a dataset by creating new features from the existing one, (e) feature selection
(optimization) identifies an optimized feature set, and (f) finally, feature fusion combines
different features from different layers. Note that only one type of domain is selected to
continue the process.

3.1. Breast Phantom and Tumor Development

Various breast phantoms have been proposed to explore the researcher’s capability to
detect breast cancer [37]. According to literature studies, most researchers employ low-cost
and non-chemical substances such as petroleum jelly, a blend of wheat flour, water, and soy
oil, to create heterogeneous breast phantoms [38]. It is important to ensure that the breast
phantoms possess permittivity and conductivity values comparable to actual breast tissue,
as shown in Table 2.

Table 2. Dielectric properties of breast phantom and tumor [25,28].

Breast Phantom Material Permittivity Conductivity

Fatty tissues Pure petroleum jelly 2.36 0.012
Glandular Soy oil 2.7 0.061

Tumor Mixture of water and wheat flour 6.98 0.785
Skin Glass 3.5–10 Negligible

The breast phantom comprises a 75 mm wide, 60 mm high, and 1.9 mm thick hemi-
spherical wine glass that serves as the skin. Consequently, it is placed into the phantom
for each experimentation trial in a new spot. Pure petroleum jelly serves as the breast fatty
tissue used in this research. Meanwhile, the tumor is made from a mixture of 10 g wheat
flour and 5.5 g water (10:5.5), as shown in Figure 2a,b, respectively.
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Figure 2. (a) The breast phantom; (b) The tumor. Figure shows the developed breast phantom and
tumor for the experiments.
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3.2. Experimental Setup

The proposed system architecture consists of hardware and software modules. The
hardware includes two antennae (transmitter and receiver), a breast phantom, a tumor, and
an Ultra-Wideband (UWB) transceiver with a Personal Computer (PC) interface. Here, the
software comprises a data processor, classifier, and Graphical User Interface (GUI).

As illustrated in Figure 3, the heterogenous breast phantom is placed between the
transmitter and receiver. The Ethernet cable connects the router to the UWB transceiver
(P400 RCM). Then, UWB pulses were created in the transceiver and transferred through the
transmitting signal to the receiver. Correspondingly, the receiver antenna then captured
the signals at the center frequency of 4.3 GHz, passing through the router before all the
data were analyzed using Matlab software [39,40]. The experimental design adopted in
this study is comparable to the technique used in the studies detailed in [24,25].
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The steps for collecting data are as follows:

1. The 2 mm tumor is implanted in a heterogenous breast phantom;
2. The single transmitting antenna (Tx) transmits UWB signals, and the opposite single

receiving antenna (Rx) captures forward scattered UWB signals. Fifty repetitions are
taken for each cycle;

3. The tumor is placed in 65 different locations within the breast phantom. Each tumor
(of the same size) is placed at different locations using the combination location of x
coordinates (1 cm, 2 cm, 3.35 cm, 4 cm, 5 cm, 6 cm), y coordinates (1 cm, 2 cm, 3.35 cm,
4 cm, 5 cm, 6 cm), and z coordinates (4 cm, 5 cm, 6 cm, 7 cm, 8 cm);

4. Steps 1 to 3 are repeated until all the locations in the breast phantom are covered. The
tumor size is then changed to other sizes (3 mm, 4 mm, 5 mm, 6 mm, and 7 mm);

5. For no-tumor data, the breast phantom will rotate 360 degrees (with 60 different
angles). Three hundred twenty-five repetitions are taken for each cycle.

A sample of forwarding scattered time domain signals were transmitted and received.
A total of 39,000 UWB signals were collected, with each signal sample having 1632 data
points. Typically, the signal is in the time domain. In the time domain, the signal character-
istics are simpler to see. However, assessing the signal characterization in the frequency
domain is equally crucial since it enables the observation of the signal’s properties that
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cannot be seen in the time domain. As a result, the time domain signals collected from the
UWB transceivers were converted to frequency domain signals using the widely utilized
Fast Fourier Transform (FFT). The signal’s maximum peak occurs roughly around 4.3 GHz,
which is also the operating frequency of the UWB antenna.

