
����������
�������

Citation: Hong, K.-T.; Cho, Y.; Kang,

C.H.; Ahn, K.-S.; Lee, H.; Kim, J.;

Hong, S.J.; Kim, B.H.; Shim, E.

Lumbar Spine Computed

Tomography to Magnetic Resonance

Imaging Synthesis Using Generative

Adversarial Network: Visual Turing

Test. Diagnostics 2022, 12, 530.

https://doi.org/10.3390/

diagnostics12020530

Academic Editor: Majid Chalian

Received: 10 January 2022

Accepted: 16 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Lumbar Spine Computed Tomography to Magnetic Resonance
Imaging Synthesis Using Generative Adversarial Network:
Visual Turing Test
Ki-Taek Hong 1,†, Yongwon Cho 1,2,† , Chang Ho Kang 1,*, Kyung-Sik Ahn 1 , Heegon Lee 1, Joohui Kim 1,
Suk Joo Hong 3 , Baek Hyun Kim 4 and Euddeum Shim 4

1 Department of Radiology, Korea University College of Medicine, Korea University Anam Hospital,
Seoul 02841, Korea; keytech2@naver.com (K.-T.H.); dragon1won@gmail.com (Y.C.);
glassesik@gmail.com (K.-S.A.); cielo1462@gmail.com (H.L.); joohee8426@naver.com (J.K.)

2 AI Center, Korea University Anam Hospital, Seoul 02841, Korea
3 Korea University Guro Hospital, Seoul 02841, Korea; hongsj@korea.ac.kr
4 Korea University College of Medicine, Korea University Ansan Hospital, Seoul 02841, Korea;

kimbaekh@hanmail.net (B.H.K.); edshim1213@gmail.com (E.S.)
* Correspondence: mallecot@gmail.com; Tel.: +82-29-206-540
† These authors contributed equally to this study.

Abstract: (1) Introduction: Computed tomography (CT) and magnetic resonance imaging (MRI)
play an important role in the diagnosis and evaluation of spinal diseases, especially degenerative
spinal diseases. MRI is mainly used to diagnose most spinal diseases because it shows a higher
resolution than CT to distinguish lesions of the spinal canals and intervertebral discs. When it is
inevitable for CT to be selected instead of MR in evaluating spinal disease, evaluation of spinal
disease may be limited. In these cases, it is very helpful to diagnose spinal disease with MR images
synthesized with CT images. (2) Objective: To create synthetic lumbar magnetic resonance (MR)
images from computed tomography (CT) scans using generative adversarial network (GAN) models
and assess how closely the synthetic images resembled the true images using visual Turing tests
(VTTs). (3) Material and Methods: Overall, 285 patients aged ≥ 40 years who underwent lumbar
CT and MRI were enrolled. Based on axial CT and T2-weighted axial MR images from 285 patients,
an image synthesis model using a GAN was trained using three algorithms (unsupervised, semi-
supervised, and supervised methods). Furthermore, VTT to determine how similar the synthetic
lumbar MR images generated from lumbar CT axial images were to the true lumbar MR axial
images were conducted with 59 patients who were not included in the model training. For the VTT,
we designed an evaluation form comprising 600 randomly distributed axial images (150 true and
450 synthetic images from unsupervised, semi-supervised, and supervised methods). Four readers
judged the authenticity of each image and chose their first- and second-choice candidates for the true
image. In addition, for the three models, structural similarities (SSIM) were evaluated and the peak
signal to noise ratio (PSNR) was compared among the three methods. (4) Results: The mean accuracy
for the selection of true images for all four readers for their first choice was 52.0% (312/600). The
accuracies of determining the true image for each reader’s first and first + second choices, respectively,
were as follows: reader 1, 51.3% and 78.0%; reader 2, 38.7% and 62.0%, reader 3, 69.3% and 84.0%,
and reader 4, 48.7% and 70.7%. In the case of synthetic images chosen as first and second choices,
supervised algorithm-derived images were the most often selected (supervised, 118/600 first and
164/600 second; semi-supervised, 90/600 and 144/600; and unsupervised, 80/600 and 114/600).
For image quality, the supervised algorithm received the best score (PSNR: 15.987 ± 1.039, SSIM:
0.518 ± 0.042). (5) Conclusion: This was the pilot study to apply GAN to synthesize lumbar spine
MR images from CT images and compare training algorithms of the GAN. Based on VTT, the axial
MR images synthesized from lumbar CT using GAN were fairly realistic and the supervised training
algorithm was found to provide the closest image to true images.
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1. Introduction

The generative adversarial network (GAN) is a breakthrough deep learning technology
that synthesize realistic images that are almost similar to true images. GAN generates
new images that did not exist in the past by receiving input of various noises from an
artificial neural network and has recently received a lot of attention and has been actively
studied. Existing deep learning technology, such as CNN (convolutional neural network),
used one multi-layered artificial neural network, but GAN interacts with two artificial
neural networks, finally creating a realistic image that is difficult to distinguish. GAN was
frequently used to synthesize a new image or change an image, but recently the scope of
use has been expanding.

