An Extra Set of Intelligent Eyes: Application of Artificial Intelligence in Imaging of Abdominopelvic Pathologies in Emergency Radiology
Abstract
:1. Introduction
2. Overview
3. Diseases of the Digestive Tract
3.1. Small Bowel Obstruction
3.2. Intussusception
3.3. Acute Appendicitis
3.4. Colitis
4. Trauma
4.1. Hemoperitoneum
4.2. Traumatic Pelvic Injuries
5. Abdominal Aortic Aneurysms
6. Practical Applications
7. Discussion
8. Conclusions
Funding
Conflicts of Interest
References
- Arora, A. Conceptualising Artificial Intelligence as a Digital Healthcare Innovation: An Introductory Review. Med. Devices Évid. Res. 2020, 13, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Behzadi-Khormouji, H.; Rostami, H.; Salehi, S.; Derakhshande-Rishehri, T.; Masoumi, M.; Salemi, S.; Keshavarz, A.; Gholamrezanezhad, A.; Assadi, M.; Batouli, A. Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Comput. Methods Programs Biomed. 2019, 185, 105162. [Google Scholar] [CrossRef] [PubMed]
- Varghese, B.A.; Shin, H.; Desai, B.; Gholamrezanezhad, A.; Lei, X.; Perkins, M.; Oberai, A.; Nanda, N.; Cen, S.; Duddalwar, V. Predicting clinical outcomes in COVID-19 using radiomics on chest radiographs. Br. J. Radiol. 2021, 94, 20210221. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, I. Artificial intelligence: Opportunities and implications for the health workforce. Int. Health 2020, 12, 241–245. [Google Scholar] [CrossRef]
- Giger, M.L. Machine Learning in Medical Imaging. J. Am. Coll. Radiol. 2018, 15, 512–520. [Google Scholar] [CrossRef]
- Jalal, S.; Parker, W.; Ferguson, D.; Nicolaou, S. Exploring the Role of Artificial Intelligence in an Emergency and Trauma Radiology Department. Can. Assoc. Radiol. J. 2020, 72, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Langlotz, C.P.; Allen, B.; Erickson, B.J.; Kalpathy-Cramer, J.; Bigelow, K.; Cook, T.S.; Flanders, A.E.; Lungren, M.P.; Mendelson, D.S.; Rudie, J.D.; et al. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 2019, 291, 781–791. [Google Scholar] [CrossRef]
- Demetriades, D.; Karaiskakis, M.; Toutouzas, K.; Alo, K.; Velmahos, G.; Chan, L. Pelvic fractures: Epidemiology and predictors of associated abdominal injuries and outcomes. J. Am. Coll. Surg. 2002, 195, 1–10. [Google Scholar] [CrossRef]
- Ukai, K.; Rahman, R.; Yagi, N.; Hayashi, K.; Maruo, A.; Muratsu, H.; Kobashi, S. Detecting pelvic fracture on 3D-CT using deep convolutional neural networks with multi-orientated slab images. Sci. Rep. 2021, 11, 11716. [Google Scholar] [CrossRef]
- Thompson, W.M.; Kilani, R.K.; Smith, B.B.; Thomas, J.; Jaffe, T.A.; Delong, D.M.; Paulson, E.K. Accuracy of Abdominal Radiography in Acute Small-Bowel Obstruction: Does Reviewer Experience Matter? Am. J. Roentgenol. 2007, 188, W233–W238. [Google Scholar] [CrossRef]
- Lappas, J.C.; Reyes, B.L.; Maglinte, D.D. Abdominal radiography findings in small bowel obstruction: Relevance to triage for additional diagnostic imaging. AJR 2001, 176, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.M.; Tejura, T.K.; Tran, K.N.; Whang, G. Detection of high-grade small bowel obstruction on conventional radiog-raphy with convolutional neural networks. Abdom. Radiol. 2018, 43, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Dreizin, D.; Zhou, Y.; Zhang, Y.; Tirada, N.; Yuille, A.L. Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT. J. Digit. Imaging 2019, 33, 243–251. [Google Scholar] [CrossRef]
- Sjogren, A.R.; Leo, M.M.; Feldman, J.; Gwin, J.T. Image Segmentation and Machine Learning for Detection of Abdominal Free Fluid in Focused Assessment With Sonography for Trauma Examinations: A Pilot Study. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2016, 35, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Shum, J.; Martufi, G.; Di Martino, E.; Washington, C.B.; Grisafi, J.; Muluk, S.C.; Finol, E. Quantitative Assessment of Abdominal Aortic Aneurysm Geometry. Ann. Biomed. Eng. 2010, 39, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, D.; Lu, L.; Wei, Z.; Kim, L.; Turkbey, E.B.; Sahiner, B.; Petrick, N.A.; Summers, R.M. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Med. Phys. 2017, 44, 4630–4642. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, K.A.; Nam, Y.; Choi, M.H.; Choi, S.Y.; Rhie, J. Convolutional-neural-network-based diagnosis of appendicitis via CT scans in patients with acute abdominal pain presenting in the emergency department. Sci. Rep. 2020, 10, 9556. [Google Scholar] [CrossRef]
