Detection of NTRK Fusions and TRK Expression and Performance of pan-TRK Immunohistochemistry in Routine Diagnostics: Results from a Nationwide Community-Based Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Extraction and Handling
2.3. Interpretation of Reported TRK/NTRK Testing Results
2.4. Statistics
3. Results
3.1. Patients Included in the Analysis
3.2. TRK Expression or NTRK Fusion Testing: Types of Tumors and Reasons for Testing
3.3. Assays Used to Test for TRK Overexpression and NTRK Fusions
3.4. NTRK Fusions or TRK Expression Detected in Routine Diagnostics
3.5. IHC as a Preselection Tool to Detect Fusions
4. Discussion
4.1. Testing Rates for TRK Expression and NTRK Fusion in The Netherlands
4.2. Types of Tumors Harboring NTRK Fusions
4.3. Fusion Partners of NTRK1–3
4.4. Co-Occurrence of Other Driver Mutations
4.5. Performance of Immunohistochemistry as a Screening Tool for the Detection of NTRK Fusions
4.6. Future Role of pan-TRK Immunohistochemistry in Diagnostic Algorithms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK Fusion-Positive Cancers and TRK Inhibitor Therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. [Google Scholar] [CrossRef] [PubMed]
- Skálová, A.; Vanecek, T.; Sima, R.; Laco, J.; Weinreb, I.; Perez-Ordonez, B.; Starek, I.; Geierova, M.; Simpson, R.H.W.; Passador-Santos, F.; et al. Mammary Analogue Secretory Carcinoma of Salivary Glands, Containing the ETV6-NTRK3 Fusion Gene: A Hitherto Undescribed Salivary Gland Tumor Entity. Am. J. Surg. Pathol. 2010, 34, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Tognon, C.; Knezevich, S.R.; Huntsman, D.; Roskelley, C.D.; Melnyk, N.; Mathers, J.A.; Becker, L.; Carneiro, F.; MacPherson, N.; Horsman, D.; et al. Expression of the ETV6-NTRK3 Gene Fusion as a Primary Event in Human Secretory Breast Carcinoma. Cancer Cell 2002, 2, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Rubin, B.P.; Chen, C.J.; Morgan, T.W.; Xiao, S.; Grier, H.E.; Kozakewich, H.P.; Perez-Atayde, A.R.; Fletcher, J.A. Congenital Mesoblastic Nephroma t(12;15) Is Associated with ETV6-NTRK3 Gene Fusion: Cytogenetic and Molecular Relationship to Congenital (Infantile) Fibrosarcoma. Am. J. Pathol. 1998, 153, 1451–1458. [Google Scholar] [CrossRef]
- Knezevich, S.R.; McFadden, D.E.; Tao, W.; Lim, J.F.; Sorensen, P.H. A Novel ETV6-NTRK3 Gene Fusion in Congenital Fibrosarcoma. Nat. Genet. 1998, 18, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, T.; He, J.; Yelensky, R.; Esteve-Puig, R.; Botton, T.; Yeh, I.; Lipson, D.; Otto, G.; Brennan, K.; Murali, R.; et al. Kinase Fusions Are Frequent in Spitz Tumours and Spitzoid Melanomas. Nat. Commun. 2014, 5, 3116. [Google Scholar] [CrossRef] [Green Version]
- Stransky, N.; Cerami, E.; Schalm, S.; Kim, J.L.; Lengauer, C. The Landscape of Kinase Fusions in Cancer. Nat. Commun. 2014, 5, 4846. [Google Scholar] [CrossRef] [Green Version]
- Okamura, R.; Boichard, A.; Kato, S.; Sicklick, J.K.; Bazhenova, L.; Kurzrock, R. Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. JCO Precis. Oncol. 2018, 2, 1–20. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion-Positive Solid Tumours: Integrated Analysis of Three Phase 1-2 Trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in Patients with TRK Fusion-Positive Solid Tumours: A Pooled Analysis of Three Phase 1/2 Clinical Trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration FDA. Approves Larotrectinib for Solid Tumors with NTRK Gene Fusions. Available online: https://www.fda.gov/drugs/fda-approves-larotrectinib-solidtumors-ntrk-gene-fusions (accessed on 26 October 2021).