3.3. Multi-Stage Feature Selection

The process of creating new input features for machine learning is known as feature
engineering, which extracts the features from raw data. The presence of the proper feature
characterizes successful machine learning algorithms. Other than that, these characteristics
are then converted into formats suitable for the machine learning procedure. Data-specific
expertise is essential to the process. The overall flow chart is shown in Figure 4. It
is summarized into five stages: (a) data acquisition, (b) data pre-processing, (c) data
processing, (d) validation, and finally, (e) results.
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Multi-Stage Feature Selection (MSFS) consists of data pre-processing (handling nu-
merical features, missing values, and outliers) and data processing (feature normalization,
feature dimension reduction, feature selection classifiers, feature extraction, feature se-
lection, and feature fusion). The importance of MSFS–BPSO is to reduce complexity and
increase accuracy. Apart from that, this system was trained and tested using a total of
39,000 data samples. A total of 60% of data samples were used for training, 20% for testing
and the remaining 20% for validation. The received signals were processed to provide
1632 discrete data points for each sample.

3.3.1. Feature Normalization

Feature normalization is a technique used for standardizing the range of features
without reducing the data dimension. The normalization of pre-processed data is essential
because it is essential to select the best characteristics without excluding useful information.
Consequently, this study analyzed raw data samples using five distinct data normalization
techniques. Based on a comprehensive review of previous research, five commonly used
feature normalization methods were selected: the Binary Normalization (BN), Decimal
Scaling (DS), Z-score (ZS), Linear Scaling (LS), and Min–Max (MM) methods, as mentioned
in Equations (1)–(5).
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The BN normalization method rescales the data from one range to a new range,
the [0, 1] range, using Equation (1), where v is the current value, vmax and vmin are maximum
and minimum value of normalized data.

Binary normalization, v′BN =
0.8(v− vmin)

vmax − vmin
+ 0.1. (1)

The DS method normalizes the data by moving the decimal points. The number
of decimal points depends on the maximum absolute value of the data sample, D. It is
computed using Equation (1), where v is the instantaneous value of feature D, and j is the
smallest integer that can obtain a maximum v′ with a value less than 1.

Decimal scaling, v′DS =
v

10j . (2)

LS is the case of the MM normalization method. It normalizes the data to a [0, 1] range
based on Equation (3), where v is the instantaneous value of feature D and maxD, and minD
are the maximum and minimum values of D, respectively.

Linear scaling, v′LS =
v−minD

maxD −minD
. (3)

The MM normalization method rescales the data from one range to a new range, the
[−1, 1] range, using Equation (4), where v is the instantaneous value of feature D, maxD
and minD are the maximum and minimum values of D, respectively, new_maxD is one and
new_minD is −1.

Min-max, v′MM =
v−minD

maxD −minD
(new_maxD − new_minD) + new_minD. (4)

The data are normalized by converting the value to a common scale with zero mean
and unity standard deviation, as shown in Equation (5). Here, v is the instantaneous
value of feature D, while µD and σD are the mean and standard deviation of feature D,
respectively.

Z-score, v′ZS =
v− µD

σD
. (5)

3.3.2. Feature Dimension Reduction

Feature dimension reduction refers to reducing the number of input variables for a
predictive model. Note that simpler predictive models with fewer input variables may
perform better when generating predictions based on new data [41]. For example, a matrix’s
Singular Value Decomposition (SVD) is a factorization of linear algebra into three different
matrices and transforms a dataset from its original dimension form into a new compressed
dimension [42], as shown in Figure 5 and Equation (6).
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The use of feature dimension reduction has been tested to discover how it affects
categorization. The training time of the classifiers will be as short as possible since the
number of observations is decreased after the dataset has been dimensionally reduced.
Other than that, it communicates significant geometrical and theoretical insights regarding
linear transformations, and it also has a few significant uses in data science.

A = UWVT , (6)

where
U: mxn matrix of the orthonormal eigenvectors of AAˆ{T}.
VT: transposition of an nxn matrix containing the orthonormal eigenvectors of Aˆ{T}A.
W: an nxn diagonal matrix of the singular values, which are the square roots of the

eigenvalues of Aˆ{T}A.