- Kwon, G.; Ryu, J.; Oh, J.; Lim, J.; Kang, B.-K.; Ahn, C.; Bae, J.; Lee, D.K. Deep learning algorithms for detecting and visualising intussusception on plain abdominal radiography in children: A retrospective multicenter study. Sci. Rep. 2020, 10, 17582. [Google Scholar] [CrossRef]
- Kim, D.; Wit, H.; Thurston, M.; Long, M.; Maskell, G.; Strugnell, M.; Shetty, D.; Smith, I.; Hollings, N. An artificial intelligence deep learning model for identification of small bowel obstruction on plain abdominal radiographs. Br. J. Radiol. 2021, 94, 20201407. [Google Scholar] [CrossRef]
- Marcinkevics, R.; Wolfertstetter, P.R.; Wellmann, S.; Knorr, C.; Vogt, J.E. Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis. Front. Pediatr. 2021, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Ruan, G.; Qi, J.; Cheng, Y.; Liu, R.; Zhang, B.; Zhi, M.; Chen, J.; Xiao, F.; Shen, X.; Fan, L.; et al. Development and Validation of a Deep Neural Network for Accurate Identification of Endoscopic Images from Patients With Ulcerative Colitis and Crohn’s Disease. Front. Med. 2022, 9, 854677. [Google Scholar] [CrossRef]
- Dreizin, D.; Zhou, Y.; Fu, S.; Wang, Y.; Li, G.; Champ, K.; Siegel, E.; Wang, Z.; Chen, T.; Yuille, A.L. A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation. Radiol. Artif. Intell. 2020, 2, e190220. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-T.; Wang, Y.; Chen, H.-W.; Hsiao, P.-M.; Yeh, C.-N.; Hsieh, C.-H.; Miao, S.; Xiao, J.; Liao, C.-H.; Lu, L. A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs. Nat. Commun. 2021, 12, 1066. [Google Scholar] [CrossRef]
- Golla, A.-K.; Tönnes, C.; Russ, T.; Bauer, D.F.; Froelich, M.F.; Diehl, S.J.; Schoenberg, S.O.; Keese, M.; Schad, L.R.; Zöllner, F.G.; et al. Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning. Diagnostics 2021, 11, 2131. [Google Scholar] [CrossRef]
- Cheng, P.M.; Tran, K.N.; Whang, G.; Tejura, T.K. Refining Convolutional Neural Network Detection of Small-Bowel Obstruction in Conventional Radiography. Am. J. Roentgenol. 2019, 212, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Mandeville, K.; Chien, M.; Willyerd, F.A.; Mandell, G.; Hostetler, M.A.; Bulloch, B. Intussusception. Pediatr. Emerg. Care 2012, 28, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Hom, J.; Kaplan, C.; Fowler, S.; Messina, C.; Chandran, L.; Kunkov, S. Evidence-Based Diagnostic Test Accuracy of History, Physical Examination, and Imaging for Intussusception. Pediatr. Emerg. Care 2020, 38, e225–e230. [Google Scholar] [CrossRef]
- Weihmiller, S.N.; Buonomo, C.; Bachur, R. Risk Stratification of Children Being Evaluated for Intussusception. Pediatrics 2011, 127, e296–e303. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, H.; Lee, M.-J.; Kim, M.-J.; Han, K.; Yoon, J.K.; Kim, H.C.; Shin, J.; Shin, H.J. Performance of deep learning-based algorithm for detection of ileocolic intussusception on abdominal radiographs of young children. Sci. Rep. 2019, 9, 19420. [Google Scholar] [CrossRef]
- Kim, H.C.; Yang, D.M.; Jin, W.; Park, S.J. Added Diagnostic Value of Multiplanar Reformation of Multidetector CT Data in Patients with Suspected Appendicitis. RadioGraphics 2008, 28, 393–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadder, N.J.; Gornick, M.; Everett, J.; Greenson, J.K.; Gruber, S.B. Inflammatory bowel disease and familial adenomatous polyposis. J. Crohn’s Colitis 2013, 7, e103–e107. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.S.; Zhang, W.D.; Liu, J.F.; Wang, S.J.; Yao, J.H.; Summers, R.M. Computer-Aided Detection of Colitis on Computed Tomog-raphy Using a Visual Codebook. In Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, USA, 7–11 April 2013; pp. 141–144. [Google Scholar]