- U.S. Food & Drug Administration FDA. Approves Entrectinib for NTRK Solid Tumors and ROS-1 NSCLC 2019. Available online: https://www.fda.gov/drugs/fda-approves-entrectinib-ntrk-solidtumors-and-ros-1-nsclc (accessed on 26 October 2021).
- European Medicines Agency. Vitrakvi (Larotrectinib): An Overview of Vitrakvi and Why It Is Authorised in the EU; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- European Medicines Agency. Rozlytrek (Entrectinib): An Overview of Rozlytrek and Why It Is Authorised in the EU; European Medicines Agency: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Hechtman, J.F.; Benayed, R.; Hyman, D.M.; Drilon, A.; Zehir, A.; Frosina, D.; Arcila, M.E.; Dogan, S.; Klimstra, D.S.; Ladanyi, M.; et al. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. Am. J. Surg. Pathol. 2017, 41, 1547–1551. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.P.; Hechtman, J.F. Detection of NTRK Fusions: Merits and Limitations of Current Diagnostic Platforms. Cancer Res. 2019, 79, 3163–3168. [Google Scholar] [CrossRef] [PubMed]
- Penault-Llorca, F.; Rudzinski, E.R.; Sepulveda, A.R. Testing Algorithm for Identification of Patients with TRK Fusion Cancer. J. Clin. Pathol. 2019, 72, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Pfarr, N.; Kirchner, M.; Lehmann, U.; Leichsenring, J.; Merkelbach-Bruse, S.; Glade, J.; Hummel, M.; Stögbauer, F.; Lehmann, A.; Trautmann, M.; et al. Testing NTRK Testing: Wet-Lab and in Silico Comparison of RNA-Based Targeted Sequencing Assays. Genes Chromosomes Cancer 2020, 59, 178–188. [Google Scholar] [CrossRef]
- Zito Marino, F.; Alì, G.; Facchinetti, F.; Righi, L.; Fontanini, G.; Rossi, G.; Franco, R. Fusion Proteins in Lung Cancer: Addressing Diagnostic Problems for Deciding Therapy. Expert Rev. Anticancer Ther. 2021, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Pentheroudakis, G.; Mishima, S.; Overman, M.J.; Yeh, K.-H.; Baba, E.; Naito, Y.; Calvo, F.; Saxena, A.; Chen, L.-T.; et al. JSCO-ESMO-ASCO-JSMO-TOS: International Expert Consensus Recommendations for Tumour-Agnostic Treatments in Patients with Solid Tumours with Microsatellite Instability or NTRK Fusions. Ann. Oncol. 2020, 31, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Marchiò, C.; Scaltriti, M.; Ladanyi, M.; Iafrate, A.J.; Bibeau, F.; Dietel, M.; Hechtman, J.F.; Troiani, T.; López-Rios, F.; Douillard, J.-Y.; et al. ESMO Recommendations on the Standard Methods to Detect NTRK Fusions in Daily Practice and Clinical Research. Ann. Oncol. 2019, 30, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Van Kempen, L.C.; van Wezel, T.; Morreau, H.; Cohen, D.; Timens, W.; Willems, S.M.; Schuuring, E. De Rol van Moleculaire Diagnostiek in Het Identificeren van Patiënten Die Baat Hebben Bij TRK-Remmer-Therapie. Ned. Tijdschr. Oncol. 2020, 17, 266–273. [Google Scholar]
- Demetri, G.D.; Antonescu, C.R.; Bjerkehagen, B.; Bovée, J.V.M.G.; Boye, K.; Chacón, M.; Dei Tos, A.P.; Desai, J.; Fletcher, J.A.; Gelderblom, H.; et al. Diagnosis and Management of Tropomyosin Receptor Kinase (TRK) Fusion Sarcomas: Expert Recommendations from the World Sarcoma Network. Ann. Oncol. 2020, 31, 1506–1517. [Google Scholar] [CrossRef]
