The Image Quality and Diagnostic Performance of CT with Low-Concentration Iodine Contrast (240 mg Iodine/mL) for the Abdominal Organs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. CT Protocol
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isaka, Y.; Hayashi, H.; Aonuma, K.; Horio, M.; Terada, Y.; Doi, K.; Fujigaki, Y.; Yasuda, H.; Sato, T.; Fujikura, T.; et al. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Clin. Exp. Nephrol. 2020, 24, 1–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Radiology. ACR Manual on Contrast Media; ACR: Reston, VA, USA, 2020. [Google Scholar]
- European Society of Urogenital Radiology. ESUR Guidelines on Contrast Agents v10.0; ESUR: Wien, Austria, 2018. [Google Scholar]
- Katzberg, R.W.; Newhouse, J.H. Intravenous Contrast Medium–induced Nephrotoxicity: Is the Medical Risk Really as Great as We Have Come to Believe? Radiology 2010, 256, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Katzberg, R.W.; Lamba, R. Contrast-Induced Nephropathy after Intravenous Administration: Fact or Fiction? Radiol. Clin. N. Am. 2009, 47, 789–800. [Google Scholar] [CrossRef]
- Weisbord, S.D.; Mor, M.K.; Resnick, A.L.; Hartwig, K.C.; Palevsky, P.M.; Fine, M.J. Incidence and Outcomes of Contrast-Induced AKI Following Computed Tomography. Clin. J. Am. Soc. Nephrol. 2008, 3, 1274–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, M.S.; Khalatbari, S.; Dillman, J.R.; Cohan, R.H.; Caoili, E.M.; Ellis, J.H. Contrast Material–induced Nephrotoxicity and Intravenous Low-Osmolality Iodinated Contrast Material. Radiology 2013, 267, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Lencioni, R.; Fattori, R.; Morana, G.; Stacul, F.; The Italian Observational Study Panel. Contrast-induced nephropathy in patients undergoing computed tomography (CONNECT)—A clinical problem in daily practice? A multicenter observational study. Acta Radiol. 2010, 51, 741–750. [Google Scholar] [CrossRef]
- Chua, H.-R.; Low, S.; Murali, T.M.; Wong, E.T.-Y.; He, H.-D.; Teo, B.-W.; Thian, Y.-L.; Akalya, K.; Vathsala, A. Cumulative iodinated contrast exposure for computed tomography during acute kidney injury and major adverse kidney events. Eur. Radiol. 2021, 31, 3258–3266. [Google Scholar] [CrossRef]
- From, A.M.; Bartholmai, B.; Williams, A.W.; Cha, S.S.; McDonald, F.S. Mortality Associated With Nephropathy After Radiographic Contrast Exposure. Mayo Clin. Proc. 2008, 83, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Nyman, U.; Almén, T.; Aspelin, P.; Hellström, M.; Kristiansson, M.; Sterner, G. Contrast-medium-induced nephropathy correlated to the ratio between dose in gram iodine and estimated gfr in ml/min. Acta Radiol. 2005, 46, 830–842. [Google Scholar] [CrossRef]
- Limbruno, U.; Picchi, A.; Micheli, A.; Calabria, P.; Cortese, B.; Brizi, G.; Severi, S.; De Caterina, R. Refining the assessment of contrast-induced acute kidney injury: The load-to-damage relationship. J. Cardiovasc. Med. 2014, 15, 587–594. [Google Scholar] [CrossRef]