- Liu, J.; Wang, D.; Wei, Z.; Lu, L.; Kim, L.; Turkbey, E.; Summers, R.M. Colitis detection on computed tomography using regional convolutional neural networks. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 863–866. [Google Scholar] [CrossRef]
- Rose, J.S.; Richards, J.R.; Battistella, F.; Bair, A.E.; McGahan, J.P.; Kuppermann, N. The FAST is positive, now what? Derivation of a clinical decision rule to determine the need for therapeutic laparotomy in adults with blunt torso trauma and a positive trauma ultrasound. J. Emerg. Med. 2005, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Moylan, M.; Newgard, C.D.; Ma, O.J.; Sabbaj, A.; Rogers, T.; Douglass, R. Association Between a Positive ED FAST Examination and Therapeutic Laparotomy in Normotensive Blunt Trauma Patients. J. Emerg. Med. 2007, 33, 265–271. [Google Scholar] [CrossRef]
- Helling, T.S.; Wilson, J.; Augustosky, K. The utility of focused abdominal ultrasound in blunt abdominal trauma: A reap-praisal. Am. J. Surg. 2007, 194, 728–733. [Google Scholar] [CrossRef]
- Moore, C.; Todd, W.M.; O’Brien, E.; Lin, H. Free fluid in Morison’s pouch on bedside ultrasound predicts need for operative intervention in suspected ectopic pregnancy. Acad. Emerg. Med. 2007, 14, 755–758. [Google Scholar] [CrossRef] [Green Version]
- Volpicelli, G.; Lamorte, A.; Tullio, M.; Cardinale, L.; Giraudo, M.; Stefanone, V.; Boero, E.; Nazerian, P.; Pozzi, R.; Frascisco, M.F. Point-of-care multiorgan ultrasonography for the evaluation of undifferentiated hypotension in the emergency department. Intensiv. Care Med. 2013, 39, 1290–1298. [Google Scholar] [CrossRef] [Green Version]
- Maitra, S.; Jarman, R.D.; Halford, N.W.; Richards, S.P. When FAST is a FAFF: Is FAST scanning useful in nontrauma patients? Ultrasound 2008, 16, 165–168. [Google Scholar] [CrossRef]
- Wu, J.; Davuluri, P.; Ward, K.R.; Cockrell, C.; Hobson, R.; Najarian, K. Fracture Detection in Traumatic Pelvic CT Images. Int. J. Biomed. Imaging 2012, 2012, 327198. [Google Scholar] [CrossRef]
- Küper, M.A.; Working Group on Pelvic Fractures of the German Trauma Society; Bachmann, R.; Wenig, G.F.; Ziegler, P.; Trulson, A.; Trulson, I.M.; Minarski, C.; Ladurner, R.; Stöckle, U.; et al. Associated abdominal injuries do not influence quality of care in pelvic fractures—a multicenter cohort study from the German Pelvic Registry. World J. Emerg. Surg. 2020, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, H.; Sara, S.; Ali, S.R. Evaluation of the relationship between pelvic fracture and abdominal compartment syndrome in traumatic patients. J. Emerg. Trauma Shock 2013, 6, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Rezende-Neto, J.B.; De Abreu, R.N.E.S.; Gomez, D.; Tanoli, O.S.; Campos, V.M.; Aguiar, R.S.T.; Paskar, D.D.; Nauth, A. Extra-Articular Pelvic Fractures with Concomitant Gastrointestinal Injury Caused by Ballistic Trauma are Harbingers of Intra-Abdominal and Retroperito-neal Abscesses. J. Emerg. Med. Trauma Surg. Care 2019, 6, 27. [Google Scholar] [CrossRef]
- Chea, P.; Mandell, J.C. Current applications and future directions of deep learning in musculoskeletal radiology. Skelet. Radiol. 2019, 49, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Krogue, J.D.; Cheng, K.V.; Hwang, K.M.; Toogood, P.; Meinberg, E.G.; Geiger, E.J.; Zaid, M.; McGill, K.C.; Patel, R.; Sohn, J.H.; et al. Automatic Hip Fracture Identification and Functional Subclassification with Deep Learning. Radiol. Artif. Intell. 2020, 2, e190023. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Asamoto, T.; Ono, Y.; Goto, R.; Kitamura, A.; Honda, S. A computer-aided diagnosis system using artificial intelligence for proximal femoral fractures enables residents to achieve a diagnostic rate equivalent to orthopedic surgeons—Multi-Institutional Joint Development Research. arXiv 2020, arXiv:2003.12443. Available online: https://arxiv.org/abs/2003.12443 (accessed on 19 April 2022).