- Rudzinski, E.R.; Lockwood, C.M.; Stohr, B.A.; Vargas, S.O.; Sheridan, R.; Black, J.O.; Rajaram, V.; Laetsch, T.W.; Davis, J.L. Pan-Trk Immunohistochemistry Identifies NTRK Rearrangements in Pediatric Mesenchymal Tumors. Am. J. Surg. Pathol. 2018, 42, 927–935. [Google Scholar] [CrossRef]
- Murphy, D.A.; Ely, H.A.; Shoemaker, R.; Boomer, A.; Culver, B.P.; Hoskins, I.; Haimes, J.D.; Walters, R.D.; Fernandez, D.; Stahl, J.A.; et al. Detecting Gene Rearrangements in Patient Populations through a 2-Step Diagnostic Test Comprised of Rapid IHC Enrichment Followed by Sensitive Next-Generation Sequencing. Appl. Immunohistochem. Mol. Morphol. AIMM 2017, 25, 513–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, J.P.; Linkov, I.; Rosado, A.; Mullaney, K.; Rosen, E.Y.; Frosina, D.; Jungbluth, A.A.; Zehir, A.; Benayed, R.; Drilon, A.; et al. NTRK Fusion Detection across Multiple Assays and 33,997 Cases: Diagnostic Implications and Pitfalls. Mod. Pathol. 2020, 33, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Gatalica, Z.; Xiu, J.; Swensen, J.; Vranic, S. Molecular Characterization of Cancers with NTRK Gene Fusions. Mod. Pathol. 2019, 32, 147–153. [Google Scholar] [CrossRef]
- Casparie, M.; Tiebosch, A.T.M.G.; Burger, G.; Blauwgeers, H.; van de Pol, A.; van Krieken, J.H.J.M.; Meijer, G.A. Pathology Databanking and Biobanking in The Netherlands, a Central Role for PALGA, the Nationwide Histopathology and Cytopathology Data Network and Archive. Anal. Cell. Oncol. 2007, 29, 19–24. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration FDA. Approves Companion Diagnostic to Identify NTRK Fusions in Solid Tumors for Vitrakvi. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-companion-diagnostic-identify-ntrk-fusions-solid-tumors-vitrakvi (accessed on 21 October 2021).
- Nederlandse Vereniging voor Artsen voor Longziekten en Tuberculose Behandeling Patiënten Met Een Zeldzame Mutatie Bij NSCLC. Available online: https://richtlijnendatabase.nl/richtlijn/niet_kleincellig_longcarcinoom/systemische_behandeling_stadium_iv_nsclc/behandeling_pati_nten_met_een_zeldzame_mutatie_bij_nsclc.html (accessed on 23 April 2020).
- Integraal Kankercentrum Nederland NKR Cijfers. Available online: https://iknl.nl/nkr-cijfers (accessed on 3 August 2021).
- Horowitz, D.P.; Sharma, C.S.; Connolly, E.; Gidea-Addeo, D.; Deutsch, I. Secretory Carcinoma of the Breast: Results from the Survival, Epidemiology and End Results Database. Breast 2012, 21, 350–353. [Google Scholar] [CrossRef]
- Jacob, J.D.; Hodge, C.; Franko, J.; Pezzi, C.M.; Goldman, C.D.; Klimberg, V.S. Rare Breast Cancer: 246 Invasive Secretory Carcinomas from the National Cancer Data Base. J. Surg. Oncol. 2016, 113, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Uguen, A. Spitz Tumors with NTRK1 Fusions: TRK-A and Pan-TRK Immunohistochemistry as Ancillary Diagnostic Tools. Am. J. Surg. Pathol. 2019, 43, 1438–1439. [Google Scholar] [CrossRef]
