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Abstract: Scaphoid fractures frequently appear in injury radiograph, but approximately 20% are oc-
cult. While there are few studies in the fracture detection of X-ray scaphoid images, their effectiveness
is insignificant in detecting the scaphoid fractures. Traditional image processing technology had been
applied to segment interesting areas of X-ray images, but it always suffered from the requirements of
manual intervention and a large amount of computational time. To date, the models of convolutional
neural networks have been widely applied to medical image recognition; thus, this study proposed a
two-stage convolutional neural network to detect scaphoid fractures. In the first stage, the scaphoid
bone is separated from the X-ray image using the Faster R-CNN network. The second stage uses the
ResNet model as the backbone for feature extraction, and uses the feature pyramid network and the
convolutional block attention module to develop the detection and classification models for scaphoid
fractures. Various metrics such as recall, precision, sensitivity, specificity, accuracy, and the area
under the receiver operating characteristic curve (AUC) are used to evaluate our proposed method’s
performance. The scaphoid bone detection achieved an accuracy of 99.70%. The results of scaphoid
fracture detection with the rotational bounding box revealed a recall of 0.789, precision of 0.894,
accuracy of 0.853, sensitivity of 0.789, specificity of 0.90, and AUC of 0.920. The resulting scaphoid
fracture classification had the following performances: recall of 0.735, precision of 0.898, accuracy
of 0.829, sensitivity of 0.735, specificity of 0.920, and AUC of 0.917. According to the experimental
results, we found that the proposed method can provide effective references for measuring scaphoid
fractures. It has a high potential to consider the solution of detection of scaphoid fractures. In the
future, the integration of images of the anterior–posterior and lateral views of each participant to
develop more powerful convolutional neural networks for fracture detection by X-ray radiograph is
probably important to research.

Keywords: convolutional neural network; convolutional block attention module; faster R-CNN;
feature pyramid network; scaphoid fractures

1. Introduction

The scaphoid is the largest carpal bone in the human wrist and is close to the carpals
and radius, see Figure 1 [1]. Its unique location and shape are prone to fracture as people fall
and their palms strike any hard surface. The standard treatment of scaphoid is screw bone
surgery because of its good recovery and short treatment time. However, the screw bone
surgery needs precise positioning of the scaphoid and its fracture to plan an appropriate
angle to implant screws. The small size of the scaphoid and the complex structures of
carpals cause accurate screw implantation to be difficult, and thus it is a challenge.
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Figure 1. The anatomical structures of the wrist bone, in which the region with red is the scaphoid. 

A scaphoid fracture is usually diagnosed by an X-ray of the wrist [2]. However, a 
break in the bone that cannot yet be seen on X-ray is called an “occult” fracture. The occult 
fractures may be difficult to detect by eye observations because their occurrence 
probability has been estimated at 7–21% reported in a recent prospective study [3]. If pain 
persists, a follow-up exam and X-ray in a week or two can be used to diagnose it. 
Sometimes, a CT scan or MRI is used to obtain better views of the shape and alignment of 
the scaphoid and assist with the diagnosis or surgery plans, but it is very expensive. 
Therefore, it is critical to develop a more precise X-ray diagnosis of scaphoid fractures. 

Image processing technologies are widely used to separate the region segmentation 
methodology of X-ray images, but they always need manual intervention to decide the 
boundary of scaphoid fractures. To date, the convolutional neural network (CNN) has 
advanced development worldwide, successfully being applied to several areas of medical 
diagnosis and robotics [4,5,6]. Langerhuized et al. [7] used CNN to detect scaphoid 
fractures on the conventional radiographs. In this paper, two consecutive CNNs are 
developed. One is used for scaphoid segmentation, while another is for fracture detection. 
The segmentation CNN localized the scaphoid and then passed them into the detection 
CNN for fracture detection. The resulting performance is the Area Under the Curve 
(AUC) of Receiver Operating Characteristic (ROC) of 0.77, 72% accuracy, 0.84 sensitivity, 
and 0.6 specificity. 

Yoon et al. [8] isolated the scaphoid area in a bounding box by using the cascade 
RCNN model [9] and then fed them to the EfficientNetB3 neural network [10] to 
determine whether the scaphoid was fractured. The results of the cascade R-CNN model 
achieved an overall sensitivity and specificity of 87.1% and 92.1% (AUC = 0.995). The 
second EfficientNetB3 obtained an overall sensitivity of 79.0% and specificity of 71.6% 
with an AUC of 0.810. 

Hendrix et al. [11] proposed two consecutive CNNs including a segmentation CNN 
for scaphoid segmentation and a detection CNN for detecting the fractures. The 
segmentation CNN localized and then cropped scaphoid area. The cropping area was 
resized into a fixed size and normalized its contrast. The detection CNN was based on the 
DenseNet-121 model. A class activation map was then calculated using the smooth Grad-

Figure 1. The anatomical structures of the wrist bone, in which the region with red is the scaphoid.