Recent deep learning has allowed its application in medical imaging [1]. The gen-
erative adversarial network (GAN) model, which has attracted attention in the field of
deep learning, can generate and transform images using two adversarial artificial neural
networks, unlike conventional convolutional neural network (CNN) models. GANs can
be trained using two adversarial networks, producing realistic images that are almost
indistinguishable from real images [2]. The direction of deep learning is opposite to the
generative neural network and the discriminative neural network. The generative neural
network should make the discriminative neural network think that the realistic image
synthesized by the generative neural network is a true image. Conversely, learning should
be conducted to determine that the image synthesized by the generative neural network is
a fake image by the discriminative neural network.

In medical imaging research, GANs have been used to synthesize positron emission
tomography (PET) images from CT images and CT images from MR images [3,4]. In
addition, GANs based on unsupervised learning were used to translate CT to MRI images
in musculoskeletal images [5].

Computed tomography (CT) and magnetic resonance imaging (MRI) are important for
the diagnosis and evaluation of spinal diseases, particularly degenerative spinal diseases.
MRI is usually used to diagnose most degenerative spinal diseases because it shows higher
resolution than CT in distinguishing lesions of the spinal canals, intervertebral discs, and
soft tissues. However, MRI requires significant time for image acquisition, the cost of filming
is higher than that of CT, and patients with claustrophobia or MR-incompatible devices
sometimes have difficulties with MR examination so that the examination needs careful
accommodations, such as requiring special equipment or putting patients in sleep [1].
In addition, if patients cannot afford the cost of MRI, CT is instead used to evaluate
spinal disease. In these cases, the evaluation of spinal disease may be limited. However,
synthesizing MR images from CT images may allow more accurate and efficient spinal
disease diagnosis and evaluation.

Therefore, the purpose of this study was to develop a lumbar spine CT to MRI synthesis
AI model using GAN and to validate the performance of realistic synthesis of the model
with VTT and qualitive analysis based on GAN.

2. Material and Methods
2.1. Ethics Statement

This study was approved by the Institutional Review Board and Ethics Committee
of Korea University Anam Hospital. The requirement for informed consent was waived
because the data were collected retrospectively and analyzed anonymously. The study
complied with the ethical principles of the 1964 Declaration of Helsinki revised by the
World Medical Organization in Edinburgh in 2000.
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2.2. Data Preparation for Training and Test

This study enrolled a total of 285 patients aged ≥ 40 years who visited the spine
center of the Department of Neurosurgery, Orthopedic Surgery, Rehabilitation Medicine,
and Anesthesia Pain Medicine at Korea University Anam Hospital and underwent both
lumbar CT and lumbar MRI within 6 months between April 2018 and April 2020. CT
scans and MR images were acquired using various models of multidetector CT scanners
(IQon Spectral, Philips, Amsterdam, The Netherlands; Ingenuity Core, Philips, Amster-
dam, The Netherlands; Somatom Definition Flash, Siemens, Erlangen, Germany; Somatom
Definition AS, Siemens, Erlangen, Germany) and 3.0-T MR scanners (Achieva, Philips,
Amsterdam, The Netherlands; Magnetom Skyra, Siemens. Erlangen, Germany; Magnetom
Prisma Fit; Siemens, Erlangen, Germany).

In the PACS registry, lumbar CT and lumbar MR images satisfying the inclusion
criteria for a given period (between April 2018 and April 2020) were obtained. Among the
lumbar CT images, images passing through the disc parallel to the vertebral end plate at
each level were selected. The lumbar MR images matched with these lumbar CT images
were found and stored. The unsupervised and semi-supervised methods started learning
with these lumbar CT and MR images. The lumbar CT and MR images were cropped first,
and the supervised method started learning with these cropped lumbar CT and MR images.
In this way the 285 patients’ data were learned divided into unsupervised, semi-supervised,
and supervised methods. For the visual Turing test, 59 additional patients’ data were
selected and stored in the way mentioned above. Lumbar MR images were synthesized
with the already learned unsupervised, semi-supervised, and supervised methods from
the lumbar CT images of 59 patients.

One radiologist with 15 years of experience obtained and reviewed the lumbar CT
and MR images for the inclusion criteria in the picture archiving and communication
system registry. The inclusion criteria for the study were as follows. First, the dates
between CT and MRI did not exceed 6 months. Patients with metallic implants and severe
procedures or surgeries that could deform the structure of the lumbar spine were excluded.
In most cases, CT was performed for a more accurate evaluation of the bony structure
or calcified or ossified lesions after or before the MR examination. Second, patients over
40 years of age were included because our goal was to validate synthetic images in the
context of degenerative spinal disease. Third, the patients had no diseases that destroyed
the vertebral body or spinal canal, such as spondylitis and malignant tumors; however,
patients with mild compression fractures of the vertebral body without spinal canal or
disc space involvement were included. Axial CT and T2-weighted MR image data were
used. Because this was a preliminary study to confirm the feasibility of the GAN, only one
type of MR sequence was selected; namely axial T2-weighted MR images parallel to the
endplate of the vertebral body and passing through the middle of the intervertebral disc.
CT and MR image pairs with different axes were excluded. A computer scientist (15 years
of experience) performed deep learning based on GAN to convert from CT to MR images
on the selected dataset.

