The Plasma Levels of 3-Hydroxybutyrate, Dityrosine, and Other Markers of Oxidative Stress and Energy Metabolism in Major Depressive Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Blood Samples
2.2. Enzymatic Estimation of 3-Hydroxybutyrate Level in Plasma
2.3. Estimation of Relative Levels of Dityrosine, NADH and Tryptophan in Plasma
2.4. Levels of Myeloperoxidase in Plasma
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez-Rojas, L.; Porras-Segovia, A.; Dunne, H.; Andrade-González, N.; Cervilla, J.A. Prevalence and Correlates of Major Depressive Disorder: A Systematic Review. Rev. Bras. Psiquiatr. 2020, 42, 657–672. [Google Scholar] [CrossRef] [PubMed]
- de Menezes Galvão, A.C.; Almeida, R.N.; de Sousa, G.M.; Leocadio-Miguel, M.A.; Palhano-Fontes, F.; de Araujo, D.B.; Lobão-Soares, B.; Maia-de-Oliveira, J.P.; Nunes, E.A.; Hallak, J.E.C.; et al. Pathophysiology of Major Depression by Clinical Stages. Front. Psychol. 2021, 12, 2944. [Google Scholar] [CrossRef] [PubMed]
- Hasler, G. Pathophysiology of Depression: Do We Have Any Solid Evidence of Interest to Clinicians? World Psychiatry 2010, 9, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, F.; Riglin, L.; Lomax, T.; Souter, E.; Potter, R.; Smith, D.J.; Thapar, A.K.; Thapar, A. Adolescent and Adult Differences in Major Depression Symptom Profiles. J. Affect. Disord. 2019, 243, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, K.; Krishnan, A.; Cervenka, E.; Hu, G.; Guadagno, E.; Trakadis, Y. Biomarkers for Major Depressive and Bipolar Disorders Using Metabolomics: A Systematic Review. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2019, 180, 122–137. [Google Scholar] [CrossRef]
- Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative Diseases and Oxidative Stress. Biomed. Pharmacother. 2004, 58, 39–46. [Google Scholar] [CrossRef]
- Palta, P.; Samuel, L.J.; Miller, E.R.; Szanton, S.L. Depression and Oxidative Stress: Results from a Meta-Analysis of Observational Studies. Psychosom. Med. 2014, 76, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W.J.H. Is Depression Associated with Increased Oxidative Stress? A Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2015, 51, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Michel, T.M.; Frangou, S.; Thiemeyer, D.; Camara, S.; Jecel, J.; Nara, K.; Brunklaus, A.; Zoechling, R.; Riederer, P. Evidence for Oxidative Stress in the Frontal Cortex in Patients with Recurrent Depressive Disorder—A Postmortem Study. Psychiatry Res. 2007, 151, 145–150. [Google Scholar] [CrossRef]
- Moylan, S.; Berk, M.; Dean, O.M.; Samuni, Y.; Williams, L.J.; O’Neil, A.; Hayley, A.C.; Pasco, J.A.; Anderson, G.; Jacka, F.N.; et al. Oxidative & Nitrosative Stress in Depression: Why so Much Stress? Neurosci. Biobehav. Rev. 2014, 45, 46–62. [Google Scholar] [CrossRef]
- Michel, T.M.; Pulschen, D.; Thome, J. The Role of Oxidative Stress in Depressive Disorders. Curr. Pharm. Des. 2012, 18, 5890–5899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giulivi, C.; Traaseth, N.J.; Davies, K.J.A. Tyrosine Oxidation Products: Analysis and Biological Relevance. Amino Acids 2003, 25, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of Oxidative Damage in Human Disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Heinecke, J.W. Tyrosyl Radical Production by Myeloperoxidase: A Phagocyte Pathway for Lipid Peroxidation and Dityrosine Cross-Linking of Proteins. Toxicology 2002, 177, 11–22. [Google Scholar] [CrossRef]