3.3.3. Feature Selection (Based on Time/Frequency Domain))

In this feature selection (Based on time/frequency domain) stage, the task is to select
the best feature normalization method under the time or frequency domain. This method
reduces input variables for the model and uses only relevant data [43]. The data have been
obtained in terms of BN, DS, LS, MM, and ZS values. Apart from that, the features have
been tested for their reliability by examining the classification accuracy with seven different
classifiers, including Probabilistic Neural Network (PNN), Support Vector Machine (SVM),
Naïve Bayes (NB), Decision Tree (DT), k-Nearest Neighbor (kNN), Discriminant Analysis
(DA), and Ensemble (E). Subsequently, the selected feature domain continues to perform
feature extraction.

3.3.4. Feature Extraction

By generating new features from the current ones, feature extraction attempts to
decrease the number of features in a dataset (and then discard the original features). The
majority of the information in the original collection of features should then be summarized
by this new, smaller set of features. Hence, combining the original set of features in this
manner can produce a condensed version of the original features [44].

In this paper, only one domain feature is analyzed for the extraction stage. This helps
to reduce the computation complexity and classification time. The features used in this
study are Mean (M), Skewness (S), Standard Deviation (SD), Variance (V), Maximum FFT
(Max FFT), and Minimum FFT (Min FFT), as shown in Equations (7)–(12).

M is the sum of values to the total number of values, as shown in Equation (7), where
v1 is the first value of data and N is the data sample size.

Mean, µN =
v1 + v2 + v3 + · · ·+ vN

N
. (7)

S measures the asymmetry of a distribution, in which the distribution is symmetrical
if it looks the same for both sides. Note that S is measured using Equation (8), where v is
the data value, N is the data sample size, and µN is the mean.

Skewness, γN =
∑ (v−µN)3

N

(∑ (v−µN)2

N )
3
2

. (8)

SD is used to measure the amount of variation of a set of values in data, as shown in
Equation (9), where vi is the data value, N is the data sample size, and µN is the mean.

Standard deviation, σN =

√
∑

(v− µN)
2

N
. (9)
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V measures how far the value is from M. It is measured using Equation (10), where v
is the data value, N is the data sample size, and µN is the mean.

Variance, σ2 = ∑
(v− µN)

2

N
. (10)

Max FFT is the most significant value in a data set after transforming time domain
data into frequency domain data using FFT. It is usually calculated using the max function
in Matlab.

Max FFT = vi : vi ≥ vj, i 6= jAi, jεN. (11)

Min FFT is the smallest value in a frequency domain data set and is calculated using
the min function in Matlab.

Min FFT = vi : vi ≤ vj, i 6= jAi, jεN. (12)

3.3.5. Feature Selection (Optimization)

Feature selection (Optimization) reduces the number of input variables when devel-
oping a predictive model. In certain situations, reducing the number of input variables
may increase the model’s efficiency while reducing the cost of modeling computations.
Other than that, the relationship between each input variable and the target variable is
evaluated using statistical feature selection techniques, and the input variables with the
most robust relationships to the target variable are selected. Even though the choice of
statistical measures is dependent on the data types of both the input and output variables,
these techniques can be quick and effective [45–47].

This feature selection method is divided into two techniques, using the statistical
method Analysis of Variance (ANOVA) and Binary Particle Swarm Optimization (BPSO) to
select the best features. The ANOVA test determines the variance between the groups and
the variance within the groups. Then, the data matrix must pass the selection criteria of a
p-value less than 0.05, and the highest p-value is selected.