Cropping of a specific area for the supervised learning of the third algorithm was
bounded by the abdominal aorta and IVC at the front, the facet joints at the sides, and
the spinous process and paravertebral muscles at the back. The first and second were
unsupervised and semi-supervised learning, with lumbar CT totaling 40,173 from L1–2
to the L5–S1 levels and lumbar MRI totaling 9622 from the same level. The third was
supervised learning, which is different from the first and second because the image was
cropped and matched around the spinal canal at the same vertebra level and the same
patient by one radiologist. A total of 4629 lumbar CTs (L1–2: 812, L2–3: 891, L3–4: 1048,
L4–5: 1035, and L5–S1: 843), and 3566 lumbar MRIs (L1–2: 558, L2–3: 650, L3–4: 788, L4–5:
800, and L5–S1: 770) were used for supervised learning (Table 1).
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Table 1. Demographic characteristics of the study population by group.

Training (with Tuning) Test (VTT)

Patients 285 59

CT slices
Unsupervised training

Semi-supervised training 40,173 150 CT axial images
Supervised training 4629

Level-L1–2 812 32
Level-L2–3 891 33
Level-L3–4 1048 33
Level-L4–5 1035 31

Level-L5–S1 843 21

MRI slices
Unsupervised training

Semi-supervised training 9622 150 true and 450 synthetic
MR axial imagesSupervised training 3566

Level-L1–2 558 32 + 96
Level-L2–3 650 33 + 99
Level-L3–4 788 33 + 99
Level-L4–5 800 31 + 93

Level-L5–S1 770 21 + 63

Age (years)

Male 63.18 ± 16.47 68.56 ± 4.24
Female 68.08 ± 15.46 69.66 ± 7.07

Sex

Male 129 18
Female 156 41

Note: The number of levels was used for training in the third method (matching of level and patients). There
were no demographic differences between the training and test groups (p = 0.1163 for age and p = 0. for sex in the
datasets). CT, computed tomography; MRI, magnetic resonance imaging; VTT, visual Turing test.

2.3. Training the GAN to Generate Lumbar MR Images from CT Images

The GAN applied in this study used unsupervised generative attentional networks
with adaptive layer-instance normalization (AdaLIN) to translate image (U-GAT-IT) [6],
which is an image translation method to create synthetic images. The advantage of this
model is that it allows the learning of shape and texture to be learned asymmetrically
compared to conventional methods. Loss functions are used, such as adversarial loss,
cycle loss, identity loss, and CAM loss. For deep learning, Ubuntu 18.04 was used on a
GPU server with three 24 GB memory Titan RTXs, as well as a CUDA toolkit (440.82), and
cuDNN 10.2 (NVIDIA Cooperation, Santa Clara, CA, USA). The software environment
used for learning was Pytorch 3.xx or higher.

3. Deep Learning Framework

The proposed deep learning architecture for generating synthetic lumbar MRI from
real lumbar CT is illustrated in Figure 1. We used the UGAIT [7] integrated attention
module to design two generators, Gs→t and Gt→s, and two discriminators, Ds and Dt, using
lumbar CT and MRI extracted from each domain to convert the real lumbar CT to their
corresponding lumbar MRI. The attention module of the generator focuses on specific
regions that can be distinguished from other domains. This model was trained by feeding
lumbar CT slices with the corresponding real lumbar MRI from each training subject slice
by slice (first, unsupervised second, semi-supervised, and supervised learning). Once the
deep learning model is trained, it can be used on a new lumbar CT to generate synthetic
lumbar MRIs. We customized this framework (UGAIT [7]) to enhance the image generation
for synthetic lumbar MRI.
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Three different training methods were used to develop the synthesis models in Figure 1.
The first (Figure 1a) was an unsupervised learning method that randomly matched lumbar
CT and MR images. The synthetic MR images from lumbar CT and the true MR images
were randomly compared using this unsupervised method. The second (Figure 1b) was a
semi-supervised method that matched lumbar CT and MR images from the same patient.
The synthetic and true MR images of the same patient were compared using this method
rather than random comparisons. The third (Figure 1c) was the supervised method, in
which a specific area was cropped from the same spinal level image of the same patient
and then lumbar CT and MR images were matched. At the same level as the lumbar CT
image of the same patient, we compared the synthetic MR images in which only a specific
part around the vertebral body containing the spinal canal was cropped, to true MR images.
Image cropping was performed around the vertebral body and spinal canal. The crop was
bounded by the abdominal aorta and inferior vena cava at the front, the facet joints at the
sides, and the spinous process and paravertebral muscles at the back.