- Green, P.S.; Mendez, A.J.; Jacob, J.S.; Crowley, J.R.; Growdon, W.; Hyman, B.T.; Heinecke, J.W. Neuronal Expression of Myeloperoxidase Is Increased in Alzheimer’s Disease. J. Neurochem. 2004, 90, 724–733. [Google Scholar] [CrossRef]
- Videbech, P. PET Measurements of Brain Glucose Metabolism and Blood Flow in Major Depressive Disorder: A Critical Review. Acta Psychiatr. Scand. 2000, 101, 11–20. [Google Scholar] [CrossRef]
- Ido, Y.; Chang, K.; Williamson, J.R. NADH Augments Blood Flow in Physiologically Activated Retina and Visual Cortex. Proc. Natl. Acad. Sci. USA 2004, 101, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Vlassenko, A.G.; Rundle, M.M.; Raichle, M.E.; Mintun, M.A. Regulation of Blood Flow in Activated Human Brain by Cytosolic NADH/NAD+ Ratio. Proc. Natl. Acad. Sci. USA 2006, 103, 1964–1969. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Okuno, M.; Okamoto, T.; Kishi, T. NADPH-Dependent Coenzyme Q Reductase Is the Main Enzyme Responsible for the Reduction of Non-Mitochondrial CoQ in Cells. BioFactors 2008, 32, 59–70. [Google Scholar] [CrossRef]
- Bradshaw, P.C. Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019, 11, 504. [Google Scholar] [CrossRef] [Green Version]
- Nickel, A.G.; von Hardenberg, A.; Hohl, M.; Löffler, J.R.; Kohlhaas, M.; Becker, J.; Reil, J.C.; Kazakov, A.; Bonnekoh, J.; Stadelmaier, M.; et al. Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Cell Metab. 2015, 22, 472–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotter, D.G.; Schugar, R.C.; Crawford, P.A. Ketone Body Metabolism and Cardiovascular Disease. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1060–H1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; et al. The Ketone Metabolite β-Hydroxybutyrate Blocks NLRP3 Inflammasome–Mediated Inflammatory Disease. Nat. Med. 2015, 21, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mierziak, J.; Burgberger, M.; Wojtasik, W. 3-Hydroxybutyrate as a Metabolite and a Signal Molecule Regulating Processes of Living Organisms. Biomolecules 2021, 11, 402. [Google Scholar] [CrossRef]
- Rahman, M.; Muhammad, S.; Khan, M.A.; Chen, H.; Ridder, D.A.; Müller-Fielitz, H.; Pokorná, B.; Vollbrandt, T.; Stölting, I.; Nadrowitz, R.; et al. The β-Hydroxybutyrate Receptor HCA2 Activates a Neuroprotective Subset of Macrophages. Nat. Commun. 2014, 5, 3944. [Google Scholar] [CrossRef]
- Graff, E.C.; Fang, H.; Wanders, D.; Judd, R.L. Anti-Inflammatory Effects of the Hydroxycarboxylic Acid Receptor 2. Metab. Clin. Exp. 2016, 65, 102–113. [Google Scholar] [CrossRef]
- Setoyama, D.; Kato, T.A.; Hashimoto, R.; Kunugi, H.; Hattori, K.; Hayakawa, K.; Sato-Kasai, M.; Shimokawa, N.; Kaneko, S.; Yoshida, S.; et al. Plasma Metabolites Predict Severity of Depression and Suicidal Ideation in Psychiatric Patients-A Multicenter Pilot Analysis. PLoS ONE 2016, 11, e0165267. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Peterson, T.R.; Laplante, M.; Oh, S.; Sabatini, D.M. MTORC1 Controls Fasting-Induced Ketogenesis and Its Modulation by Ageing. Nature 2010, 468, 1100–1106. [Google Scholar] [CrossRef]
- Saito, N.; Itoga, M.; Minakawa, S.; Kayaba, H. Serum 3-Hydroxybutyrate in Patients with Psychogenic Somatoform Symptoms May Be a Predictor of the Effectiveness of Sertraline and Venlafaxine. Int. J. Gen. Med. 2021, 14, 1785–1795. [Google Scholar] [CrossRef]
- APA. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; APA: Washington, DC, USA, 2013; Available online: https://www.psychiatry.org/psychiatrists/practice/dsm (accessed on 8 December 2021).