After features undergo the ANOVA statistical test, a modified version of BPSO is used
to analyze the best feature among the datasets. Note that BPSO sets the feature positions of
a particle based on the discrete values of binary ‘0’ and ‘1’ values instead of continuous
values [48,49]. A Sigmoid function is used to map the continuous-valued velocity given by
Equation (13) to the range [0, 1], as shown in Equation (14) [45].

sig(vid) =
1

1 + exp(−vid)
. (13)

A particle’s feature states (i.e., positions) are changed based on the following equations.
For example, the state of the d’th feature in particle i at time t is determined by [44]:

xid(t) =
{

0, i f ρid ≥ sig (vid)
1, otherwise

, (14)

where ρid is a random number with uniform distribution.
The selected features from the previous step are utilized in the next stage. In the BPSO

approach, each particle represents a string of binary bits 0–1 that specifies the features
selected for inclusion in the subset, where “1” represents a feature that is selected, and
“0” represents that it is not selected. Figure 6 shows an example of a solution represented
by a particle, and the algorithm is outlined in Pseudocode BPSO in Feature Selection.
Algorithm 1 express the Pseudocode BPSO in feature selection.
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Algorithm 1: Pseudocode BPSO in Feature Selection.

Input: n—number of particles (swarm size);
T—number of iteration;
nVar—number of variables;
Objective function;

Output: Relevant features
1. Start
2. Initialize parameters of BPSO
3. Initialize the swarm
4. Repeat
5. For each particle Do
6. Evaluate particle’s fitness; (xbest)
7. Update particle’s neighborhood best position; (gbest)
8. End
9. For each particle Do
10. Update the particle’s velocity;
11. Update the particle’s position;
12. End
13. Until the stopping condition is true;
14. End
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3.3.6. Feature Fusion

Feature fusion is the hybridization of statistically selected features. In this stage, the
selected features are fused to develop the proposed hybrid feature. Each dataset is reduced
to a single column using the SVD method. At the end of this statistical feature MSFS–BPSO,
a new hybrid feature is proposed. The novel framework of the proposed final design of the
statistical feature generator is shown in Figure 7.
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4. Results and Discussion

This section shows the results of the Multi-Stage Feature Selection with Binary Particle
Swarm Optimization (MSFS–BPSO) process with the validation part. In feature dimension
reduction, eight different dimensions have been tested, as shown in Table 3. In this test data
sample, 39,000 rows of 1632 columns were compressed to 39,000 rows of 16 columns, giving
the highest accuracy and minimizing the time below 12 s. Therefore, all data samples that
continue for the next stage were be compressed to 39,000 rows and 16 columns. Reducing
the dimensions of the original data indirectly increases the classification accuracy and
reduces the processing time of the classifier.

Table 3. Feature dimension reduction using SVD.

No. Data Sample Accuracy (%) Time

1 1632→ 8 72.13 <10 s
2 1632 → 16 86.35 <12 s
3 1632→ 24 85.23 <12 s
4 1632→ 32 84.11 <14 s
5 1632→ 48 83.59 <15 s
6 1632→ 51 83.94 <15 s
7 1632→ 68 85.59 <16 s
8 1632→ 96 85.11 <18 s
9 (Raw→ Data BN→ SVM) 64.62 9 min 20 s

10 (Raw Data→ SVM) 35.45 28 min 30 s

In the feature selection (based on time/frequency domain) stage, the normalized–
reduction datasets were tested using seven different classifiers to select a better result for
the data sample, either in the time domain or frequency domain. Among the seven different
classifiers used, the Probabilistic Neural Network (PNN) shows a stable result. The PNN
classifiers can be tuned using the tunable parameter to optimize the classifier to better
accuracy, shown in Table 4. In addition, the spread factor can be varied to control the degree
of nonlinearity of the decision boundaries. Hence, it is the critical factor influencing the
classifier’s classification performance. The spread factor for PNN has been varied in these
experiments to obtain the best classification performance, which recorded existence (0.9),
size (0.5), and location (0.01).

Table 4. PNN architecture is used in this work.

Parameters Value for
Existence

Value for
Size

Value for
Location

No. of input neurons - - -
No. of output neurons - - -

Spread factor 0.9 0.5 0.001
Testing tolerance 0.001 0.001 0.001

No. of training samples 13,650 11,700 11,700
No. of the validation sample 3900 1950 1950

No. of testing samples 6825 5850 5850
Total number of samples 39,000 19,500 19,500

The classification accuracy of each domain is clearly shown in Figure 8. The classification
result has been obtained by averaging the classification accuracy for 50 repetitions. Most
of the classifier shows that the frequency domain dominates compared to the time domain.
Therefore, the data sample in the frequency domain was be selected for the next stage.
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On the other hand, the feature extraction approach was used on the five normalized
datasets stated in the previous section to carry out the feature selection procedure in the
following stage. Six features made up of statistical combinations in the frequency domain
were retrieved from each normalized dataset. The attributes are the following: M, SD, S,V,
Max FFT, Min FFT. There are a total of 30 combinations of features from feature extraction
as shown in Equations (15)–(19).