4. General Architecture

For image-to-image translation, we modified UGAIT, which consists of the following
steps: a convolution layer, rectified linear unit activation, and instance normalization. The
convolution layer included a 3 × 3 kernel, stride-2, and upsampling with the nearest neigh-
bor. In the first step, the number of convolution filters was set to 64 and doubled with every
step, reaching 1024 in the last step. Moreover, to concentrate on more important regions
and ignore trivial areas for generating images differing between lumbar CT and MRI, this
network included the attention map extracted from the auxiliary classifier. These attention
maps were integrated into the generator and discriminator to focus on semantically im-
portant regions for transforming the shape of the images. While the attention map of the
generator induces interesting regions to specifically distinguish between different domains,
the attention map of the discriminator can be helpful for fine-tuning to distinguish between
real and synthetic images in the target domain. Furthermore, to enhance the style transfer
or image translation with different amounts of change in shape and texture, this network
consists of AdaLIN by adaptively selecting a proper ratio between layer normalization
and instance normalization in residual blocks in Figure 2. However, the disadvantage of
this network is that it does not generate regions, such as canals in the spine. To enhance
the reconstruction of the synthetic lumbar MR images, we customized the residual block
and residual adain block in a single generator. First, the residual block included batch
normalization instead of instance normalization and the style-based recalibration module
layer for style pooling as a powerful component for image generation. Second, the residual
adain block included image processing for blurring at the upsampling bottleneck. We
demonstrated these fundamental issues using image translation, which can be learned
bidirectionally. This results in many advantages that may address the limitations of the
existing cycle GAN or CUT [8,9], as well as U-GAT-IT [7].

The discriminator had a structure similar to that of PatchGAN [10]. The architecture
of the discriminator is illustrated in Figure 3. The first four convolution layers applied
stride-2 and the remaining convolution layers applied stride-1. The first convolution layer
inputted 1-channel images and outputted 64-channel feature maps. Subsequently, each
time the feature map passed through the convolution layer, the number of channels was
doubled. The output was obtained by converting the number of channels to number in the
last layer. The discriminator loss, ldisc

(
G, F, Dx, Dy

)
, consisted of the LSGAN losses [11].

Loss Equation (1) was calculated using the output, as follows:

ldisc
(
G, F, Dx, Dy

)
= Ey∼Py

[||DY(y)||1] + Ex∼Px
[||1− DY(G(x; F(c)))||1]

+ Ex∼Px
[||DX(x)||1] + Ey∼Py

[||1− DX(G(y; Cx))||1]
(1)
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Figure 2. Model architecture of the image generator including residual blocks for upsampling.
This network has a ResNet structure. The AdaLin includes fully connected layers and LeakyReLu
activation layers. ResNet, residual neural network; AdaLin, adaptive layer-instance normalization;
LeakyReLu, leaky rectified linear unit.
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Figure 3. Model architecture of the discriminator for generating synthetic MR images from lumbar
spine CT. The generator used a PatchGAN discriminator. Each number of the feature maps is the
width, height, and channels of the feature map. The layers for networks were constructed by the
color boxes. MR, magnetic resonance; CT, computed tomography.

5. Visual Turing Test

The VTT, which determined how similar the synthetic lumbar MR axial images gener-
ated from lumbar CT axial images were to the true lumbar MR axial images, was conducted
with 59 patients who were not used in the training data. The method was executed by
selecting a set of lumbar MR images composed of one true and three synthetic MR images
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with reference to the lumbar CT image. For VTT, we designed an evaluation form (Figure 4)
comprising 600 axial images (150 true and 450 synthetic images from the unsupervised,
semi-supervised, and supervised algorithms) that were randomly distributed.
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Figure 4. The validation set comprised 150 true and 450 synthetic images developed by 3 algorithms.
The true and synthetic images were randomly mixed and displayed on the web solution. Four readers
independently determined which MR image best reflected the axial CT image at the disc level and for
real. The yellow and red frames of the MR images indicated the first and second choices, respectively.
MR, magnetic resonance; CT, computed tomography.

Two board-certified radiologists (a general radiologist and a musculoskeletal [MSK]
radiologist with 15 and 20 years of experience, respectively) and two radiology residents
participated in the VTT. We used a program that showed five images (one CT, one true
MR, and three synthetic MRI images) on a single screen in random order. The participants
were asked to select two MR images that they considered the most accurate among the four
lumbar MR images with reference to the CT image (Figure 4). The four radiologists were
blinded to each other’s evaluation of the VTT and were not shown the true or synthetic
images before the VTT. The number of choices totaled 300, each with a 40-s time limit. The
four participants judged the authenticity of each image and chose the first and second
candidates for the true image.