A scaphoid fracture is usually diagnosed by an X-ray of the wrist [2]. However, a
break in the bone that cannot yet be seen on X-ray is called an “occult” fracture. The occult
fractures may be difficult to detect by eye observations because their occurrence probability
has been estimated at 7–21% reported in a recent prospective study [3]. If pain persists, a
follow-up exam and X-ray in a week or two can be used to diagnose it. Sometimes, a CT
scan or MRI is used to obtain better views of the shape and alignment of the scaphoid and
assist with the diagnosis or surgery plans, but it is very expensive. Therefore, it is critical to
develop a more precise X-ray diagnosis of scaphoid fractures.

Image processing technologies are widely used to separate the region segmentation
methodology of X-ray images, but they always need manual intervention to decide the
boundary of scaphoid fractures. To date, the convolutional neural network (CNN) has
advanced development worldwide, successfully being applied to several areas of medical
diagnosis and robotics [4–6]. Langerhuized et al. [7] used CNN to detect scaphoid fractures
on the conventional radiographs. In this paper, two consecutive CNNs are developed. One
is used for scaphoid segmentation, while another is for fracture detection. The segmentation
CNN localized the scaphoid and then passed them into the detection CNN for fracture
detection. The resulting performance is the Area Under the Curve (AUC) of Receiver
Operating Characteristic (ROC) of 0.77, 72% accuracy, 0.84 sensitivity, and 0.6 specificity.

Yoon et al. [8] isolated the scaphoid area in a bounding box by using the cascade RCNN
model [9] and then fed them to the EfficientNetB3 neural network [10] to determine whether
the scaphoid was fractured. The results of the cascade R-CNN model achieved an overall
sensitivity and specificity of 87.1% and 92.1% (AUC = 0.995). The second EfficientNetB3
obtained an overall sensitivity of 79.0% and specificity of 71.6% with an AUC of 0.810.

Hendrix et al. [11] proposed two consecutive CNNs including a segmentation CNN for
scaphoid segmentation and a detection CNN for detecting the fractures. The segmentation
CNN localized and then cropped scaphoid area. The cropping area was resized into a
fixed size and normalized its contrast. The detection CNN was based on the DenseNet-
121 model. A class activation map was then calculated using the smooth Grad-CAM++
algorithm [12]. The resulting segmentation CNN achieved a Dice of Coefficient (DSC) of
97.4% and symmetric Hausdroff Distance (HD) of 1.31 mm. The detection CNN had an
overall sensitivity of 78.0% and specificity of 84% with an AUC of 0.87.



Diagnostics 2022, 12, 895 3 of 13

Tung [13] also used two CNNs to detect scaphoid fractures using the YOLO-v4 CNN
model for scaphoid area detection and classification CNN to determine whether the de-
tected scaphoid has fractured. The different backbones such as the VGG, ResNet [14],
DenseNet [15], InceptionNet [16], and EfficientNet used to construct classification CNN.
The experimental results showed that DenseNet 201 and ResNet 101 are more promising
selections. The reported performances of the DenseNet 201 backbone are sensitivity of
0.833, specificity of 0.611, precision of 0.682, F1-score of 0.750, AUC of 0.444, and accuracy
of 0.722.

Even though many articles have attempted to assess the detection issues of fractures
in the X-ray images, the detection results of those articles do not meet the requirement of
clinical diagnosis. The paper proposes a two-stage fracture detection of scaphoid images
based on the convolutional neural networks. The contribution of this study can be described
as follows:

• To increase detection accuracy, the proposed method consists of two CNNs: one is to
identify the scaphoid area, and another is to detect the fractures of scaphoid.

• Identifying scaphoid areas can reduce the searching space and computational times
for consequent fracture detection.

• A powerful fracture detection CNN consists of ResNet, spatial feature pyramid (SSP),
and convolutional block attention module (CBAM). Experimental results showed that
the proposed CNN achieved high detection performance.

• The rest of this paper is organized as follows. The material data set and methods are
proposed in detail in Section 2. Section 3 then presents the experimental results and
empirical discussion. Finally, Section 4 provides the conclusions of this study.

2. Material and Method

This section describes the data collections, data augmentations, scaphoid bone detec-
tion, and fracture detection.

2.1. Data Collections and Implementation Environment

In this study, all experimental X-ray images were collected from the National Cheng
Kung University Hospital (NCKUH) in Taiwan, including 280 adult patients. Specifically,
178 fracture instances of surgical verification were selected as the positive images, and
102 normal instances were considered the negative images. All programs were implemented
in a personal computer with an i9 processing unit, 16 GB of main memory and a GeForce
RTX 3090 GPU using the Windows 10 operating system. The performance of our proposed
system is measured by 5-fold cross-validation method.