- Yeh, I.; Tee, M.K.; Botton, T.; Shain, A.H.; Sparatta, A.J.; Gagnon, A.; Vemula, S.S.; Garrido, M.C.; Nakamaru, K.; Isoyama, T.; et al. NTRK3 Kinase Fusions in Spitz Tumours. J. Pathol. 2016, 240, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Goto, K.; Pissaloux, D.; Tirode, F.; de la Fouchardière, A. Spitz Nevus with a Novel TFG-NTRK2 Fusion: The First Case Report of NTRK2-Rearranged Spitz/Reed Nevus. J. Cutan. Pathol. 2021, 48, 1193–1196. [Google Scholar] [CrossRef]
- Chu, Y.-H.; Dias-Santagata, D.; Farahani, A.A.; Boyraz, B.; Faquin, W.C.; Nosé, V.; Sadow, P.M. Clinicopathologic and Molecular Characterization of NTRK-Rearranged Thyroid Carcinoma (NRTC). Mod. Pathol. 2020, 33, 2186–2197. [Google Scholar] [CrossRef]
- Farago, A.F.; Taylor, M.S.; Doebele, R.C.; Zhu, V.W.; Kummar, S.; Spira, A.I.; Boyle, T.A.; Haura, E.B.; Arcila, M.E.; Benayed, R.; et al. Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis. Oncol. 2018, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lasota, J.; Chłopek, M.; Lamoureux, J.; Christiansen, J.; Kowalik, A.; Wasąg, B.; Felisiak-Gołąbek, A.; Agaimy, A.; Biernat, W.; Canzonieri, V.; et al. Colonic Adenocarcinomas Harboring NTRK Fusion Genes: A Clinicopathologic and Molecular Genetic Study of 16 Cases and Review of the Literature. Am. J. Surg. Pathol. 2020, 44, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.; Fraser, T.; Ahadi, M.; Fuchs, T.; Sioson, L.; Clarkson, A.; Sheen, A.; Singh, N.; Corless, C.L.; Gill, A.J. NTRK Gene Rearrangements Are Highly Enriched in MLH1/PMS2 Deficient, BRAF Wild-Type Colorectal Carcinomas-a Study of 4569 Cases. Mod. Pathol. 2020, 33, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Kallen, M.E.; Hornick, J.L. The 2020 WHO Classification: What’s New in Soft Tissue Tumor Pathology? Am. J. Surg. Pathol. 2021, 45, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Westphalen, C.B.; Krebs, M.G.; Le Tourneau, C.; Sokol, E.S.; Maund, S.L.; Wilson, T.R.; Jin, D.X.; Newberg, J.Y.; Fabrizio, D.; Veronese, L.; et al. Genomic Context of NTRK1/2/3 Fusion-Positive Tumours from a Large Real-World Population. NPJ Precis. Oncol. 2021, 5, 69. [Google Scholar] [CrossRef]
- Vaishnavi, A.; Capelletti, M.; Le, A.T.; Kako, S.; Butaney, M.; Ercan, D.; Mahale, S.; Davies, K.D.; Aisner, D.L.; Pilling, A.B.; et al. Oncogenic and Drug-Sensitive NTRK1 Rearrangements in Lung Cancer. Nat. Med. 2013, 19, 1469–1472. [Google Scholar] [CrossRef] [Green Version]
- Park, D.Y.; Choi, C.; Shin, E.; Lee, J.H.; Kwon, C.H.; Jo, H.-J.; Kim, H.-R.; Kim, H.S.; Oh, N.; Lee, J.S.; et al. NTRK1 Fusions for the Therapeutic Intervention of Korean Patients with Colon Cancer. Oncotarget 2016, 7, 8399–8412. [Google Scholar] [CrossRef] [Green Version]
- Greco, A.; Miranda, C.; Pagliardini, S.; Fusetti, L.; Bongarzone, I.; Pierotti, M.A. Chromosome 1 Rearrangements Involving the Genes TPR and NTRK1 Produce Structurally Different Thyroid-Specific TRK Oncogenes. Genes Chromosomes Cancer 1997, 19, 112–123. [Google Scholar] [CrossRef]
- Carter-Febres, M.; Schneller, N.; Fair, D.; Solomon, D.; Perry, A.; Roy, A.; Linscott, L.; Alashari, M.; Kestle, J.R.; Bruggers, C.S. Adjuvant Maintenance Larotrectinib Therapy in 2 Children with NTRK Fusion-Positive High-Grade Cancers. J. Pediatr. Hematol./Oncol. 2020, 43, e987–e990. [Google Scholar] [CrossRef]