The demographics of the 59 patients and the tested spinal levels are shown in Table 1.
The VTT excluded 64 levels where CT and MRI were difficult to perform in VTT (8 L1–2, 4
L2–3, 4 L3–4, 13 L4–5, and 35 L5–S1 levels). The reasons for exclusion included mismatching
CT and MRI scan directions, which made image comparison difficult, and cases without CT
or MRI findings at that level. Finally, 150 CT, 150 true MRI, and 450 synthetic MRI images
were selected for the VTT.

6. Statistical Analyses

The accuracies of each reader in identifying the true MR image were compared using
paired t-tests (R software version 3.5.1; R Foundation for Statistical Computing, Vienna,
Austria). The statistical differences in visual comparisons according to each spinal level and
the three learning methods were also compared using paired t-tests. Statistical significance
was set at p < 0.05.

To analyze the inter-rater reliability for identifying the true images, we calculated the
percent positive agreement (PPA) Equation (2), Chamberlain’s percent positive agreement
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(CPPA) Equation (3) [12,13], and Cohen’s kappa coefficient (K) Equation (4) [14]. These
evaluation metrics are commonly used to evaluate the agreement of readers using VTT.

PPA = 100 x
2a

2a + b + c
(2)

CPPA = 100 x
a

a + b + c
(3)

K =
p0 − pe

1− pe
(4)

po =
a + d

a + b + c + d
, pe =

(
a + b

a + b + c + d
× a + c

a + b + c + d

)
+

(
c + d

a + b + c + d
× b + d

a + b + c + d

)
where a is the number of cases in which two readers equally found true images, and b
and c are the numbers of cases in which one of the two readers only found true images. d
indicates the number of cases in which the two readers did not find true images equally.
Figure 5a shows an example of a confusion matrix for measuring the PPA, CPPA, and K.
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Figure 5. (a) An example confusion matrix for identifying real images (b) between two expert
radiologists; top: priority-first, bottom: priority-first + second, (c) between two residents; top:
priority-first, bottom: priority-first + second, and (d) between experts and resident radiologists; top:
priority-first, bottom: priority-first + second.

To quantitatively evaluate the three methods of synthetic image quality, Peak SNR
(PSNR) and the structural similarity index measurement (SSIM) between the true and
synthetic images were used as performance metrics for the developed model as follows:

PSNR (x, y) = 20 log10
MAXx

||x− y||2
(5)

SSIM (x, y) =

(
2µxµy+C1

)
(2σxy + C2)(

µx2 + µy2 + C1

)(
σx2 + σy2 + C2

) (6)
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where C1 = (K1L)2 and C2 = (K2L)2. We used K1 = 0.01 and K2 = 0.03, as in the original
paper [11].

7. Results
7.1. Accuracy of Identifying the True Images

Regarding the first choice of true images, the mean accuracy for all four readers was
52.0% (312/600). The accuracies of identifying the true images for the first and first + second
choices, respectively, for each reader were as follows (Table 2); reader 1, 51.3% (77/150) and
78.0% (117/150); reader 2, 38.7% (58/150) and 62.0% (93/150); reader 3, 69.3% (104/150)
and 84.0% (130/150); and reader 4, 48.7% (73/150) and 70.7% (114/150).

Table 2. Assessment of the choice of true lumbar MR images through the VTT by the four readers.

Visual Turing Test
p-Value

Total Level 1–2 Level 2–3 Level 3–4 Level 4–5 Level 5–S1

Reader 1

first 51.3%
(77/150)

40.6%
(13/32)

51.5%
(17/33)

66.7%
(22/33)

58.1%
(18/31)

33.3%
(7/21) reference

first + second 78.0%
(117/150)

81.3%
(26/32)

75.8%
(25/33)

87.9%
(29/33)

77.4%
(24/31)

61.9%
(13/21) reference

Reader 2

first 38.7%
(58/150)

46.9%
(15/32)

39.4%
(13/33)

42.4%
(14/33)

32.3%
(10/31)

28.6%
(6/21) 0.2497

first + second 62.0%
(93/150)

78.1%
(25/32)

60.6%
(20/33)

69.7%
(23/33)

58.1%
(18/31)

41.6%
(10/21) 0.2178

Reader 3

first 69.3%
(104/150)

59.4%
(19/32)

66.7%
(22/33)

78.8%
(26/33)

67.7%
(21/31)

76.2%
(16/21) 0.1190

first + second 84.0%
(130/150)

81.3%
(26/32)

81.8%
(27/33)

87.9%
(29/33)

90.3%
(28/31)

95.2%
(20.21) 0.4396

Reader 4

first 48.7%
(73/150)

65.6%
(21/32)

51.5%
(17/33)

39.4%
(13/33)

41.9%
(13/31)

42.9%
(9/21) 0.8125

first + second 70.7%
(114/150)

81.3%
(26/32)

78.8%
(26/33)

60.6%
(20/33)

67.7%
(21/31)

61.9%
(13/21) 0.9671

Total

first 52.0%
(312/600)

53.1%
(68/128)

52.3%
(69/132)

56.8%
(75/132)

50.0%
(62/124)

45.2%
(38/84) -

first + second 74.3%
(446/600)

78.1%
(100/128)

74.2%
(98/132)

76.5%
(101/132)

73.4%
(91/124)

66.7%
(56/84) -

Note: Readers 1 and 4 are expert radiologists and readers 2 and 3 are resident radiologists. MR, magnetic
resonance; VTT, visual Turing test.