- Morcos, S. Contrast-induced nephropathy: Are there differences between low osmolar and iso-osmolar iodinated contrast media? Clin. Radiol. 2009, 64, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Paparo, F.; Garello, I.; Bacigalupo, L.; Marziano, A.; Pregliasco, A.G.; Rollandi, L.; Puppo, C.; Mattioli, F.; Puntoni, M.; Rollandi, G.A. CT of the abdomen: Degree and quality of enhancement obtained with two concentrations of the same iodinated contrast medium with fixed iodine delivery rate and total iodine load. Eur. J. Radiol. 2014, 83, 1995–2000. [Google Scholar] [CrossRef] [PubMed]
- Matoba, M.; Kitadate, M.; Kondou, T.; Yokota, H.; Tonami, H. Depiction of Hypervascular Hepatocellular Carcinoma With 64-MDCT: Comparison of Moderate- and High-Concentration Contrast Material with and without Saline Flush. Am. J. Roentgenol. 2009, 193, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Awai, K.; Takada, K.; Onishi, H.; Hori, S. Aortic and Hepatic Enhancement and Tumor-to-Liver Contrast: Analysis of the Effect of Different Concentrations of Contrast Material at Multi–Detector Row Helical CT. Radiology 2002, 224, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, E.L.; Vogl, T.J.; Felfe, R.; Pegios, W.; Balzer, J.; Clauss, W.; Felix, R. Detection of Focal Liver Lesions at Biphasic Spiral CT: Randomized Double-Blind Study of the Effect of Iodine Concentration in Contrast Materials. Radiology 2000, 216, 403–409. [Google Scholar] [CrossRef]
- Furuta, A.; Ito, K.; Fujita, T.; Koike, S.; Shimizu, A.; Matsunaga, N. Hepatic Enhancement in Multiphasic Contrast-Enhanced MDCT: Comparison of High- and Low-Iodine-Concentration Contrast Medium in Same Patients with Chronic Liver Disease. Am. J. Roentgenol. 2004, 183, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Murakami, T.; Takahashi, S.; Okada, A.; Hori, M.; Narumi, Y.; Nakamura, H. Pancreatic CT Imaging: Effects of Different Injection Rates and Doses of Contrast Material. Radiology 1999, 212, 219–225. [Google Scholar] [CrossRef]
- Hwang, I.; Cho, J.Y.; Kim, S.Y.; Oh, S.-J.; Ku, J.H.; Lee, J.; Kim, S.H. Low tube voltage computed tomography urography using low-concentration contrast media: Comparison of image quality in conventional computed tomography urography. Eur. J. Radiol. 2015, 84, 2454–2463. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cho, J.Y.; Lee, J.; Hwang, S.I.; Moon, M.H.; Lee, E.J.; Hong, S.S.; Kim, C.K.; Kim, K.A.; Bin Park, S.; et al. Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urography. Korean J. Radiol. 2018, 19, 1119–1129. [Google Scholar] [CrossRef]
- Botsikas, D.; Barnaure, I.; Terraz, S.; Becker, C.D.; Kalovidouri, A.; Montet, X. Value of liver computed tomography with iodixanol 270, 80 kVp and iterative reconstruction. World J. Radiol. 2016, 8, 693–699. [Google Scholar] [CrossRef]