- Busner, J.; Targum, S.D. The Clinical Global Impressions Scale: Applying a Research Tool in Clinical Practice. Psychiatry 2007, 4, 28–37. [Google Scholar]
- McMurray, C.H.; Blanchflower, W.J.; Rice, D.A. Automated Kinetic Method for D-3-Hydroxybutyrate in Plasma or Serum. Clin Chem. 1984, 30, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Heinecke, J.W.; Li, W.; Francis, G.A.; Goldstein, J.A. Tyrosyl Radical Generated by Myeloperoxidase Catalyzes the Oxidative Cross-Linking of Proteins. J. Clin. Investig. 1993, 91, 2866–2872. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R.; Szmacinski, H.; Nowaczyk, K.; Johnson, M.L. Fluorescence Lifetime Imaging of Free and Protein-Bound NADH. Proc. Natl. Acad. Sci. USA 1992, 89, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghisaidoobe, A.B.T.; Chung, S.J. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. [Google Scholar] [CrossRef]
- Gardner, A.; Boles, R.G. Beyond the Serotonin Hypothesis: Mitochondria, Inflammation and Neurodegeneration in Major Depression and Affective Spectrum Disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Kahl, K.G.; Stapel, B.; Frieling, H. Link between Depression and Cardiovascular Diseases Due to Epigenomics and Proteomics: Focus on Energy Metabolism. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 89, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Weckmann, K.; Deery, M.J.; Howard, J.A.; Feret, R.; Asara, J.M.; Dethloff, F.; Filiou, M.D.; Iannace, J.; Labermaier, C.; Maccarrone, G.; et al. Ketamine’s Antidepressant Effect Is Mediated by Energy Metabolism and Antioxidant Defense System. Sci. Rep. 2017, 7, 15788. [Google Scholar] [CrossRef] [Green Version]
- Kraus, F.B.; Kocijancic, M.; Kluttig, A.; Ludwig-Kraus, B. Test Validation, Method Comparison and Reference Range for the Measurement of β-Hydroxybutyrate in Peripheral Blood Samples. Biochem. Med. 2020, 30, 118–127. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lin, P.Y.; Lee, Y.; Wu, C.C.; Hsu, S.T.; Hung, C.F.; Chen, C.C.; Chong, M.Y.; Lin, C.H.; Wang, L.J. β-Hydroxybutyrate, Pyruvate and Metabolic Profiles in Patients with Schizophrenia: A Case Control Study. Psychoneuroendocrinology 2016, 73, 1–8. [Google Scholar] [CrossRef]
- Leonard, B.E.; Wegener, G. Inflammation, Insulin Resistance and Neuroprogression in Depression. Acta Neuropsychiatr. 2020, 32, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Chen, T.; Sun, L.; Zhao, Z.; Qi, X.; Zhou, K.; Cao, Y.; Wang, X.; Qiu, Y.; Su, M.; et al. Potential Metabolite Markers of Schizophrenia. Mol. Psychiatry 2013, 18, 67–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubera, B.; Hubold, C.; Wischnath, H.; Zug, S.; Peters, A. Rise of Ketone Bodies with Psychosocial Stress in Normal Weight Men. Psychoneuroendocrinology 2014, 45, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.S.; Odunusi, O.; Carrigan, D.; Majumdar, G.; Kakoola, D.; Lenchik, N.I.; Gerling, I.C. TNF-Alpha Inhibits Insulin Action in Liver and Adipose Tissue: A Model of Metabolic Syndrome. Horm. Metab. Res. 2010, 42, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.P.; Paquin, T.; Pritsker, A.; Haber, R.S. Glucocorticoid-Induced Insulin Resistance: Dexamethasone Inhibits the Activation of Glucose Transport in Rat Skeletal Muscle by Both Insulin- and Non-Insulin-Related Stimuli. Diabetes 1995, 44, 441–445. [Google Scholar] [CrossRef]