- Wu, L.W.; Pavlock, T.; Patterson, A.; Post, A.; Ambrose, C.; Rajaram, V.; Pavlick, D.C.; Cooke, M.; Miller, V.A.; Albacker, L.A.; et al. Durable Clinical Response to Larotrectinib in an Adolescent Patient with an Undifferentiated Sarcoma Harboring an STRN-NTRK2 Fusion. JCO Precis. Oncol. 2018, 2, PO.18.00101. [Google Scholar] [CrossRef]
- Zhao, R.; Yao, F.; Xiang, C.; Zhao, J.; Shang, Z.; Guo, L.; Ding, W.; Ma, S.; Yu, A.; Shao, J.; et al. Identification of NTRK Gene Fusions in Lung Adenocarcinomas in the Chinese Population. J. Pathol. Clin. Res. 2021, 7, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Church, A.J.; Calicchio, M.L.; Nardi, V.; Skalova, A.; Pinto, A.; Dillon, D.A.; Gomez-Fernandez, C.R.; Manoj, N.; Haimes, J.D.; Stahl, J.A.; et al. Recurrent EML4-NTRK3 Fusions in Infantile Fibrosarcoma and Congenital Mesoblastic Nephroma Suggest a Revised Testing Strategy. Mod. Pathol. 2018, 31, 463–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Classe, M.; Malouf, G.G.; Su, X.; Yao, H.; Thompson, E.J.; Doss, D.J.; Grégoire, V.; Lenobin, J.; Fantoni, J.-C.; Sudour-Bonnange, H.; et al. Incidence, Clinicopathological Features and Fusion Transcript Landscape of Translocation Renal Cell Carcinomas. Histopathology 2017, 70, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, K.E.; Lipson, D.; Stephens, P.J.; Otto, G.; Lehmann, B.D.; Lyle, P.L.; Vnencak-Jones, C.L.; Ross, J.S.; Pietenpol, J.A.; Sosman, J.A.; et al. BRAF Fusions Define a Distinct Molecular Subset of Melanomas with Potential Sensitivity to MEK Inhibition. Clin. Cancer Res. 2013, 19, 6696–6702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmielecki, J.; Bailey, M.; He, J.; Elvin, J.; Vergilio, J.-A.; Ramkissoon, S.; Suh, J.; Frampton, G.M.; Sun, J.X.; Morley, S.; et al. Genomic Profiling of a Large Set of Diverse Pediatric Cancers Identifies Known and Novel Mutations across Tumor Spectra. Cancer Res. 2017, 77, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Sigal, D.S.; Bhangoo, M.S.; Hermel, J.A.; Pavlick, D.C.; Frampton, G.; Miller, V.A.; Ross, J.S.; Ali, S.M. Comprehensive Genomic Profiling Identifies Novel NTRK Fusions in Neuroendocrine Tumors. Oncotarget 2018, 9, 35809–35812. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Lokker, A.; Snider, J.; Castellanos, E.; Nanda, S.; Fisher, V.; Zong, J.; Keating, K.; Fellous, M. Co-Occurrence of NTRK Fusions with Other Genomic Biomarkers in Cancer Patients. Ann. Oncol. 2019, 30, v29–v30. [Google Scholar] [CrossRef]
- Schrock, A.B.; Zhu, V.W.; Hsieh, W.-S.; Madison, R.; Creelan, B.; Silberberg, J.; Costin, D.; Bharne, A.; Bonta, I.; Bosemani, T.; et al. Receptor Tyrosine Kinase Fusions and BRAF Kinase Fusions Are Rare but Actionable Resistance Mechanisms to EGFR Tyrosine Kinase Inhibitors. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, 1312–1323. [Google Scholar] [CrossRef] [Green Version]