2.2. Methods

The proposed CNNs include the scaphoid detection CNN and the fractures detection
CNN. The first one is based on the original Faster R-CNN model [17], and the other fractures
detection is based on the rotation-decoupled anchors [18] to finely detect the fracture areas
shown in Figure 2. The two CNNs are described as follows.
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generate the feature maps for further object detection or segmentation. Yet, the scaphoid 
area must be limited to a small area of an X-ray image. In this paper, the scaphoid area 
detection used is the Faster R-CNN, which is faster and more precise than Fast R-CNN 
[19,20]. The Faster R-CNN consists of three components: feature map convolution 
network, region proposal network (RPN), and Fast R-CNN as shown in Figure 3. 
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The feature map convolution network was implemented by the ResNet 50 that 
consists of five stages. Each stage includes max pooling, the residual block, and 
convolutional + batch normalization + ReLU block were applied as the backbone for 
generating feature maps. The original X-ray image is resized into 1600 × 1200 pixels and 
the last output feature map was 75 × 100 with 1024 channels. In addition, the RPN and the 
Fast R-CNN shared this feature map. Typically, the RPN referred to box regressions and 
confidence scores of searching objects to generate several bounding boxes with different 
sizes. It then predicted objects by these bounding boxes and integrated them into some 
proposals. The corresponding region of interest (ROI) on the feature maps of these 
proposals was transferred to the Fast R-CNN for further use. The Fast R-CNN received 
proposals from the RPN with the corresponding ROI features from the shared feature 
maps. Different sizes of ROI features were max-pooled to a 7 × 7 feature map. The fixed-
size feature map was fed into a sequence of fully connected layers and then connected 

Figure 2. The CNNs used include scaphoid detection and fracture detection.

2.2.1. Scaphoid Area Detection

The traditional CNN uses a sliding kernel to convolute the whole X-ray image to gen-
erate the feature maps for further object detection or segmentation. Yet, the scaphoid area
must be limited to a small area of an X-ray image. In this paper, the scaphoid area detection
used is the Faster R-CNN, which is faster and more precise than Fast R-CNN [19,20]. The
Faster R-CNN consists of three components: feature map convolution network, region
proposal network (RPN), and Fast R-CNN as shown in Figure 3.
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Figure 3. The structure of the Faster R-CNN model.

The feature map convolution network was implemented by the ResNet 50 that con-
sists of five stages. Each stage includes max pooling, the residual block, and convolu-
tional + batch normalization + ReLU block were applied as the backbone for generating
feature maps. The original X-ray image is resized into 1600 × 1200 pixels and the last
output feature map was 75 × 100 with 1024 channels. In addition, the RPN and the Fast
R-CNN shared this feature map. Typically, the RPN referred to box regressions and confi-
dence scores of searching objects to generate several bounding boxes with different sizes. It
then predicted objects by these bounding boxes and integrated them into some proposals.
The corresponding region of interest (ROI) on the feature maps of these proposals was
transferred to the Fast R-CNN for further use. The Fast R-CNN received proposals from
the RPN with the corresponding ROI features from the shared feature maps. Different sizes
of ROI features were max-pooled to a 7 × 7 feature map. The fixed-size feature map was
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fed into a sequence of fully connected layers and then connected into two sibling layers for
classification and bounding box regression. The classification gave the detection confidence
score, and the regression gave the position regression of the bounding box. The used loss
function includes the classification loss and the regression loss in the training stage of the
Faster R-CNN model.

2.2.2. Fracture Area Detection

In this paper, the fractures detection CNN consists of the ResNet 152 backbone, the
feature pyramid network [21,22] (FPN, for generating the multiscale feature maps) and the
convolutional block attention module [23] (CBAM; for determining whether it is fractured).
The last three blocks comprise the feature pyramid network. The number of layers used by
the FPN is three rather than the original four because of better performances in experiments.
The resulting feature maps of FPN are fed into the predict head for detecting the fracture
areas. The predict head has two branches: the cls branch (detecting positive/negative
bounding box) and the loc branch (regressing the position of fracture bounding box). The
two branches are implemented in Conv + BN + ReLU + Conv, and the shapes of the output
of cls are [B, A × C] and loc is [B, A × 5] (where B, A, C are denoted to the numbers of the
batch, anchor and class).

The detailed structure of FPN is shown in Figure 4. The FPN passes the deep features
layer by layer and directly combines or concatenates the deep and shallow features to
generate high-resolution feature maps and desirable semantics.
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is the elementwise sum.

The CBAM enhances the input feature F of FPN into refined feature F′ by inferring
the one-dimensional (1D) channel attention map Nc ∈ R1×1×C, and the 2D spatial attention
map Ns ∈ RH×W×1 as shown in Figure 5 [24,25]. The entire attention process can be
summarized as follows:

F′ = Ns(Nc(F)

Diagnostics 2021, 11, x FOR PEER REVIEW 5 of 12 
 

 

into two sibling layers for classification and bounding box regression. The classification 
gave the detection confidence score, and the regression gave the position regression of the 
bounding box. The used loss function includes the classification loss and the regression 
loss in the training stage of the Faster R-CNN model. 

2.2.2. Fracture Area Detection 
In this paper, the fractures detection CNN consists of the ResNet 152 backbone, the 

feature pyramid network [21,22] (FPN, for generating the multiscale feature maps) and 
the convolutional block attention module [23] (CBAM; for determining whether it is 
fractured). The last three blocks comprise the feature pyramid network. The number of 
layers used by the FPN is three rather than the original four because of better 
performances in experiments. The resulting feature maps of FPN are fed into the predict 
head for detecting the fracture areas. The predict head has two branches: the cls branch 
(detecting positive/negative bounding box) and the loc branch (regressing the position of 
fracture bounding box). The two branches are implemented in Conv + BN + ReLU + Conv, 
and the shapes of the output of cls are [B, A × C] and loc is [B, A ×5] (where B, A, C are 
denoted to the numbers of the batch, anchor and class). 