7.2. Comparisons of Training Methods for Generating Synthetic MR Images

For synthetic images selected as first or second choices, supervised algorithm-derived
images were the most frequently selected (118/600 first and 280/600 first + second), fol-
lowed by semi-supervised (90/600 and 254/600), and unsupervised (80/600 and 220/600)
in Table 3. Readers 1 and 3 mainly selected the synthetic lumbar MR images from super-
vised learning as the true images (reader 1: 38/150 first and 72/150 first + second and
reader 3: 32/150 and 92/150). Readers 2 and 4, however, mainly chose synthetic lumbar
MR images from unsupervised learning as true images (reader 2: 38/150 first and 77/150
first + second and reader 4: 31/150 and 72/150).
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Table 3. Comparisons of the selected proportions of the three deep learning algorithms.

Deep Learning Algorithm

Unsupervised Semi-Supervised Supervised

Reader 1
first 10 25 38

first + second 45 66 72

Reader 2
first 38 28 26

first + second 77 72 58

Reader 3
first 1 13 32

first + second 26 52 92

Reader 4
first 31 24 22

first + second 72 64 58

Total
first 80/600

(13.3%)
90/600
(15.0%)

118/600
(19.7%)

first + second 220/600
(36.7%)

254/600
(42.3%)

280/600
(46.7%)

The highest levels of true image selection accuracy among the five spinal levels for
readers 1–4 were 66.7% (22/33) for level L3–4, 46.9% (15/32) for level L1–2, 78.8% (26/33)
for level L3–4, and 65.6% (21/32) for level L1–2 (Table 2). The mean accuracies of the levels
were 53.1% (68/128) for L1–2, 52.3% (69/132) for L2–3, 56.8% (75/132) for L3–4, 50.0%
(62/124) for L4–5, and 45.2% (38/841) for level L5–S1. The differences in accuracy between
these four readers were not significant (p > 0.05).

7.3. Evaluations between the Expert and Resident Reader Groups

Our analysis of the inter-rater reliability for identifying true images showed PPA,
CPPA, and K (Figure 5 and Table 4) values for the two expert readers of 59.6%, 42.5%,
and 0.187 (first), and 80.0%, 66.7%, and 0.258 (first + second), respectively. The values
for the two resident readers were 48.15%, 31.7%, −0.389 (first) and 66.7%, 58.6%, 0.072
(first + second), respectively. The PPAs, CPPAs, and Ks for all readers were 92.2%, 85.5%,
and 0.845 (first), and 96.8%, 93.9%, and 0.880 (first + second), respectively (Table 4).

Table 4. Three inter-reader agreements for identifying the true MR images for each reader, including
the expert and resident radiologists.

PPA (%) CPPA (%) K

Two expert radiologists first 59.6 42.5 0.187
first + second 80.0 66.7 0.258

Two resident radiologists first 48.2 31.7 −0.389
first + second 66.1 58.6 0.072

Expert radiologists
versus

Resident radiologists

first 92.2 85.5 0.845
first + second 96.8 93.9 0.880

PPA, percent positive agreement; CPPA, Chamberlain’s percent positive agreement; K, Cohen’s kappa coefficient;
first, first selection of each reader; second, second selection of each reader.

7.4. Evaluations of PSNR and SSIM among the Three Algorithms

The results for quantitative image quality among the three algorithms (unsuper-
vised, semi-supervised, and supervised training) are shown in Table 5. The PSNRs of
each slice among the 59 patients of the test datasets were 15.278 ± 0.830 (unsupervised),
15.319 ± 1.037 (semi-supervised), and 15.987 ± 1.039 (supervised), respectively. The SSIMs
of each slice among the 59 patients of the test datasets were 0.490 ± 0.051 (unsupervised),
0.479 ± 0.048 (semi-supervised), and 0.518 ± 0.042 (supervised), respectively.
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Table 5. Overall statistics for two measures of model quality for three algorithms (unsupervised,
semi-supervised, and supervised): PSNR and SSIM. The average and standard deviation for each
measure about from axial slices of the 5 spine levels among the 59 subjects in our test datasets.