- Ichikawa, S.; Motosugi, U.; Shimizu, T.; Kromrey, M.L.; Aikawa, Y.; Tamada, D.; Onishi, H. Diagnostic performance and image quality of low-tube voltage and low-contrast medium dose protocol with hybrid iterative reconstruction for hepatic dynamic CT. Br. J. Radiol. 2021, 94, 20210601. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, N.; Oda, S.; Utsunomiya, D.; Funama, Y.; Nakaura, T.; Imuta, M.; Yamamura, S.; Yuki, H.; Kidoh, M.; Hirata, K.; et al. Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50 % in patients at risk for contrast-induced nephropathy. Eur. Radiol. 2017, 27, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Y.; Lyu, J.; Yang, Y.; Yuan, W.; Song, Z. Low kV and Low Concentration Contrast Agent with Iterative Reconstruction of Computed Tomography (CT) Coronary Angiography: A Preliminary Study. Med Sci. Monit. 2017, 23, 5005–5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, R.P.; Koerner, E.; Aydin, R.C.; Zinsser, D.; Finke, T.; Cyron, C.J.; Bamberg, F.; Nikolaou, K.; Notohamiprodjo, M. The evolution of radiation dose over time: Measurement of a patient cohort undergoing whole-body examinations on three computer tomography generations. Eur. J. Radiol. 2017, 86, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wichmann, J.L.; Hardie, A.D.; Schoepf, U.J.; Felmly, L.M.; Perry, J.D.; Varga-Szemes, A.; Mangold, S.; Caruso, D.; Canstein, C.; Vogl, T.J.; et al. Single- and dual-energy CT of the abdomen: Comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur. Radiol. 2017, 27, 642–650. [Google Scholar] [CrossRef]
- Park, C.; Gruber-Rouh, T.; Leithner, D.; Zierden, A.; Albrecht, M.H.; Wichmann, J.L.; Bodelle, B.; Elsabaie, M.; Scholtz, J.-E.; Kaup, M.; et al. Single-source chest-abdomen-pelvis cancer staging on a third generation dual-source CT system: Comparison of automated tube potential selection to second generation dual-source CT. Cancer Imaging 2016, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Scholtz, J.E.; Wichmann, J.L.; Hüsers, K.; Beeres, M.; Nour-Eldin, N.E.A.; Frellesen, C.; Vogl, T.J.; Lehnert, T. Automated tube voltage adaptation in combination with advanced modeled iterative reconstruction in thoracoabdominal third-generation 192-slice dual-source computed tomography: Effects on image quality and radiation dose. Acad. Radiol. 2015, 22, 1081–1087. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, J.M.; Moon, S.K.; Baek, J.H.; Park, J.H.; Flohr, T.G.; Kim, K.W.; Kim, S.J.; Han, J.K.; Choi, B.I. Attenuation-based Automatic Tube Voltage Selection and Tube Current Modulation for Dose Reduction at Contrast-enhanced Liver CT. Radiology 2012, 265, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Mayer, C.; Meyer, M.; Fink, C.; Schmidt, B.; Sedlmair, M.; Schoenberg, S.O.; Henzler, T. Potential for Radiation Dose Savings in Abdominal and Chest CT Using Automatic Tube Voltage Selection in Combination With Automatic Tube Current Modulation. Am. J. Roentgenol. 2014, 203, 292–299. [Google Scholar] [CrossRef]