The detailed structure of FPN is shown in Figure 4. The FPN passes the deep features 
layer by layer and directly combines or concatenates the deep and shallow features to 
generate high-resolution feature maps and desirable semantics. 

 
Figure 4. The structure of the feature pyramid network; ♁ is the elementwise sum. 

The CBAM enhances the input feature F of FPN into refined feature 𝐹ᇱ by inferring 
the one-dimensional (1D) channel attention map 𝑁 ∈ 𝑅ଵ×ଵ×, and the 2D spatial attention 
map 𝑁௦ ∈ 𝑅ு×ௐ×ଵ  as shown in Figure 5 [24,25]. The entire attention process can be 
summarized as follows: 𝐹ᇱ = 𝑁௦(𝑁(𝐹)☉𝐹))☉𝑁(𝐹)♁𝐹 (1)

where ☉ and ♁ denote the elementwise product and sum. The following describes the two 
attention modules as shown in Figure 6. 
 

F)

Diagnostics 2021, 11, x FOR PEER REVIEW 5 of 12 
 

 

into two sibling layers for classification and bounding box regression. The classification 
gave the detection confidence score, and the regression gave the position regression of the 
bounding box. The used loss function includes the classification loss and the regression 
loss in the training stage of the Faster R-CNN model. 

2.2.2. Fracture Area Detection 
In this paper, the fractures detection CNN consists of the ResNet 152 backbone, the 

feature pyramid network [21,22] (FPN, for generating the multiscale feature maps) and 
the convolutional block attention module [23] (CBAM; for determining whether it is 
fractured). The last three blocks comprise the feature pyramid network. The number of 
layers used by the FPN is three rather than the original four because of better 
performances in experiments. The resulting feature maps of FPN are fed into the predict 
head for detecting the fracture areas. The predict head has two branches: the cls branch 
(detecting positive/negative bounding box) and the loc branch (regressing the position of 
fracture bounding box). The two branches are implemented in Conv + BN + ReLU + Conv, 
and the shapes of the output of cls are [B, A × C] and loc is [B, A ×5] (where B, A, C are 
denoted to the numbers of the batch, anchor and class). 

The detailed structure of FPN is shown in Figure 4. The FPN passes the deep features 
layer by layer and directly combines or concatenates the deep and shallow features to 
generate high-resolution feature maps and desirable semantics. 

 
Figure 4. The structure of the feature pyramid network; ♁ is the elementwise sum. 

The CBAM enhances the input feature F of FPN into refined feature 𝐹ᇱ by inferring 
the one-dimensional (1D) channel attention map 𝑁 ∈ 𝑅ଵ×ଵ×, and the 2D spatial attention 
map 𝑁௦ ∈ 𝑅ு×ௐ×ଵ  as shown in Figure 5 [24,25]. The entire attention process can be 
summarized as follows: 𝐹ᇱ = 𝑁௦(𝑁(𝐹)☉𝐹))☉𝑁(𝐹)♁𝐹 (1)

where ☉ and ♁ denote the elementwise product and sum. The following describes the two 
attention modules as shown in Figure 6. 
 

Nc(F)

Diagnostics 2021, 11, x FOR PEER REVIEW 5 of 12 
 

 

into two sibling layers for classification and bounding box regression. The classification 
gave the detection confidence score, and the regression gave the position regression of the 
bounding box. The used loss function includes the classification loss and the regression 
loss in the training stage of the Faster R-CNN model. 

2.2.2. Fracture Area Detection 
In this paper, the fractures detection CNN consists of the ResNet 152 backbone, the 

feature pyramid network [21,22] (FPN, for generating the multiscale feature maps) and 
the convolutional block attention module [23] (CBAM; for determining whether it is 
fractured). The last three blocks comprise the feature pyramid network. The number of 
layers used by the FPN is three rather than the original four because of better 
performances in experiments. The resulting feature maps of FPN are fed into the predict 
head for detecting the fracture areas. The predict head has two branches: the cls branch 
(detecting positive/negative bounding box) and the loc branch (regressing the position of 
fracture bounding box). The two branches are implemented in Conv + BN + ReLU + Conv, 
and the shapes of the output of cls are [B, A × C] and loc is [B, A ×5] (where B, A, C are 
denoted to the numbers of the batch, anchor and class). 

The detailed structure of FPN is shown in Figure 4. The FPN passes the deep features 
layer by layer and directly combines or concatenates the deep and shallow features to 
generate high-resolution feature maps and desirable semantics. 

 
Figure 4. The structure of the feature pyramid network; ♁ is the elementwise sum. 