- Hallas, P.; Ellingsen, T. Errors in fracture diagnoses in the emergency department—Characteristics of patients and diurnal variation. BMC Emerg. Med. 2006, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Henes, F.; Nüchtern, J.; Groth, M.; Habermann, C.; Regier, M.; Rueger, J.; Adam, G.; Großterlinden, L. Comparison of diagnostic accuracy of Magnetic Resonance Imaging and Multidetector Computed Tomography in the detection of pelvic fractures. Eur. J. Radiol. 2012, 81, 2337–2342. [Google Scholar] [CrossRef]
- Davuluri, P.; Wu, J.; Tang, Y.; Cockrell, C.H.; Ward, K.R.; Najarian, K.; Hargraves, R.H. Hemorrhage Detection and Segmentation in Traumatic Pelvic Injuries. Comput. Math. Methods Med. 2012, 2012, 898430. [Google Scholar] [CrossRef] [Green Version]
- Raffort, J.; Adam, C.; Carrier, M.; Ballaith, A.; Coscas, R.; Jean-Baptiste, E.; Hassen-Khodja, R.; Chakfé, N.; Lareyre, F. Artificial intelligence in abdominal aortic aneurysm. J. Vasc. Surg. 2020, 72, 321–333.e1. [Google Scholar] [CrossRef]
- de Bruijne, M.; van Ginneken, B.; Viergever, A.M.; Niessen, W.J. Interactive segmentation of abdominal aortic aneurysms in CTA images. Med. Image Anal. 2004, 8, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Subasic, M.; Loncaric, S.; Sorantin, E. 3-D image analysis of abdominal aortic aneurysm. Stud. Health Technol. Inform. 2000, 77, 1195–1200. [Google Scholar] [PubMed]
- Zhuge, F.; Rubin, G.; Sun, S.; Napel, S. An abdominal aortic aneurysm segmentation method: Level set with region and statistical information. Med. Phys. 2006, 33, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Joldes, G.R.; Miller, K.; Wittek, A.; Forsythe, R.O.; Newby, D.E.; Doyle, B. BioPARR: A software system for estimating the rupture potential index for abdominal aortic aneurysms. Sci. Rep. 2017, 7, 4641. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, R.; Teng, Z.; Huang, Y.; Spiga, F.; Du, M.H.-F.; Gillard, J.H.; Lu, Q.; Lio, P.; Zhu, J. Neural network fusion: A novel CT-MR aortic aneurysm image segmentation method. In Medical Imaging 2018: Image Processing; ISOP: London, UK, 2018; Volume 10574, p. 1057424. [Google Scholar] [CrossRef]
- Sakalihasan, N.; Limet, R.; Defawe, O. Abdominal aortic aneurysm. Lancet 2005, 365, 1577–1589. [Google Scholar] [CrossRef]
- Chaikof, E.L.; Dalman, R.L.; Eskandari, M.K.; Jackson, B.M.; Lee, W.A.; Mansour, M.A.; Mastracci, T.M.; Mell, M.; Murad, M.H.; Nguyen, L.L.; et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018, 67, 2–77.e2. [Google Scholar] [CrossRef] [Green Version]
- Shum, J.; DiMartino, E.S.; Goldhammer, A.; Goldman, D.H.; Acker, L.C.; Patel, G.; Ng, J.H.; Martufi, G.; Finol, E.A. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 2010, 37, 638–648. [Google Scholar] [CrossRef]
- Filipovic, N.; Ivanović, M.; Krstajic, D.; Kojic, M. Hemodynamic Flow Modeling Through an Abdominal Aorta Aneurysm Using Data Mining Tools. IEEE Trans. Inf. Technol. Biomed. 2010, 15, 189–194. [Google Scholar] [CrossRef]
- Canchi, T.; Kumar, S.D.; Ng, E.Y.K.; Narayanan, S. A Review of Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms. BioMed Res. Int. 2015, 2015, 861627. [Google Scholar] [CrossRef] [Green Version]
- Jordanski, M.; Radovic, M.; Milosevic, Z.; Filipovic, N.; Obradovic, Z. Machine Learning Approach for Predicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid Bifurcation Models. IEEE J. Biomed. Health Inform. 2018, 22, 537–544. [Google Scholar] [CrossRef]
- Pang, S.; Ding, T.; Qiao, S.; Meng, F.; Wang, S.; Li, P.; Wang, X. A novel YOLOv3-arch model for identifying cholelithiasis and classifying gallstones on CT images. PLoS ONE 2019, 14, e0217647. [Google Scholar] [CrossRef]
- Rubin, D.L. Artificial Intelligence in Imaging: The Radiologist’s Role. J. Am. Coll. Radiol. 2019, 16, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, A.P.; Neri, E. Artificial Intelligence in Radiology—Ethical Considerations. Diagnostics 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, O.; Gersh, B.J.; Bhatt, D.L. Artificial intelligence in medical imaging: Switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit. Health 2020, 2, e486–e488. [Google Scholar] [CrossRef]