- Yamanashi, T.; Iwata, M.; Kamiya, N.; Tsunetomi, K.; Kajitani, N.; Wada, N.; Iitsuka, T.; Yamauchi, T.; Miura, A.; Pu, S.; et al. Beta-Hydroxybutyrate, an Endogenic NLRP3 Inflammasome Inhibitor, Attenuates Stress-Induced Behavioral and Inflammatory Responses. Sci. Rep. 2017, 7, 7677. [Google Scholar] [CrossRef]
- Nakayama, H.; Tokubuchi, I.; Wada, N.; Tsuruta, M.; Ohki, T.; Oshige, T.; Sasaki, Y.; Iwata, S.; Kato, N.; Ohtsuka, Y.; et al. Age-Related Changes in the Diurnal Variation of Ketogenesis in Patients with Type 2 Diabetes and Relevance to Hypoglycemic Medications. Endocr. J. 2015, 62, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Hubert, S.; Rissiek, B.; Klages, K.; Huehn, J.; Sparwasser, T.; Haag, F.; Koch-Nolte, F.; Boyer, O.; Seman, M.; Adriouch, S. Extracellular NAD+ Shapes the Foxp3+ Regulatory T Cell Compartment through the ART2-P2X7 Pathway. J. Exp. Med. 2010, 207, 2561–2568. [Google Scholar] [CrossRef]
- Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; et al. Nucleotides Released by Apoptotic Cells Act as a Find-Me Signal to Promote Phagocytic Clearance. Nature 2009, 461, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Clement, J.; Wong, M.; Poljak, A.; Sachdev, P.; Braidy, N. The Plasma NAD + Metabolome Is Dysregulated in “Normal” Aging. Rejuvenation Res. 2019, 22, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Essa, M.M.; Subash, S.; Braidy, N.; Al-Adawi, S.; Lim, C.K.; Manivasagam, T.; Guillemin, G.J. Role of NAD+, Oxidative Stress, and Tryptophan Metabolism in Autism Spectrum Disorders. Int. J. Tryptophan Res. 2013, 6 (Suppl. 1), 15. [Google Scholar] [CrossRef]
- McGarry, A.; Gaughan, J.; Hackmyer, C.; Lovett, J.; Khadeer, M.; Shaikh, H.; Pradhan, B.; Ferraro, T.N.; Wainer, I.W.; Moaddel, R. Cross-Sectional Analysis of Plasma and CSF Metabolomic Markers in Huntington’s Disease for Participants of Varying Functional Disability: A Pilot Study. Sci. Rep. 2020, 10, 20490. [Google Scholar] [CrossRef] [PubMed]
- Schwarzmann, L.; Pliquett, R.U.; Simm, A.; Bartling, B. Sex-Related Differences in Human Plasma NAD+/NADH Levels Depend on Age. Biosci. Rep. 2021, 41, 20200340. [Google Scholar] [CrossRef] [PubMed]
- Talarowska, M.; Bobińska, K.; Zajaczkowska, M.; Su, K.P.; Maes, M.; Gałecki, P. Impact of Oxidative/Nitrosative Stress and Inflammation on Cognitive Functions in Patients with Recurrent Depressive Disorders. Med. Sci. Monit. 2014, 20, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aratani, Y. Myeloperoxidase: Its Role for Host Defense, Inflammation, and Neutrophil Function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Jilani, I.; Vincenti, T.; Faraji, H.; Giles, F.J.; Estey, E.; Kantarjian, H.M.; Albitar, M. Clinical Relevance of Circulating Myeloperoxidase (MPO) in Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS). Blood 2004, 104, 1073. [Google Scholar] [CrossRef]