The CBAM enhances the input feature F of FPN into refined feature 𝐹ᇱ by inferring 
the one-dimensional (1D) channel attention map 𝑁 ∈ 𝑅ଵ×ଵ×, and the 2D spatial attention 
map 𝑁௦ ∈ 𝑅ு×ௐ×ଵ  as shown in Figure 5 [24,25]. The entire attention process can be 
summarized as follows: 𝐹ᇱ = 𝑁௦(𝑁(𝐹)☉𝐹))☉𝑁(𝐹)♁𝐹 (1)

where ☉ and ♁ denote the elementwise product and sum. The following describes the two 
attention modules as shown in Figure 6. 
 

F (1)

where

Diagnostics 2021, 11, x FOR PEER REVIEW 5 of 12 
 

 

into two sibling layers for classification and bounding box regression. The classification 
gave the detection confidence score, and the regression gave the position regression of the 
bounding box. The used loss function includes the classification loss and the regression 
loss in the training stage of the Faster R-CNN model. 

2.2.2. Fracture Area Detection 
In this paper, the fractures detection CNN consists of the ResNet 152 backbone, the 

feature pyramid network [21,22] (FPN, for generating the multiscale feature maps) and 
the convolutional block attention module [23] (CBAM; for determining whether it is 
fractured). The last three blocks comprise the feature pyramid network. The number of 
layers used by the FPN is three rather than the original four because of better 
performances in experiments. The resulting feature maps of FPN are fed into the predict 
head for detecting the fracture areas. The predict head has two branches: the cls branch 
(detecting positive/negative bounding box) and the loc branch (regressing the position of 
fracture bounding box). The two branches are implemented in Conv + BN + ReLU + Conv, 
and the shapes of the output of cls are [B, A × C] and loc is [B, A ×5] (where B, A, C are 
denoted to the numbers of the batch, anchor and class). 

The detailed structure of FPN is shown in Figure 4. The FPN passes the deep features 
layer by layer and directly combines or concatenates the deep and shallow features to 
generate high-resolution feature maps and desirable semantics. 

 
Figure 4. The structure of the feature pyramid network; ♁ is the elementwise sum. 

The CBAM enhances the input feature F of FPN into refined feature 𝐹ᇱ by inferring 
the one-dimensional (1D) channel attention map 𝑁 ∈ 𝑅ଵ×ଵ×, and the 2D spatial attention 
map 𝑁௦ ∈ 𝑅ு×ௐ×ଵ  as shown in Figure 5 [24,25]. The entire attention process can be 
summarized as follows: 𝐹ᇱ = 𝑁௦(𝑁(𝐹)☉𝐹))☉𝑁(𝐹)♁𝐹 (1)

where ☉ and ♁ denote the elementwise product and sum. The following describes the two 
attention modules as shown in Figure 6. 
 

and

Diagnostics 2021, 11, x FOR PEER REVIEW 5 of 12 
 

 

into two sibling layers for classification and bounding box regression. The classification 
gave the detection confidence score, and the regression gave the position regression of the 
bounding box. The used loss function includes the classification loss and the regression 
loss in the training stage of the Faster R-CNN model. 

2.2.2. Fracture Area Detection 
In this paper, the fractures detection CNN consists of the ResNet 152 backbone, the 

feature pyramid network [21,22] (FPN, for generating the multiscale feature maps) and 
the convolutional block attention module [23] (CBAM; for determining whether it is 
fractured). The last three blocks comprise the feature pyramid network. The number of 
layers used by the FPN is three rather than the original four because of better 
performances in experiments. The resulting feature maps of FPN are fed into the predict 
head for detecting the fracture areas. The predict head has two branches: the cls branch 
(detecting positive/negative bounding box) and the loc branch (regressing the position of 
fracture bounding box). The two branches are implemented in Conv + BN + ReLU + Conv, 
and the shapes of the output of cls are [B, A × C] and loc is [B, A ×5] (where B, A, C are 
denoted to the numbers of the batch, anchor and class). 

The detailed structure of FPN is shown in Figure 4. The FPN passes the deep features 
layer by layer and directly combines or concatenates the deep and shallow features to 
generate high-resolution feature maps and desirable semantics. 

 
Figure 4. The structure of the feature pyramid network; ♁ is the elementwise sum. 

The CBAM enhances the input feature F of FPN into refined feature 𝐹ᇱ by inferring 
the one-dimensional (1D) channel attention map 𝑁 ∈ 𝑅ଵ×ଵ×, and the 2D spatial attention 
map 𝑁௦ ∈ 𝑅ு×ௐ×ଵ  as shown in Figure 5 [24,25]. The entire attention process can be 
summarized as follows: 𝐹ᇱ = 𝑁௦(𝑁(𝐹)☉𝐹))☉𝑁(𝐹)♁𝐹 (1)

where ☉ and ♁ denote the elementwise product and sum. The following describes the two 
attention modules as shown in Figure 6. 
 

denote the elementwise product and sum. The following describes the two
attention modules as shown in Figure 6.



Diagnostics 2022, 12, 895 6 of 13Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 5. The structure of the convolutional clock attention module. 

 
Figure 6. The structure of the attention module, H, W, and C are the height, width, and channel of 
feature map.  