- Jin, Y.; Pepe, A.; Li, J.; Gsaxner, C.; Zhao, F.H.; Kleesiek, J.; Frangi, A.F.; Egger, J. Ai-based aortic vessel tree segmentation for cardiovascular diseases treatment: Status quo. arXiv 2021, arXiv:2108.02998. [Google Scholar]
- Recht, M.P.; Dewey, M.; Dreyer, K.; Langlotz, C.; Niessen, W.; Prainsack, B.; Smith, J.J. Integrating artificial intelligence into the clinical practice of radiology: Challenges and recommendations. Eur. Radiol. 2020, 30, 3576–3584. [Google Scholar] [CrossRef] [Green Version]
- Dexter, G.P.; Grannis, S.J.; E Dixon, B.; Kasthurirathne, S.N. Generalization of Machine Learning Approaches to Identify Notifiable Conditions from a Statewide Health Information Exchange. AMIA Jt. Summits Transl. Sci. Proc. AMIA Jt. Summits Transl. Sci. 2020, 2020, 152–161. [Google Scholar]
- Benjamens, S.; Dhunnoo, P.; Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. NPJ Digit. Med. 2020, 3, 118. [Google Scholar] [CrossRef]
- Challen, R.; Denny, J.; Pitt, M.; Gompels, L.; Edwards, T.; Tsaneva-Atanasova, K. Artificial intelligence, bias and clinical safety. BMJ Qual. Saf. 2019, 28, 231–237. [Google Scholar] [CrossRef]
Title/Author | Journal/Year/Type | Data | Data Processing | Application | Model | Performance | Reference |
---|---|---|---|---|---|---|---|
Pelvic Fractures: Epidemiology and Predictors of Associated Abdominal Injuries and Outcomes Demetriades et al. [9] | J. Am. Coll. Surg. 2002 Original | No DL | Demetriades D, et al. Pelvic fractures: epidemiology and predictors of associated abdominal injuries and outcomes. J Am Coll Surg. 2002 Jul;195(1):1–10. doi:10.1016/s1072-7515(02)01197-3. PMID: 12113532. | ||||
Detecting pelvic fracture on 3D-CT using deep convolutional neural networks with multi-orientated slab images Ukai et al. [10] | Scientific Reports 2021 Original |
| Voxel size and Intensity range harmonization | Automatically detect pelvic fractures from pelvic CT images of an evaluating subject. | DCNN: YOLOv3 | Area under the curve (AUC) was 0.824, with 0.805 recall and 0.907 precision. | Ukai K, et al. Detecting pelvic fracture on 3D-CT using deep convolutional neural networks with multi-orientated slab images. Sci Rep 11, 11716 (2021). https://doi.org/10.1038/s41598-021-91144-z. |
Accuracy of Abdominal Radiography in Acute Small-Bowel Obstruction: Does Reviewer Experience Matter? Thompson et al. [11] | Abdominal Imaging 2007 Original | No DL | Thompson WM, et al. Accuracy of abdominal radiography in acute small-bowel obstruction: does reviewer experience matter? AJR Am J Roentgenol. 2007 Mar;188(3):W233-8. doi:10.2214/AJR.06.0817. PMID: 17312028. | ||||
Abdominal Radiography Findings in Small-Bowel Obstruction: Relevance to Triage for Additional Diagnostic Imaging Lappas et al. [12] | AJR 2001 Original | No DL | Lappas JC, et al. Abdominal radiography findings in small bowel obstruction: relevance to triage for additional diagnostic imaging. AJR 2001; 176:167–174. | ||||
Detection of high-grade small bowel obstruction on conventional radiography with convolutional neural networks Cheng et al. [13] | Ab. Radiol. 2018 Original | 3663 supine abdominal radiographs | Pixel size and Intensity range harmonization | Determine whether a deep CNN can be trained with limited image data to detect high-grade small bowel obstruction patterns on supine abdominal radiographs. | Inception v3 CNN | The neural network achieved an AUCof 0.84 on the test set (95% CI 0.78–0.89). At the maximum Youden index (sensitivity + specificity-1), the sensitivity of the system for small bowel obstruction was 83.8%, with a specificity of 68.1%. | Cheng PM, et al. Detection of high-grade small bowel obstruction on conventional radiography with convolutional neural networks. Abdom Radiol (NY) 2018;43(5):1120–1127. |
Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT Dreizin et al. [14] | Journal of Digital Imaging 2021 Original | 253 C/A/P admission trauma CT | Pixel size and Intensity range harmonization | Determine if RSTN would result in sufficiently high Dice similarity coefficients to facilitate accurate and objective volumetric measurements for outcome prediction (arterial injury requiringangioembolization). | Recurrent Saliency Transformation Network vs. 3D U-Net | Dice scores in the test set were 0.71 (SD ± 0.10) using RSTN, compared to 0.49 (SD ± 0.16) using a baseline Deep Learning Tool Kit (DLTK) reference 3D U-Net architecture. | Dreizin D, et al. “A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation.” Radiology. Artificial intelligence vol. 2,6 e190220. 11 Nov. 2020, doi:10.1148/ryai.2020190220. |
Image Segmentation and Machine Learning for Detection of Abdominal Free Fluid in Focused Assessment With Sonography for Trauma Examinations A Pilot Study Sjogren et al. [15] | J. Ultrasound Med. 2016 Original | 20 cross-sectional abdominal US videos (FAST) | None | Test the feasibility of automating the detection of abdominal free fluid in focused assessment with sonography for trauma (FAST) examinations. | ML: SVM | The sensitivity and specificity (95% confidence interval) were 100% (69.2–100%) and 90.0% (55.5–99.8%), respectively. | Sjogren AR, et al. “Image Segmentation and Machine Learning for Detection of Abdominal Free Fluid in Focused Assessment With Sonography for Trauma Examinations: A Pilot Study.” Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine vol. 35,11 (2016): 2501–2509. doi:10.7863/ultra.15.11017. |
Quantitative Assessment of Abdominal Aortic Aneurysm Geometry Shum et al. [16] | Ann. Biomed. Eng. 2011 Original | 76 CTs of patients with aneurysms | None | Test the feasibility that aneurysm morphology and wall thickness are more predictive of rupture risk and can be the deciding factors in the clinical management. | ML: Decision Tree | The model correctly classified 65 datasets and had an average prediction accuracy of 86.6% (κ = 0.37). | Shum J, et al. “Quantitative assessment of abdominal aortic aneurysm geometry.” Annals of biomedical engineering vol. 39,1 (2011): 277–286. doi:10.1007/s10439-010-0175-3. |
Detection and Diagnosis of Colitis on Computed Tomography Using Deep Convolutional Neural Networks Liu et al. [17] | Med Phys. 2017 Original | CT images of 80 patients with colitis | None | Develop deep convolutional neural networks methods for lesion-level colitis detection and a support vector machine (SVM) classifier for patient-level colitis diagnosis on routine abdominal CT scans. | Faster Region-based Convolutional Neural Network (Faster RCNN) with ZF net | For patient-level colitis diagnosis, with ZF net, the average areas under the ROC curve (AUC) were 0.978 ± 0.009 and 0.984 ± 0.008 for RCNN and Faster RCNN method, respectively. | Liu J, et al. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Med Phys 2017;44(9):4630–4642. |
Convolutional-neural-network-based diagnosis of appendicitis via CT scans in patients with acute abdominal pain presenting in the emergency department Park et al. [18] | Scientific Reports 2020 Original | 667 CT image sets from 215 patients with acute appendicitis and 452 patients with a normal appendix | Data augmentation to prevent over-fitting | Test feasibility of a neural network-based diagnosis algorithm of appendicitis by using CT for patients with acute abdominal pain visiting the emergency room (ER). | Deep CNN | Diagnostic performance was excellent inboth the internal and external validation with an accuracy larger than 90%. | Park JJ, et al. Convolutional-neural-network-based diagnosis of appendicitis via CT scans in patients with acute abdominal pain presenting in the emergency department. Sci Rep. 2020 Jun 12;10(1):9556. doi:10.1038/s41598-020-66674-7. PMID: 32533053; PMCID: PMC7293232. |