PSNR SSIM

First method:
Unsupervised

learning

Level 1–2 16.062 ± 1.347 0.538 ± 0.060
Level 2–3 15.678 ± 1.647 0.526 ± 0.067
Level 3–4 15.772 ±1.352 0.507 ± 0.062
Level 4–5 14.844 ± 1.350 0.465 ± 0.068

Level 5–S1 14.033 ± 1.258 0.412 ± 0.064

Total 15.278 ± 0.830 0.490 ± 0.051

Second method:
Semi-supervised

learning

Level 1–2 16.234 ± 1.964 0.529 ± 0.069
Level 2–3 16.149 ± 2.020 0.515 ± 0.073
Level 3–4 15.708 ±1.824 0.492 ± 0.069
Level 4–5 14.670 ± 1.729 0.448 ± 0.075

Level 5–S1 13.836 ± 1.865 0.398 ± 0.079

Total 15.319 ± 1.037 0.479 ± 0.048

Second method:
Semi-supervised

learning

Level 1–2 16.554 ± 1.203 0.557 ± 0.094
Level 2–3 16.732 ± 1.395 0.553 ± 0.102
Level 3–4 16.560 ±1.116 0.544 ± 0.084
Level 4–5 15.863 ± 1.449 0.521 ± 0.087

Level 5–S1 14.228 ± 1.341 0.455 ± 0.076

Total 15.987 ± 1.039 0.518 ± 0.042
Note: bold is the best score.

8. Discussion
8.1. The Research of Other Algorithms and GAN

GAN is a learning technique that has recently been a focus of deep learning using
AI, which is used to generate or transform images using adversarial generative neural
networks to create artificial but realistic-looking images [6,15]. While conventional CNN
models have utilized a method to train one multilayer artificial neural network, GAN
differs in progressing learning by the interaction of two artificial neural networks. In the
presence of generative and discriminative neural networks, generative neural networks are
trained such that their images can be truly distinguished in discriminative neural networks,
and discriminative neural networks are trained to discriminate images made in generative
neural networks as fake images. Through the adversarial learning process of these two
neural networks, a GAN can generate synthetic images that are difficult to distinguish from
real images [3].

Recently, researchers have searched for methods to replace MRI with CT scans when
planning radiation therapy [16–18]. However, CT-based MRI construction has received
little attention. It is challenging to generate an MR image directly from a CT image using
a linear model because it is difficult to generate high-level image domains based on low-
level images. In response, we proposed a synthesis method based on CNNs [19] with
adversarial training [20] to generate a lumbar spine MR image from a CT scan. A 2019
study synthesized MR images from brain CT images using GAN [21], and studies published
in 2017 reported the process of converting brain MR images to CT using GAN [22]. In
addition, studies have reported on the conversion of images from one modality into images
from another using GAN. Lee et al. reported the synthesis of spine MR images from spine
CT images using GAN, with a mean overall similarity of synthetic MR T2-weighted images
evaluated by radiologists of 80.2% [23]. They concluded that the synthetic MR images from
spine CT images using GANs would improve the diagnostic usefulness of CT.

This is a preliminary step in determining whether lumbar synthetic MR images gen-
erated from lumbar CTs by applying GAN are clinically applicable. We first assessed
whether the synthetic images generated from lumbar CT scans were distinguishable from
the true MR images. If radiologists with various experiences find it difficult to distinguish
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between true and synthetic MRIs via VTT, the MR images synthesized through GAN may
be sufficiently similar to true MRIs [24] and warrant testing in the clinical setting. The first
study on lumbar spine MR image synthesis from CT was published in 2020 [25]. Using a
small dataset, the authors generated synthetic lumbar spine MR images using GAN and
determined the similarities between the synthesized and true MR images. In contrast to
this work, we did not perform quantitative comparisons using the mean absolute error
and peak signal-to-noise ratio or qualitative comparisons of each structure of the spine,
including the discs, facet joints, spinal canals, and thecal sacs.

In medical imaging, computer-based vision evaluation methods are largely used to
measure detection and segmentation accuracy, emphasizing the classification of regions
according to anatomy from a predefined library. As an alternative, motivated by the
ability of humans to provide far richer descriptions, we constructed a VTT that used
binary questions to probe a model’s ability to distinguish fake images from true images.
In our VTT, the probability of finding a true image was 52%; in other words, the ability to
distinguish between real and fake images was half of the time. This probability is the same
as in the situation in which a coin is thrown to predict which side will land facing upward.
The results of VTT indicated that the GAN model developed in this study made synthetic
lumbar MR images that were difficult to distinguish from real images.

A previous study applied a VTT to determine how synthetic lung nodules generated
by GAN compared to the original lung nodules on CT [24]. Two radiologists participated in
the VTT; the authors concluded that it was difficult for radiologists to distinguish between
the generated and real nodules. A neuroimaging study also using a VTT [25] generated
synthetic brain MR images using GANs and compared them to true brain MR images by
VTT by an expert physician looking at 50 synthetic and 50 true MR images in random
order and determining whether they were true or synthetic. The authors concluded that it
was difficult for the expert physician to accurately distinguish between synthetic and true
brain images. Synthetic high-resolution body CT images with progressive growing GAN
(PGGAN) were also indistinguishable from real images in VTT [6].