[BN] = [MBN , SBN , SDBN , VBN , MaxBN , MinBN ], (15)

[DS] = [MDS, SDS, SDDS, VDS, MaxDS, MinDS], (16)

[LS] = [MLS, SLS, SDLS, VLS, MaxLS, MinLS], (17)

[MM] = [MMM, SMM, SDMM, VMM, MaxMM, MinMM], (18)

[ZS] = [MZS, SZS, SDZS, VZS, MaxZS, MinZS] (19)

From the extraction process, a total of 30 selected features were extracted. Note that
the Analysis of Variance (ANOVA) process for p-value and f-value was calculated for each
feature. All 30 features are less than 0.05 for p-values. Therefore, all 30 features were
selected and rearranged accordingly from the highest f-value to the lowest, as shown in
Table 5. Subsequently, Binary Particle Swarm Optimization (BPSO) suggested all possible
hybrid feature datasets. For accuracy, it was tested using three different classifiers: PNN,
Support Vector Machine (SVM), and k-Nearest Neighbor (kNN). The highest accuracy
for the hybrid dataset is 14-HybridFeature (existence), 12-HybridFeature (size), and 16-
HybridFeature (location). Figure 9 represents the convergence characteristic for BPSO in
finding the optimum global model. The hyperparameter used in this BPSO is the following:
swarmSize = 30, maxiter = 100, wMAX = 0.9 and wMIN = 0.2.

When a breast is screened for tumors at an early stage, there is a high risk of misclas-
sification from a medical standpoint. Examining a few statistical measures obtained by
calculating the classifier’s sensitivity, specificity, and accuracy scores allow for a classifier’s
performance evaluation. Note that misclassification is when a tumor is present but not
detected by the system or where no tumor is present, but the classifier detects a tumor. Such
a possibility would negatively impact the system’s overall efficiency and must therefore be
eliminated or minimized.
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Table 5. F-value for all features.

No. Features F-Value

1 MinLS 33,554.17903
2 MinDS 33,554.17697
3 MinBN 31,176.84962
4 MaxMM 31,162.38708
5 MZS 18,605.08924
6 MaxZS 3889.195375
7 SDZS 3761.295512
8 MinZS 3301.983306
9 SZS 3180.094827
10 SMM 2585.315293
11 SBN 2445.623486
12 SDS 2168.639286
13 SLS 2168.639286
14 MMM 254.8622211
15 MDS 218.7147998
16 MLS 218.7147998
17 VZS 209.6064994
18 MBN 207.9607835
19 SDMM 33.87221416
20 VMM 26.23552913
21 SDBN 24.28454284
22 SDDS 23.59648288
23 SDLS 23.59648288
24 MinMM 17.13184682
25 MaxBN 12.48034536
26 VBN 12.10396575
27 VLS 11.44263249
28 VDS 11.44263248
29 MaxLS 8.799857161
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The sensitivity is calculated by dividing the number of correct selections by the total
number of deserved selections, as shown in Equation (21). The particularity in Equation (22)
represents the ratio of correctly rejected decisions to the total number of decisions that
deserve rejection. Other than that, accuracy is the ratio of correct decisions to the total
number of decisions made. TP represents true positive (indicates correct classification),
FP represents false positive (indicates incorrect classification), TN represents true negative
(indicates the incorrect classification of non-existence), and FN represents false negative
(indicates the incorrect classification of non-existence). Equations (23)–(26) respectively
state precision, recall, F1-measure and G-mean [50,51].