• Channel attention module. The aggregated feature map is combined through 
average-pooling and max-pooling operations. The two resulting feature maps are 
represented as 𝐹௩  and 𝐹௫  with the sizes of 1 × 1 × 𝑐. These two feature maps are 
independently built from two fully connected layers and then integrate them into a 
feature map 𝑁(𝐹) by elementwise addition and sigmoid operations. 

• Spatial attention module. The channel attention feature map 𝑁(𝐹)  and original 
feature map F are aggregated into the new feature map, and down-sampled by using 
the average-pooling and max-pooling operation. The results generate two different 
feature maps 𝐹௩௦  and 𝐹௫௦ , with sizes of H × W × 1. The two feature maps are 
concatenated into larger maps and then convoluted and activated by a 7 × 7 × 2 
kernel and sigmoid function. 
The image-wise classifier is established with a full connected network block. The 

binary classification cross-entropy loss used is defined as follows. 𝐿𝐵𝐶𝐸(𝑦, 𝑝) = ൜ −log(𝑝) 𝑖𝑓𝑦 = 1−log (1 − 𝑝) 𝑖𝑓𝑦 ് 1 (2) 

where y represents a scaphoid image and y = 1 means the scaphoid image y has fractured, 
and the 𝑦 ് 1 means no fracture occurs. 

A rotation-decoupled detector (RDD) of the predicted head of this paper is used to 
detect oriented bounding box (OBB) with additional rotation angle because the fractured 
area of scaphoid always emerges with arbitrary oriented angles, dense distribution and a 
larger aspect ratio. The horizontal bounding box (HBB) is usually represented by (𝑥, 𝑦, 𝑤, ℎ), where (x, y) is the center, and w and h are the lengths of the X and Y axes. The 
OBB is represented by (x, y, w, h,𝜃) where 𝜃 is the angle of the bounding box. To combine 
the advantages of HBB and OBB, the detecting rotational bounding box is redefined as the 
horizontal bound box 𝐻𝐵𝐵 ௩ൗ  and an angle 𝜃 ranged in ሾ− 𝜋 4ൗ , 𝜋 4ൗ ], where the detected 
OBB has the same center, width, and length as the 𝐻𝐵𝐵 ௩ൗ  horizontal bound box. To 
accelerate the training and interfacing process, only horizontal anchors are used. In the 

Figure 5. The structure of the convolutional clock attention module.

Diagnostics 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 5. The structure of the convolutional clock attention module. 

 
Figure 6. The structure of the attention module, H, W, and C are the height, width, and channel of 
feature map.  

• Channel attention module. The aggregated feature map is combined through 
average-pooling and max-pooling operations. The two resulting feature maps are 
represented as 𝐹௩  and 𝐹௫  with the sizes of 1 × 1 × 𝑐. These two feature maps are 
independently built from two fully connected layers and then integrate them into a 
feature map 𝑁(𝐹) by elementwise addition and sigmoid operations. 

• Spatial attention module. The channel attention feature map 𝑁(𝐹)  and original 
feature map F are aggregated into the new feature map, and down-sampled by using 
the average-pooling and max-pooling operation. The results generate two different 
feature maps 𝐹௩௦  and 𝐹௫௦ , with sizes of H × W × 1. The two feature maps are 
concatenated into larger maps and then convoluted and activated by a 7 × 7 × 2 
kernel and sigmoid function. 
The image-wise classifier is established with a full connected network block. The 

binary classification cross-entropy loss used is defined as follows. 𝐿𝐵𝐶𝐸(𝑦, 𝑝) = ൜ −log(𝑝) 𝑖𝑓𝑦 = 1−log (1 − 𝑝) 𝑖𝑓𝑦 ് 1 (2) 

where y represents a scaphoid image and y = 1 means the scaphoid image y has fractured, 
and the 𝑦 ് 1 means no fracture occurs. 

A rotation-decoupled detector (RDD) of the predicted head of this paper is used to 
detect oriented bounding box (OBB) with additional rotation angle because the fractured 
area of scaphoid always emerges with arbitrary oriented angles, dense distribution and a 
larger aspect ratio. The horizontal bounding box (HBB) is usually represented by (𝑥, 𝑦, 𝑤, ℎ), where (x, y) is the center, and w and h are the lengths of the X and Y axes. The 
OBB is represented by (x, y, w, h,𝜃) where 𝜃 is the angle of the bounding box. To combine 
the advantages of HBB and OBB, the detecting rotational bounding box is redefined as the 
horizontal bound box 𝐻𝐵𝐵 ௩ൗ  and an angle 𝜃 ranged in ሾ− 𝜋 4ൗ , 𝜋 4ൗ ], where the detected 
OBB has the same center, width, and length as the 𝐻𝐵𝐵 ௩ൗ  horizontal bound box. To 
accelerate the training and interfacing process, only horizontal anchors are used. In the 

Figure 6. The structure of the attention module, H, W, and C are the height, width, and channel of
feature map.