8.2. The Present Study for Conversion from CT and MR Images

The present study utilized GAN trained with unsupervised, semi-supervised, and
supervised methods and compared their fake image synthesis performance through VTTs.
Supervised learning uses aligned training datasets in which the output image corresponds
to each input image. By disconnecting the aligned data into an input and output set to
train, medical synthesis becomes an unsupervised learning-based synthetic task. A semi-
supervised learning can be configured to utilize both supervised and unsupervised learning.
A highly supervised training typically requires a large volume of labeled datasets [26].
However, acquiring those from expert radiologists at a sufficient scale can be prohibitive;
thus, we anticipated unsupervised training, which meant the unpairing of the CT and MR
data, although our results showed that supervised training-derived images were selected
most often as the first and second choices. In other words, the images produced using the
supervised method were the most realistic images.

In contrast to our results, brain MRI to CT synthesis research showed that unpaired
data-derived images were more realistic and contained fewer artifacts and less blurred
images in comparisons of the conversion between unpaired and paired data using mean
absolute error (MAE) values and peak-signal-to-noise ratio (PSNR) in true and synthesized
CT [22]. Another study on transforming brain CT into MRI using GAN reported that the
combination of paired and unpaired data showed more realistic images in MAE and PSNR
than using paired or unpaired data individually [21]. The authors also reported that this
combination solved the context-misalignment problem of unpaired training and alleviated
the rigid registration task and blurred results of paired training. First, an unsupervised
method of learning by randomly matching lumbar CT and MR images was used to convert
CT into MRI; however, the main part of the synthetic MR images was converted differently
from the real MR images in some synthetic MR images. To solve this problem of the first
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method, a learning method was performed with CT and MR image pairs for each patient.
Finally, although the image conversion of CT to MR is more difficult than that of MR to
CT, the use of paired data and cropped information can be more helpful for generating
synthetic MR images. The above two studies were evaluated through measurements such
as MAE and PSNR, but we attempted to evaluate the images through a VTT. Therefore, it is
difficult to compare our results to those of previous studies. We also observed no difference
in the accuracy of separating synthetic from true MRIs and in the inter-reader agreements
among four expert and resident radiologists, providing indirect evidence that synthetic
MRIs and true MRIs had comparable image fidelity, although the selection criteria between
readers were likely to be subjective and differ according to experience.

The results of VTTs according to lumbar spine levels showed the highest rate of true
image selection for the L3–4 level (56.8%), followed by the L1–2 level (53.1%). The L5–S1
level showed the lowest rate (45.2%), likely because the anatomical shape that changes
from the lumbar spine to the sacrum differs from the other lumbar levels, making it more
difficult to determine true or synthetic MR images than other lumbar levels based on the
reference CT. However, the choice between lumbar levels did not differ significantly. For
image quality, the supervised algorithm received the best score (PSNR: 15.987, SSIM: 0.518
± 0.042, respectively in Table 5).

8.3. The Limitations of Our Study

This study has several limitations. The first is the limitation of the VTT. This test was
used to assess how intuitively similar the synthetic MR images were to the true MR images
and not to evaluate how well the synthetic MR images replicated the individual structures
of true MR images. Our future goal is to determine whether MR images synthesized using
GAN from lumbar CT images have clinical significance compared to true MRIs through
structural analysis of the disc, spinal canal, and paraspinal muscles of the lumbar spine.
The second limitation was that the L5–S1 levels were excluded from the study. In some CT
examinations, continuous scans were performed from the superior end plate of L1 through
the S1 level without adjusting the horizontal direction of the disc level. Therefore, the axial
levels of CT often have different directions from those of MRI, which is strictly scanned
around the intervertebral disc, making it difficult to compare images. Therefore, this study
excluded 35 cases with L5–S1 images (L1–2: 8 cases, L2–3: 4 cases, L3–4: 4 cases, and L4–5:
13 cases). The third limitation was caused by image cropping in deep learning using the
supervised method. In axial lumbar CT and MR images, the same part cannot be cropped
around the vertebral body. Fourth, the training dataset of our study was small. We used
285 CT scans in deep learning with GAN, while other studies used 11,755 body CT scans
during PGGAN training and 1018 lung cancer screening thoracic CT scans during DC-GAN
training. The fourth limitation is related to the low number of patients and different CT
scanners. A total of 285 patients’ CT images were used for deep learning and 59 patients’
CT images were used for the VTT that were not included in deep learning. Although five
levels of CT images were used per patient, the limitation of this study was that a large
number of CT images were not included in the deep learning, and another limitation of
this study is that all patients could not be taken with the same type of CT equipment.

9. Conclusions

We developed three methods of a GAN model to convert from lumbar CT to MR im-
ages, which were evaluated with a VTT. Based on the VTT, the axial MR images synthesized
from lumbar CT using GAN were fairly realistic and the supervised training algorithm was
found to provide the closest image to true images.

If future research validates the clinical usefulness of replacing true lumbar spine MR
images with synthetic images in particular cases, the lumbar spine CT to MR synthesis
using GAN could expand the role of CT, which is traditionally narrowed in the diagnosis
of degenerative spinal disease, and could also increase the diagnostic value of CT with
additional reference information.
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