- Van der Wekken, A.J.; Pelgrim, R.; ’t Hart, N.; Werner, N.; Mastik, M.F.; Hendriks, L.; van der Heijden, E.H.F.M.; Looijen-Salamon, M.; de Langen, A.J.; Staal-van den Brekel, J.; et al. Dichotomous ALK-IHC Is a Better Predictor for ALK Inhibition Outcome than Traditional ALK-FISH in Advanced Non-Small Cell Lung Cancer. Clin. Cancer Res. 2017, 23, 4251–4258. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Berry, L.D.; Aisner, D.L.; Sheren, J.; Boyle, T.; Bunn, P.A.; Johnson, B.E.; Kwiatkowski, D.J.; Drilon, A.; Sholl, L.M.; et al. MET IHC Is a Poor Screen for MET Amplification or MET Exon 14 Mutations in Lung Adenocarcinomas: Data from a Tri-Institutional Cohort of the Lung Cancer Mutation Consortium. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2019, 14, 1666–1671. [Google Scholar] [CrossRef]
- Trevethan, R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front. Public Health 2017, 5, 307. [Google Scholar] [CrossRef] [PubMed]
- Butter, R.; ’t Hart, N.A.; Hooijer, G.K.J.; Monkhorst, K.; Speel, E.-J.; Theunissen, P.; Thunnissen, E.; von der Thüsen, J.H.; Timens, W.; van de Vijver, M.J. Multicentre Study on the Consistency of PD-L1 Immunohistochemistry as Predictive Test for Immunotherapy in Non-Small Cell Lung Cancer. J. Clin. Pathol. 2020, 73, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.P.; Benayed, R.; Hechtman, J.F.; Ladanyi, M. Identifying Patients with NTRK Fusion Cancer. Ann. Oncol. 2019, 30, viii16–viii22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guibourg, B.; Cloarec, E.; Conan-Charlet, V.; Quintin-Roué, I.; Grippari, J.-L.; Le Flahec, G.; Marcorelles, P.; Uguen, A. EPR17341 and A7H6R Pan-TRK Immunohistochemistry Result in Highly Different Staining Patterns in a Series of Salivary Gland Tumors. Appl. Immunohistochem. Mol. Morphol. AIMM 2020, 28, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Roche Diagnostics VENTANA Pan-TRK (EPR17341) Assay. Available online: https://diagnostics.roche.com/us/en/landing-pages/ventana-pan-trk--epr17341--assay.html (accessed on 30 September 2021).
Characteristic | All (n = 69) | Adults (≥18 years) (n = 51) | Children (<18 Years) (n = 18) |
---|---|---|---|
Sex | |||
Male, n (%) | 32 (46.4) | 23 (45.1) | 9 (50.0) |
Female, n (%) | 37 (53.6) | 28 (54.9) | 9 (50.0) |
Age | |||
Mean (range) | 37.7 (0–84) | 48.5 (19–84) | 7.0 (0–16) |
Year tested | |||
2017, n (%) | 10 (14.5) | 9 (17.6) | 1 (5.6) |
2018, n (%) | 8 (11.6) | 7 (13.7) | 1 (5.6) |
2019, n (%) | 20 (29.0) | 15 (29.4) | 5 (27.8) |
2020, n (%) | 31 (44.9) | 20 (39.2) | 11 (61.1) |
Tumor type | |||
Soft tissue/bone tumor, n (%) | 16 (23.2) | 9 (17.6) | 7 (38.9) |
Salivary gland secretory carcinoma, n (%) | 13 (18.8) | 13 (25.5) | – |
Thyroid tumor, n (%) | 13 (18.8) | 10 (19.6) | 3 (16.7) |
Melanocytic tumor, n (%) | 10 (14.5) | 6 (11.8) | 4 (22.2) |
Lung cancer, n (%) | 9 (13.0) | 9 (17.6) | – |
Brain/CNS tumor, n (%) | 4 (5.8) | 1 (2.0) | 3 (16.7) |
Breast secretory carcinoma, n (%) | 2 (2.9) | 2 (3.9) | – |
Congenital mesoblastic nephroma, n (%) | 1 (1.4) | – | 1 (5.6) |
Cancer of unknown primary, n (%) | 1 (1.4) | 1 (2.0) | – |
Reason for testing NTRK | |||
Differential diagnosis, n (%) | 55 (79.7) | 39 (76.5) | 16 (88.9) |
Choice of therapy/trial-screening, n (%) | 13 (13.8) | 11 (21.6) | 2 (11.1) |
Resistance-analysis after progression, n (%) | 1 (1.4) | 1 (2.0) | – |
Type of test used | |||
Multiplex RNA analysis, n (%) | 25 (36.2) | 19 (37.3) | 6 (33.3) |
IHC and multiplex RNA analysis, n (%) | 18 (26.1) | 12 (23.5) | 6 (33.3) |