- Mocatta, T.J.; Pilbrow, A.P.; Cameron, V.A.; Senthilmohan, R.; Frampton, C.M.; Richards, A.M.; Winterbourn, C.C. Plasma Concentrations of Myeloperoxidase Predict Mortality after Myocardial Infarction. J. Am. Coll. Cardiol. 2007, 49, 1993–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Antwerpen, P.; Dufrasne, F.; Lequeux, M.; Boudjeltia, K.Z.; Lessgyer, I.; Babar, S.; Moreau, P.; Moguilevsky, N.; Vanhaeverbeek, M.; Ducobu, J.; et al. Inhibition of the Myeloperoxidase Chlorinating Activity by Non-Steroidal Anti-Inflammatory Drugs: Flufenamic Acid and Its 5-Chloro-Derivative Directly Interact with a Recombinant Human Myeloperoxidase to Inhibit the Synthesis of Hypochlorous Acid. Eur. J. Pharmacol. 2007, 570, 235–243. [Google Scholar] [CrossRef]
- Bensalem, S.; Soubhye, J.; Aldib, I.; Bournine, L.; Nguyen, A.T.; Vanhaeverbeek, M.; Rousseau, A.; Boudjeltia, K.Z.; Sarakbi, A.; Kauffmann, J.M.; et al. Inhibition of Myeloperoxidase Activity by the Alkaloids of Peganum harmala L. (Zygophyllaceae). J. Ethnopharmacol. 2014, 154, 361–369. [Google Scholar] [CrossRef]
- Ganji, S.H.; Qin, S.; Zhang, L.; Kamanna, V.S.; Kashyap, M.L. Niacin Inhibits Vascular Oxidative Stress, Redox-Sensitive Genes, and Monocyte Adhesion to Human Aortic Endothelial Cells. Atherosclerosis 2009, 202, 68–75. [Google Scholar] [CrossRef]
- Liu, Z.; Li, C.; Fan, X.; Kuang, Y.; Zhang, X.; Chen, L.; Song, J.; Zhou, Y.; Takahashi, E.; He, G.; et al. Nicotinamide, a Vitamin B3 Ameliorates Depressive Behaviors Independent of SIRT1 Activity in Mice. Mol. Brain 2020, 13, 162. [Google Scholar] [CrossRef]
- Jonsson, B.H. Nicotinic Acid Long-Term Effectiveness in a Patient with Bipolar Type II Disorder: A Case of Vitamin Dependency. Nutrients 2018, 10, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuteja, S. Activation of HCAR2 by Niacin: Benefits beyond Lipid Lowering. Pharmacogenomics 2019, 20, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Koweszko, T.; Gierus, J.; Zalewska, A.; Maciejczyk, M.; Waszkiewicz, N.; Szulc, A. The Relationship between Suicide and Oxidative Stress in a Group of Psychiatric Inpatients. J. Clin. Med. 2020, 9, 3462. [Google Scholar] [CrossRef]
- Burcusa, S.L.; Iacono, W.G. Risk for Recurrence in Depression. Clin. Psychol. Rev. 2007, 27, 959. [Google Scholar] [CrossRef] [Green Version]
- Cikánková, T.; Fišar, Z.; Hroudová, J. In Vitro Effects of Antidepressants and Mood-Stabilizing Drugs on Cell Energy Metabolism. Naunyn-Schmiedebergs Arch. Pharmacol. 2020, 393, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Villa, R.F.; Ferrari, F.; Gorini, A.; Brunello, N.; Tascedda, F. Effect of Desipramine and Fluoxetine on Energy Metabolism of Cerebral Mitochondria. Neuroscience 2016, 330, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Park, D.I.; Novak, B.; Yan, Y.; Kaya, M.E.; Turck, C.W. Paroxetine Binding and Activation of Phosphofructokinase Implicates Energy Metabolism in Antidepressant Mode of Action. J. Psychiatr. Res. 2020, 129, 8–14. [Google Scholar] [CrossRef]