Deep learning algorithms for detecting and visualizing intussusception on plain abdominal radiography in children: a retrospective multicenter study Kwon et al. [19] | Scientific Reports 2021 Original | 9935 X-rays | None | Verify a deep CNN algorithm to detect intussusception in children using a human-annotated dataset of plain abdominal X-rays. | Single Shot MultiBox Detector and ResNet | The internal test values after training with two hospital datasets were 0.946 to 0.971 for the area under the receiver operating characteristic curve (AUC), 0.927 to 0.952 for the highest accuracy, and 0.764 to 0.848 for the highest Youden index. | Kwon G, et al. Deep learning algorithms for detecting and visualising intussusception on plain abdominal radiography in children: a retrospective multicenter study. Sci Rep 10, 17582 (2020). https://doi.org/10.1038/s41598-020-74653-1. |
An artificial intelligence deep learning model for identification of small bowel obstruction on plain abdominal radiographs Kim et al. [20] | British Journal of Radiology 2021 Original | 990 plain abdominal radiographs | None | Detect small bowel obstructions of plain abdominal X-rays. | VGG16, Densenet121, NasNetLarge, InceptionV3, and Xception | The model showed an AUC of 0.961, corresponding to sensitivity and specificity of 91 and 93%, respectively. | Kim DH, et al. “An artificial intelligence deep learning model for identification of small bowel obstruction on plain abdominal radiographs.” The British journal of radiology vol. 94,1122 (2021): 20201407. doi:10.1259/bjr.20201407. |
Performance of deep learning-based algorithm for detection of ileocolic intussusception on abdominal radiographs of young children Kim et al. [19] | Scientific Reports 2019 Original | Abdominal radiographs of 681 children | Intensity normalization using z-score | Detect ileocolic intussusception on abdominal radiographs of young children. | YOLO v3 | The sensitivity of the algorithm was higher compared with that of the radiologists (0.76 vs. 0.46, p = 0.013), while specificity was not different between the algorithm and the radiologists (0.96 vs. 0.92, p = 0.32). | Kim S, et al. Performance of deep learning-based algo-rithm for detection of ileocolic intussusception on abdominal radiographs of young children. Sci Rep. 2019 Dec 19;9(1):19420. doi:10.1038/s41598-019-55536-6. PMID: 31857641; PMCID: PMC6923478. |
Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis Marcinkevics et al. [21] | Frontiers in Pediatrics 2021 Original | 430 children and adolescents | None | Detect pediatric appendicitis. | Logistic regression, random forests, and gradient boosting machines | A random forest classifier achieved areas under the precision-recall curve of 0.94, 0.92, and 0.70, respectively, for the diagnosis, management, and severity of appendicitis. | Marcinkevics R, et al. (2021). Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis [Original Research]. Frontiers in Pediatrics, 9. https://doi.org/10.3389/fped.2021.662183. |
Development and Validation of a Deep Neural Network for Accurate Identification of Endoscopic Images From Patients With Ulcerative Colitis and Crohn’s Disease Ruan et al. [22] | Frontiers in Medicine 2022 Original | 49,154 colonoscopy images from 1772 patients | Data augmentation using operations such as horizontal flipping, vertical flipping, random cropping, random rotation, brightness adjustment, contrast adjustment, and saturation adjustment, CutMix algorithm | Detect ulcerative colitis and Crohn’s disease using endoscopic images. | ResNet50 | The identification accuracy achieved by the deep learning model was superior to that of experienced endoscopists per patient (deep model vs. trainee endoscopist, 99.1% vs. 78.0% and per lesion (deep model vs. trainee endoscopist, 90.4% vs. 59.7%. While the difference between the two was lower when an experienced endoscopist was included, the deep learning still performed significantly (p < 0.001) better. | Ruan G, et al. (2022). Development and Validation of a Deep Neural Network for Accurate Identification of Endoscopic Images From Patients With Ulcerative Colitis and Crohn’s Disease [Original Research]. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.854677. |