Fusion gene-specific RT-PCR, n (%) | 10 (14.5) | 10 (19.6) | – |
IHC, FISH and multiplex RNA analysis, n (%) | 8 (11.6) | 6 (11.8) | 2 (11.1) |
IHC and unspecified molecular assay, n (%) | 2 (2.9) | 1 (2.0) | 1 (5.6) |
FISH and multiplex RNA analysis, n (%) | 2 (2.9) | – | 2 (11.1) |
Unspecified, n (%) | 2 (2.9) | 1 (2.0) | 1 (5.6) |
FISH, n (%) | 1 (1.4) | 1 (2.0) | – |
IHC and ISH, n (%) | 1 (1.4) | 1 (2.0) | – |
Pan-TRK IHC | Molecular Assay | |||
---|---|---|---|---|
Only positive IHC | Negative | Positive | Total | |
Negative | 207 | 6 | 213 | NPV (95% CI): 97.2% (94.5–98.6%) |
Positive | 41 | 20 | 61 | PPV (95% CI): 32.8% (25.6–40.9%) |
Total | 248 | 26 | 274 | |
Specificity (95% CI): 83.5% (78.3–87.9%) | Sensitivity (95% CI): 77.0% (56.4–91.0%) | |||
Including inconclusive IHC | Negative | Positive | Total | |
Negative | 207 | 6 | 213 | NPV (95% CI): 97.2% (94.4–98.6%) |
Positive/inconclusive | 91 | 23 | 114 | PPV (95% CI): 20.2% (16.4–24.6%) |
Total | 298 | 29 | 327 | |
Specificity (95% CI): 69.5% (63.9–74.6%) | Sensitivity (95% CI): 79.3% (60.3–92.0%) |
Study | Sensitivity (n) a | |||||||
---|---|---|---|---|---|---|---|---|
NTRK1 | NTRK2 | NTRK3 | Overall | |||||
Hechtman 2017 [15] | 100 | (10/10) | 100 | (2/2) | 88.9 | (8/9) | 95.2 | (21/22) |
Murphy 2017 [25] | Affected NTRK genes not specified | 100 | (8/8) | |||||
Rudzinski 2018 [24] | 100 | (12/12) | 100 | (1/1) | 94.1 | (16/17) | 96.7 | (29/30) |
Solomon 2019 [26] | 96.2 | (26/27) | 100 | (5/5) | 79.4 | (27/34) | 87.9 | (58/66) |
Gatalica 2019 [27] | 87.5 | (7/8) | 88.9 | (8/9) | 54.5 | (6/11) | 75.0 | (21/28) |
Current study | 86 | (13/15) | 100 | (2/2) | 67 | (8/12) | 79.3 | (23/29) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koopman, B.; Kuijpers, C.C.H.J.; Groen, H.J.M.; Timens, W.; Schuuring, E.; Willems, S.M.; van Kempen, L.C. Detection of NTRK Fusions and TRK Expression and Performance of pan-TRK Immunohistochemistry in Routine Diagnostics: Results from a Nationwide Community-Based Cohort. Diagnostics 2022, 12, 668. https://doi.org/10.3390/diagnostics12030668
Koopman B, Kuijpers CCHJ, Groen HJM, Timens W, Schuuring E, Willems SM, van Kempen LC. Detection of NTRK Fusions and TRK Expression and Performance of pan-TRK Immunohistochemistry in Routine Diagnostics: Results from a Nationwide Community-Based Cohort. Diagnostics. 2022; 12(3):668. https://doi.org/10.3390/diagnostics12030668
Chicago/Turabian StyleKoopman, Bart, Chantal C. H. J. Kuijpers, Harry J. M. Groen, Wim Timens, Ed Schuuring, Stefan M. Willems, and Léon C. van Kempen. 2022. "Detection of NTRK Fusions and TRK Expression and Performance of pan-TRK Immunohistochemistry in Routine Diagnostics: Results from a Nationwide Community-Based Cohort" Diagnostics 12, no. 3: 668. https://doi.org/10.3390/diagnostics12030668
APA StyleKoopman, B., Kuijpers, C. C. H. J., Groen, H. J. M., Timens, W., Schuuring, E., Willems, S. M., & van Kempen, L. C. (2022). Detection of NTRK Fusions and TRK Expression and Performance of pan-TRK Immunohistochemistry in Routine Diagnostics: Results from a Nationwide Community-Based Cohort. Diagnostics, 12(3), 668. https://doi.org/10.3390/diagnostics12030668