- de Mello, A.H.; Souza, L.D.R.; Cereja, A.C.M.; Schraiber, R.D.B.; Florentino, D.; Martins, M.M.; Petronilho, F.; Quevedo, J.; Rezin, G.T. Effect of Subchronic Administration of Agomelatine on Brain Energy Metabolism and Oxidative Stress Parameters in Rats. Psychiatry Clin. Neurosci. 2016, 70, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Scabia, G.; Barone, I.; Mainardi, M.; Ceccarini, G.; Scali, M.; Buzzigoli, E.; Dattilo, A.; Vitti, P.; Gastaldelli, A.; Santini, F.; et al. The Antidepressant Fluoxetine Acts on Energy Balance and Leptin Sensitivity via BDNF. Sci. Rep. 2018, 8, 1781. [Google Scholar] [CrossRef] [Green Version]
Group | No | Age ± SD | Males/Females | |
---|---|---|---|---|
Adolescents | Patients | 11 | 16.0 ± 1.2 | 6/5 |
Controls | 20 | 16.9 ± 0.7 | 10/10 | |
Adults | Patients | 21 | 63.3 ± 5.8 | 8/13 |
Controls | 15 | 63.3 ± 6.9 | 12/3 |
Group | Parameter | CA1 ± SD | CA2 ± SD | CO ± SD | CA1 vs. CO | CA1 vs. CA2 |
---|---|---|---|---|---|---|
Adolescents | DITYR | 0.26 ± 0.05 | 0.28 ± 0.07 | 0.27 ± 0.03 | 0.4380 | 0.3345 |
NADH | 0.36 ± 0.11 | 0.39 ± 0.11 | 0.38 ± 0.05 | 0.2116 | 0.7002 | |
3HB | 0.83 ± 0.35 | 0.90 ± 0.21 | 0.54 ± 0.09 | 0.0004 | 0.1016 | |
MPO | 26 ± 19 | 25 ± 13 | 37 ± 31 | 0.5501 | 0.1934 | |
Adults | DITYR | 0.40 ± 0.09 | 0.36 ± 0.05 | 0.34 ± 0.02 | 0.0092 | 0.0928 |
NADH | 0.49 ± 0.10 | 0.49 ± 0.13 | 0.48 ± 0.06 | 0.6113 | 0.7197 | |
3HB | 1.39 ± 0.53 | 1.42 ± 0.67 | 0.74 ± 0.13 | <0.0001 | 0.6698 | |
MPO | 19 ± 12 | 16 ± 14 | 48 ± 52 | 0.1292 | 0.0942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivosova, M.; Gondas, E.; Murin, R.; Dohal, M.; Ondrejka, I.; Tonhajzerova, I.; Hutka, P.; Ferencova, N.; Visnovcova, Z.; Hrtanek, I.; et al. The Plasma Levels of 3-Hydroxybutyrate, Dityrosine, and Other Markers of Oxidative Stress and Energy Metabolism in Major Depressive Disorder. Diagnostics 2022, 12, 813. https://doi.org/10.3390/diagnostics12040813
Krivosova M, Gondas E, Murin R, Dohal M, Ondrejka I, Tonhajzerova I, Hutka P, Ferencova N, Visnovcova Z, Hrtanek I, et al. The Plasma Levels of 3-Hydroxybutyrate, Dityrosine, and Other Markers of Oxidative Stress and Energy Metabolism in Major Depressive Disorder. Diagnostics. 2022; 12(4):813. https://doi.org/10.3390/diagnostics12040813
Chicago/Turabian StyleKrivosova, Michaela, Eduard Gondas, Radovan Murin, Matus Dohal, Igor Ondrejka, Ingrid Tonhajzerova, Peter Hutka, Nikola Ferencova, Zuzana Visnovcova, Igor Hrtanek, and et al. 2022. "The Plasma Levels of 3-Hydroxybutyrate, Dityrosine, and Other Markers of Oxidative Stress and Energy Metabolism in Major Depressive Disorder" Diagnostics 12, no. 4: 813. https://doi.org/10.3390/diagnostics12040813
APA StyleKrivosova, M., Gondas, E., Murin, R., Dohal, M., Ondrejka, I., Tonhajzerova, I., Hutka, P., Ferencova, N., Visnovcova, Z., Hrtanek, I., & Mokry, J. (2022). The Plasma Levels of 3-Hydroxybutyrate, Dityrosine, and Other Markers of Oxidative Stress and Energy Metabolism in Major Depressive Disorder. Diagnostics, 12(4), 813. https://doi.org/10.3390/diagnostics12040813