• Channel attention module. The aggregated feature map is combined through average-
pooling and max-pooling operations. The two resulting feature maps are represented
as Fc

ave and Fc
max with the sizes of 1× 1× c. These two feature maps are independently

built from two fully connected layers and then integrate them into a feature map Nc(F)
by elementwise addition and sigmoid operations.

• Spatial attention module. The channel attention feature map Nc(F) and original
feature map F are aggregated into the new feature map, and down-sampled by using
the average-pooling and max-pooling operation. The results generate two different
feature maps Fs

ave and Fs
max, with sizes of H × W × 1. The two feature maps are

concatenated into larger maps and then convoluted and activated by a 7 × 7 × 2 kernel
and sigmoid function.

The image-wise classifier is established with a full connected network block. The
binary classification cross-entropy loss used is defined as follows.

LimageBCE(y, p) =

{
− log(p) i f y = 1
− log(1− p) i f y 6= 1

(2)

where y represents a scaphoid image and y = 1 means the scaphoid image y has fractured,
and the y 6= 1 means no fracture occurs.

A rotation-decoupled detector (RDD) of the predicted head of this paper is used to
detect oriented bounding box (OBB) with additional rotation angle because the fractured
area of scaphoid always emerges with arbitrary oriented angles, dense distribution and a
larger aspect ratio. The horizontal bounding box (HBB) is usually represented by (x, y, w, h),
where (x, y) is the center, and w and h are the lengths of the X and Y axes. The OBB is
represented by (x, y, w, h, θ) where θ is the angle of the bounding box. To combine the
advantages of HBB and OBB, the detecting rotational bounding box is redefined as the
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horizontal bound box HBBh/v and an angle θ ranged in [−π/4, π/4], where the detected
OBB has the same center, width, and length as the HBBh/v horizontal bound box. To
accelerate the training and interfacing process, only horizontal anchors are used. In the
anchor matching, the rotational ground truth box is decoupled to a HBBT

h/v and an acute
angle θT for matching. The computation of intersection of union (IOU) between OBB and
ground truth is disregard of their angles, as shown in Figure 7 [25].
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After matching, most of the bound boxes are classified as positive objects or negative
backgrounds based on the IOU thresholds set to 0.5 and 0.4. In other words, if the IOU of
the bounding box is more than 0.5 or less than 0.4, it will be assigned the positive or negative
case, and the remaining one is considered the ignored bounding box. In general, the number
of negative bounding boxes is much larger than the positive case. The positive-negative
samples imbalance problem always results in inaccurate classification. The popular balance
strategy is Focal Loss [26]; the Focal Loss method assigned the categorical labels of positive,
negative, and ignored bounding to 1, 0, and −1. The corresponding binary cross-entropy
(BCE) is defined as follows:

BCE(y, p) =


log(p) i f y = 1

− log(1− p) i f y = 0
0 i f y = −1

(3)

where y is the class label of a bounding box and p is its predicted probability.
The classification Loss Lcls is defined as follows.

Lcls =
1

#(postive bboxes) ∑N
i=1 BCE(yi, pi) (4)

where the N and the #(positive boxes) denote the number of all bounding boxes and the
number of positive bounding box.
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The ground truth box and prediction box are represented as v = (tx, ty, tw, th, tθ) and

v∗ =
(

t∗x, t∗y , t∗w, t∗h, t∗θ
)

for position regression. If a corresponding anchor is expressed as
(xa, ya, wa, ha), the v∗ is defined in the following equations:

tx = x− xa/wa, ty = y− ya/ha

tw = log(w/wa), th = log(h/ha)

tθ = 4θ/π

t∗x = x∗ − xa/wa, t∗y = y∗ − ya/ha

t∗w = log(w∗/wa), t∗h = log(h∗/ha)

t∗θ = tan h(θ∗
)

(5)

The smoothL1 loss for the rotation bounding box regression is used for the object
anchors.

Lreg =
1

#(postive bboxes) ∑#(postive bboxes)
i=1 smoothL1(v∗i − vi) (6)

where,

smoothL1(x) =

{
0.5x2 i f |x| < 1
|x| − 0.5 otherwise

(7)

Finally, the multi-task loss is defined as:

L = Lcls + αLreg +
1
β

LimageBCE(y, p) (8)

where β is the batch size.

2.2.3. Performance Evaluation

In this section, the performance metrics of the proposed system were evaluated [27–30].
There are four performance metrics, including the Accuracy, Recall, Precision, and F scores
are defined as:

Accuarcy(AC) =
TP + TN

TP + TN + FP + FN
(9)

Sensitivity(SE) =
TP

TP + FN
(10)

Speci f icity(SP) =
TN

TN + FP
(11)

Recall(R) =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

F− scores =
2× Precision× Recall

Precision + Recall
(14)

The TP, TN, FP, and FN denote the number of true positive, true negative, false
positive, and false negative.

In addition, the Receiver Operating Characteristic (ROC) curve [31,32] is a graphical
plot that illustrates the capability of a binary classification system. The ROC curve is created
by plotting the true positive rate against the false-positive rate at different thresholds.
The Area Under the Curve (AUC) is a powerful measure of the ability of a classifier to
distinguish between classes. The AUC measures the ability of a classifier to distinguish
classes and is used as a summary of the ROC curve. The AUC ranges from 0 to 1. The
higher the AUC, the better the performance of the model at distinguishing between the
positive and negative classes.
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3. Results

This section describes the experimental results of the scaphoid and fracture detection.