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%, (20)

Sensitivity =
TP

TP + FN
× 100%, (21)

Specificity =
TN

TN + FP
× 100%. (22)

Precision =
TP

TP + FP
. (23)

Recall =
TP

TP + FN
. (24)

F1 =
2

(Precision−1 + Recall−1)
. (25)

G−mean =
√
(Precision× Recall). (26)

As seen in Table 6, the sensitivity, specificity, accuracy, precision, recall, F1-measure
and G-mean of each classifier have been tabulated. The table shows that the dimensional
reduction and fusion of the features to form hybrid features have deliberately increased
the classification accuracy of the classifiers. The success rate of MSFS–BPSO-based hybrid
features in the PNN classifier surpasses the performance of other common classifiers.

Table 6. Average classification results in comparison between different classifiers for proposed hybrid features.

Parameter Performance Evaluation PNN SVM KNN

Existence

Accuracy (%) 98.25 97.48 97.50
Sensitivity (%) 98.85 97.86 97.75
Specificity (%) 96.23 95.48 95.22

Precision 0.985 0.995 0.976
Recall 0.99 0.98 0.985

F1-measure 0.987 0.988 0.98
G-mean 0.987 0.988 0.98

Size

Accuracy (%) 96.85 94.61 95.21
Sensitivity (%) 95.35 94.48 96.62
Specificity (%) 93.56 93.42 92.35

Precision 0.975 0.966 0.984
Recall 0.970 0.971 0.968

F1-measure 0.973 0.969 0.976
G-mean 0.973 0.969 0.96

Location

Accuracy (%) 93.81 92.23 91.49
Sensitivity (%) 93.85 92.86 92.75
Specificity (%) 92.87 91.71 90.82

Precision 0.971 0.952 0.938
Recall 0.926 0.966 0.961

F1-measure 0.948 0.959 0.949
G-mean 0.948 0.959 0.949
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Table 7 compares the accuracy of the proposed system of MSFS–BPSO with another
existing method. Most researchers used a small data set compared to this project, which
is 80 times larger than an existing project. This is important for building analytic models
with more extensive datasets using machine learning. From the result, the proposed MSFS–
BPSO method is better than the other existing method, in which the proposed MSFS–BPSO
method achieves 96.3%.

Table 7. Comparison results with the previous researcher.

Researcher Data Sample Method Parameter Test and Trains Sets Accuracy

Vijayasarveswari
[25] 6750

Multi-stage
Feature Selection
with Naïve Bayes

classifier

Size K-Fold Cross
Validation 91.98%

Conceicao
[23] 3744

PCA (feature
extraction) with
kNN classifier

Size and shape K-Fold Cross
Validation 96.2%

Bifta
[24] 448

FFBPNN with
feedforward net

function

Existence, size,
and location

70% Training
15% Validation

15% Testing
92.43%

Proposed work 39,000
Multi-stage

Feature Selection
(MSFS) with BPSO

Existence, size,
and location

K-Fold Cross
Validation 96.3%

5. Conclusions

This study proposes a novel breast cancer classification framework that utilizes Multi-
Stage Feature Selection with Binary Particle Swarm Optimization (MSFS–BPSO) using
Ultra-Wideband (UWB).

The proposed framework has six stages. The first stage consists of feature normaliza-
tion to change the feature to the same scale. The second stages consist of feature dimension
reduction, which transforms the data from high dimensional space into low dimensional
space without losing important properties of the original data. Next, feature selection
(based on time/frequency domain) is used to choose the best group result between the
time and frequency domains. Note that only one type of domain is selected to continue the
process. Subsequently, feature extraction is performed to reduce the number of features in a
dataset by creating new features from the existing one. After that, an optimized feature set
is selected from the pool of new features using the Analysis of Variance (ANOVA)–BPSO
technique. Finally, feature fusion combines different features from different layers and get
them ready for analysis.

This study considered complete parameters in early breast cancer detection, including
cancer existence, size detection, and location detection. The tumor models within the
heterogenous breast phantom were classified, and their classification performance is as
high as 96.3%, even though large data samples were fed into this model.

Other than that, the current research can be further improved with tests using various
breast phantom structures, including various sizes and shapes (mimic of the actual breast),
a more robust classification model, and comparing breast cancer detection using multiple
UWB antennae.
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