- Nakayama, Y.; Awai, K.; Funama, Y.; Hatemura, M.; Imuta, M.; Nakaura, T.; Ryu, D.; Morishita, S.; Sultana, S.; Sato, N.; et al. Abdominal CT with Low Tube Voltage: Preliminary Observations about Radiation Dose, Contrast Enhancement, Image Quality, and Noise 1. Radiology 2005, 237, 945–951. [Google Scholar] [CrossRef]
- Araki, K.; Yoshizako, T.; Yoshida, R.; Tada, K.; Kitagaki, H. Low-voltage (80-kVp) abdominopelvic computed tomography allows 60% contrast dose reduction in patients at risk of contrast-induced nephropathy. Clin. Imaging 2018, 51, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Nakaura, T.; Nakamura, S.; Maruyama, N.; Funama, Y.; Awai, K.; Harada, K.; Uemura, S.; Yamashita, Y. Low Contrast Agent and Radiation Dose Protocol for Hepatic Dynamic CT of Thin Adults at 256–Detector Row CT: Effect of Low Tube Voltage and Hybrid Iterative Reconstruction Algorithm on Image Quality. Radiology 2012, 264, 445–454. [Google Scholar] [CrossRef] [PubMed]
All Examinations | Group A | Group B | p Value | |
---|---|---|---|---|
Age (years) | 65.9 ± 12.4 | 60.1 ± 12.0 | 65.8 ± 12.7 | 0.821 |
Height (cm) | 160.7 ± 9.1 | 160.9 ± 9.3 | 160.4 ±8.9 | 0.573 |
Weight (kg) | 59.1 ± 12.5 | 59.2 ± 12.7 | 59.1 ± 12.3 | 0.962 |
CT machine (n) | ||||
Somatom Edge | 223 | 109 | 114 | 0.978 |
Somatom Force | 199 | 90 | 109 | |
Tube voltage (kVp) | 97.2 ± 8.9 | 98.3 ± 8.4 | 96.1 ± 9.2 | 0.011 |
Tube voltage ≤ 90 kVp | 138 | 58 | 80 | 0.062 |
Tube current (mAs) | 163.6 ± 54.2 | 163.9 ± 45.6 | 163.3 ± 61.3 | 0.907 |
CTDIvol (mGy) | 5.8 ± 2.0 | 6.0 ± 2.0 | 5.5 ± 2.1 | 0.014 |
DLP (mGy cm) | 214.7 ± 84.6 | 221.2 ± 81.4 | 208.6 ± 87.4 | 0.126 |
Iodine amount (g) | 25.6 ± 5.0 | 23.2 ± 3.9 | 27.9 ± 4.9 | <0.001 |
Quantitative Analysis: Mean Density | Qualitative Analysis: Enhancement | |
---|---|---|
Liver | 0.763 (0.713–0.805) | 0.674 (0.602–0.731) |
Pancreas | 0.673 (0.604–0.703) | 0.485 (0.376–0.574) |
Spleen | 0.758 (0.706–0.800) | 0.490 (0.382–0.579) |
Portal vein | 0.266 (0.112–0.394) | 0.802 (0.761–0.837) |
Aorta | 0.753 (0.701–0.796) | 0.657 (0.585–0.717) |
Kidney | 0.671 (0.602–0.728) | 0.680 (0.613–0.736) |
Group A (240 mgI/mL) | Group B (320 mgI/mL) | p Value | |
---|---|---|---|
SNR | |||
Liver | 7.0 ± 1.8 | 6.8 ± 1.8 | 0.324 |
Pancreas | 6.4 ± 1.7 | 6.4 ± 1.9 | 0.958 |
Spleen | 9.6 ± 2.4 | 10.2 ± 2.8 | 0.022 |
Portal vein | 9.2 ± 2.8 | 9.8 ± 2.9 | 0.036 |
Aorta | 15.3 ± 4.5 | 17.0 ± 4.9 | <0.001 |
Kidney | 10.9 ± 3.0 | 11.5 ± 3.3 | 0.033 |
CNR | |||
Liver | 2.4 ± 1.4 | 2.6 ± 1.7 | 0.221 |
Pancreas | 3.1 ± 1.7 | 3.6 ± 2.1 | 0.002 |
Spleen | 5.1 ± 2.7 | 6.1 ± 2.9 | <0.001 |
Portal vein | 7.2 ± 4.2 | 8.6 ± 5.5 | 0.002 |
Aorta | 13.0 ± 5.1 | 15.1 ± 5.3 | <0.001 |
Kidney | 7.7 ± 3.1 | 9.1 ± 3.7 | <0.001 |
Group A (240 mgI/mL) | Group B (320 mgI/mL) | p Value | |
---|---|---|---|
Subjective enhancement | |||
Liver | 4.5 ± 0.6 | 4.8 ± 0.4 | <0.001 |