A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation Dreizin et al. [23] | Radiology AI 2020 Original | CT images of 130 patients | Pixel size and Intensity range harmonization | Evaluate the feasibility of a multiscale deep learning algorithm for quantitative visualization and measurement of traumatic hemoperitoneum and compare diagnostic performance for relevant outcomes with categorical estimation. | MSAN TensorFlow | AUCs for automated volume measurement and categorical estimation were 0.86 and 0.77, respectively (p = 0.004). An optimal cutoff of 278.9 mL yielded accuracy of 84%, sensitivity of 82%, specificity of 93%, positive predictive value of 86%, and negative predictive value of 83%. | Dreizin D, et al. “A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation.” Radiology. Artificial intelligence vol. 2,6 e190220. 11 Nov. 2020, doi:10.1148/ryai.2020190220. |
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs Cheng et al. [24] | Nat. Comm. 2021 Original | 5204 pelvic radiographs | Zero-padding and resizing, Data augmentation such as translation, flipping, scaling, rotation, brightness and contrast | Detect most types of trauma-related radiographic findings on pelvic radiographs. | PelviXNet | PelviXNet yielded an area under the receiver operating characteristic curve (AUROC) of 0.973 (95% CI, 0.960–0.983) and an area under the precision-recall curve (AUPRC) of 0.963 (95% CI, 0.948–0.974) in the clinical population test set of 1888 PXRs. The accuracy, sensitivity, and specificity at the cutoff value were 0.924 (95% CI, 0.912–0.936), 0.908 (95% CI, 0.885–0.908), and 0.932 (95% CI, 0.919–0.946), respectively. | Cheng CT, et al. A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs. Nat Commun 12, 1066 (2021). https://doi.org/10.1038/s41467-021-21311-3. |
Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning Golla et al. [25] | Diagnostics (Basel) 2021 Original | 187 heterogenous CT scans. | Pixel size and Intensity range harmonization, Data augmentation | Develop and validate an easily trainable and fully automated deep learning 3D AAA screening algorithm, which can run as a background process in the clinic workflow. | ResNet, VGG-16 and AlexNet | The 3D ResNet outperformed both other networks and achieved an accuracy of 0.953 and an AUC of 0.971 on the validation dataset. | Golla AK, et al. “Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning.” Diagnostics (Basel, Switzerland) vol. 11,11 2131. 17 Nov. 2021, doi:10.3390/diagnostics11112131. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Varghese, B.; Taravat, F.; Eibschutz, L.S.; Gholamrezanezhad, A. An Extra Set of Intelligent Eyes: Application of Artificial Intelligence in Imaging of Abdominopelvic Pathologies in Emergency Radiology. Diagnostics 2022, 12, 1351. https://doi.org/10.3390/diagnostics12061351
Liu J, Varghese B, Taravat F, Eibschutz LS, Gholamrezanezhad A. An Extra Set of Intelligent Eyes: Application of Artificial Intelligence in Imaging of Abdominopelvic Pathologies in Emergency Radiology. Diagnostics. 2022; 12(6):1351. https://doi.org/10.3390/diagnostics12061351
Chicago/Turabian StyleLiu, Jeffrey, Bino Varghese, Farzaneh Taravat, Liesl S. Eibschutz, and Ali Gholamrezanezhad. 2022. "An Extra Set of Intelligent Eyes: Application of Artificial Intelligence in Imaging of Abdominopelvic Pathologies in Emergency Radiology" Diagnostics 12, no. 6: 1351. https://doi.org/10.3390/diagnostics12061351
APA StyleLiu, J., Varghese, B., Taravat, F., Eibschutz, L. S., & Gholamrezanezhad, A. (2022). An Extra Set of Intelligent Eyes: Application of Artificial Intelligence in Imaging of Abdominopelvic Pathologies in Emergency Radiology. Diagnostics, 12(6), 1351. https://doi.org/10.3390/diagnostics12061351