3.1. Results of Scaphoid Detection

A total of 361 X-ray scaphoid radiographs were used including the 167 fractured
samples and 194 normal samples. Approximately, there were 18.56% (i.e., 31/167) occult
fractured samples in the 167 fractured samples. Figure 8 shows the two examples of the
X-ray images with fracture and without fracture. All sample images were verified using
the 5-fold cross-validation method. Three different data augmentation methods were used;
(1) contrast limited adaptive histogram equalization (CLAHE) [33], (2) random horizontal
flip with 50% probability, and (3) random contrast with 50% probability. The used CNN is
the Faster R-CNN model with a backbone of ResNet 50. The trained strategy is the learning
rate of 0.001, optimizer is SGD, batch size of 1 and epochs of 10,000. In total, the number of
parameters of the CNN model of scaphoid detection is 41,755,286 and the parameters are
pre-trained by using the PASCAL-VOC [34]. The training time of CNN is about 61 min and
the prediction time of each test image is 0.267 s. The classification accuracy tested in the
361 samples based on the five times of 5-fold cross-validations is 0.997 in which only one
fracture scaphoid image failed to detect. Similar result of classification accuracy of 0.994
was also found in Tung’s work [13].
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scaphoid area of (b).

3.2. Fracture Detection and Classification

The detected scaphoid images also include the 166 fractured samples (previous one
scaphoid image is discarded) and 194 normal samples. Figure 9 shows the two examples
of the detected scaphoid images with/without fractures. The data augmentation and
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5-fold cross-validation methods are used the same as the scaphoid detection. The trained
strategy is the learning rate of 0.001, optimizer is SGD, batch size of 1, and epochs of
10,000. As shown in Tables 1 and 2, we compute the averages of recall, precision, sensitivity,
specificity, accuracy, and AUC using the five times of 5-fold cross-validations methods. In
total, the number of parameters of the CNN model of fracture detection is 66,913,876 and
the parameters are pre-trained by using the PASCAL-VOC [34]. The training time of CNN
is about 37 min and prediction time of each test image is 0.028 s.
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fracture bounding box. (c) Scaphoid case with fracture. (d) Fracture bounding box.

Table 1. The results of fracture detection of detected scaphoid.

Methods Recall Precision Accuracy Sensitivity Specificity AUC

Our proposed method 0.789 0.894 0.853 0.789 0.900 0.920

Table 2. The results fracture classification of detected scaphoid.

Methods Recall Precision Accuracy Sensitivity Specificity AUC

Our proposed method 0.735 0.898 0.829 0.735 0.920 0.917

Compared to other works of fracture detections, Yoon [6] presented the sensitivity
of 0.79, the specificity of 0.716, and the AUC of 0.81. From Table 1, the sensitivity of
0.789, the specificity of 0.900, and the AUC of 0.92 are found; these performance measures
are superior to the results of Yoon, especially as the specificity of our proposed method
markedly precedes the work of Yoon.

The works of the fracture classifications in the literature showed that Tung [13] pre-
sented a sensitivity of 0.833, specificity of 0.611, and AUC of 0.79. Yoon [8] presented
a sensitivity of 0.87, specificity of 0.92, and AUC of 0.96. Langerhuizen [7] presented a
sensitivity of 0.84, specificity of 0.6, and AUC of 0.81. Hendrix [11] presented a sensitivity
of 0.78, specificity of 0.84, and AUC of 0.87. While our result is worse than the work of
Yoon, it is superior to other three methods.
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However, the recalls of our proposed results for the fracture detection and classification
are only 0.789 and 0.735. The results mean that a higher false-negative rate occurs, meaning
there may exist a large number of misclassifications of positive images with occult fractures.
To understand the results of the 31 occult fracture samples, their detection and classification
results are shown in Table 3. The results showed that the correct detection and classification
is only 50%.

Table 3. The results of fracture detection and classification of 31 occult samples.

Methods Accurate Samples Inaccurate Sample

Detection 15 16
Classification 16 15

4. Conclusions

This study delivers evidence supporting the CNN approaches that accurately detect
the fracture areas and classify the status of scaphoid fractures using X-ray scaphoid radio-
graphs. The proposed model includes two consecutive CNNs to detect the scaphoid and
classify scaphoid fractures. Experimental results reveal that the detection of the scaphoid
area performs well, but the recalls of the detection and classification of scaphoid fractures
are only 0.789 and 0.735. It therefore implies high false-negative rates and warrants fur-
ther exploring the results of 31 occult samples. We found that only 50% correct fracture
classification and detection were reached in testing of the 31 occult samples.

In the future, the improvement of the classification capability of occult samples is still
an important research topic. The integration of the anterior-poster and lateral view images
of each participant is a probable approach to developing more powerful convolutional
neural networks for fracture detection with X-ray radiographs.
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