Pancreas | 4.9 ± 0.3 | 5.0 ± 0.2 | <0.001 |
Spleen | 4.9 ± 0.3 | 5.0 ± 0.2 | <0.001 |
Portal vein | 4.3 ± 0.7 | 4.6 ± 0.6 | <0.001 |
Aorta | 4.9 ± 0.3 | 4.9 ± 0.2 | <0.001 |
Kidney | 4.6 ± 0.5 | 4.9 ± 0.3 | <0.001 |
Noise | 3.6 ± 0.6 | 3.7 ± 0.5 | 0.225 |
Group A (240 mgI/mL) | Group B (320 mgI/mL) | |||||
---|---|---|---|---|---|---|
≤90 kVp | ≥100 kVp | p Value | ≤90 kVp | ≥100 kVp | p Value | |
SNR | ||||||
Liver | 7.8 ± 2.1 | 6.6 ± 1.5 | <0.001 | 7.1 ± 2.0 | 6.6 ± 1.6 | 0.043 |
Pancreas | 7.0 ± 2.1 | 6.1 ± 1.5 | 0.004 | 6.9 ± 2.0 | 6.1 ± 1.8 | 0.004 |
Spleen | 10.8 ± 2.8 | 9.2 ± 2.0 | <0.001 | 11.1 ± 3.3 | 9.7 ± 2.4 | 0.002 |
Portal vein | 10.6 ± 3.5 | 9.6 ± 2.3 | <0.001 | 10.8 ± 3.3 | 9.1 ± 2.5 | <0.001 |
Aorta | 17.7 ± 5.4 | 14.3 ± 3.6 | <0.001 | 18.7 ± 5.5 | 16.0 ± 4.2 | <0.001 |
Kidney | 12.0 ± 3.9 | 10.4 ± 2.5 | 0.004 | 12.8 ± 3.7 | 10.8 ± 2.7 | <0.001 |
CNR | ||||||
Liver | 2.8 ± 1.3 | 2.2 ± 1.4 | 0.012 | 2.8 ± 1.8 | 2.4 ± 1.6 | 0.074 |
Pancreas | 3.7 ± 2.8 | 2.8 ± 1.6 | <0.001 | 4.3 ± 2.2 | 3.2 ± 2.0 | <0.001 |
Spleen | 6.2 ± 3.2 | 4.7 ± 2.3 | 0.002 | 6.8 ± 3.5 | 5.7 ± 2.4 | 0.016 |
Portal vein | 8.6 ± 3.6 | 6.6 ± 4.2 | 0.003 | 10.8 ± 7.7 | 7.4 ± 2.9 | <0.001 |
Aorta | 15.7 ± 6.0 | 12.0 ± 4.2 | <0.001 | 16.6 ± 6.1 | 14.1 ± 4.6 | 0.002 |
Kidney | 9.2 ± 3.8 | 7.1 ± 2.5 | <0.001 | 10.5 ± 4.1 | 8.3 ± 3.1 | <0.001 |
Cyst | Hemangioma | Malignancy | |||||
---|---|---|---|---|---|---|---|
Sensitivity (%) | Specificity (%) | Sensitivity (%) | Specificity (%) | Sensitivity (%) | Specificity (%) | ||
Reader 1 | Total | 91.0 | 99.3 | 80.0 | 99.2 | 100 | 99.5 |
Group A | 87.5 | 100 | 90.0 | 99.0 | 100 | 99.5 | |
Group B | 95.2 | 98.7 | 73.3 | 99.5 | 100 | 99.5 | |
Reader 2 | Total | 85.8 | 99.7 | 80.0 | 99.7 | 94.3 | 99.7 |
Group A | 88.9 | 99.3 | 100 | 99.5 | 100 | 99.5 | |
Group B | 82.3 | 100 | 66.7 | 100 | 90.3 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.-H.; Lee, Y.-J.; Jung, S.-E. The Image Quality and Diagnostic Performance of CT with Low-Concentration Iodine Contrast (240 mg Iodine/mL) for the Abdominal Organs. Diagnostics 2022, 12, 752. https://doi.org/10.3390/diagnostics12030752
Choi M-H, Lee Y-J, Jung S-E. The Image Quality and Diagnostic Performance of CT with Low-Concentration Iodine Contrast (240 mg Iodine/mL) for the Abdominal Organs. Diagnostics. 2022; 12(3):752. https://doi.org/10.3390/diagnostics12030752
Chicago/Turabian StyleChoi, Moon-Hyung, Young-Joon Lee, and Seung-Eun Jung. 2022. "The Image Quality and Diagnostic Performance of CT with Low-Concentration Iodine Contrast (240 mg Iodine/mL) for the Abdominal Organs" Diagnostics 12, no. 3: 752. https://doi.org/10.3390/diagnostics12030752
APA StyleChoi, M. -H., Lee, Y. -J., & Jung, S. -E. (2022). The Image Quality and Diagnostic Performance of CT with Low-Concentration Iodine Contrast (240 mg Iodine/mL) for the Abdominal Organs. Diagnostics, 12(3), 752. https://doi.org/10.3390/diagnostics12030752