MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential
Abstract
:1. Introduction
2. MiRNA Deregulation in Lung Cancer
3. Tumor Enhancer miRNA
3.1. MiR-21
3.2. MiR-17-92
3.3. MiRNA-221
4. Tumor Suppressor miRNA
4.1. MiR-Let-7 Family
4.2. MiR-200 Family
4.3. MiR-206
4.4. MiR-146 Family
5. Therapeutic Potential of miRNAs in Lung Cancer
5.1. MiRNAs as Therapeutic Agents
5.2. MiRNAs as Targets for Therapy
6. MiRNAs as Potential Lung Cancer Biomarkers
6.1. MiRNAs as Diagnostic Biomarkers
Exosomal miRNAs as Diagnostic Biomarkers
7. MiRNAs as Lung Cancer Prognostic Biomarkers
7.1. MiRNAs as Biomarkers of Survival
7.2. MiRNAs as Biomarkers of Response to Treatment
8. Challenges in Use of miRNAs as Theragnostic Agents
9. Conclusions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Cancer Observatory-GLOBOCAN 2020. Available online: https://gco.iarc.fr (accessed on 16 April 2022).
- Eltayeb, K.; La Monica, S.; Tiseo, M.; Alfieri, R.; Fumarola, C. Reprogramming of Lipid Metabolism in Lung Cancer: An Overview with Focus on EGFR-Mutated Non-Small Cell Lung Cancer. Cells 2022, 11, 413. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lantuéjoul, S.; Salameire, D.; Salon, C.; Brambilla, E. Pulmonary Preneoplasia–Sequential Molecular Carcinogenetic Events. Histopathology 2009, 54, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.; Coy, P.; Pater, J.R.; Hodson, I.; Arnold, A.; Zee, B.C.; Payne, D.; Kostashuk, E.C.; Evans, W.K.; Dixon, P. Importance of Timing for Thoracic Irradiation in the Combined Modality Treatment of Limited-stage small-cell Lung Cancer. J. Clin. Oncol. 1993, 11, 336–344. [Google Scholar] [CrossRef]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or Chemotherapy for Non-small-cell Lung Cancer with Mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Wu, Y.L.; Chen, G.; Feng, J.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib Versus Chemotherapy as First-line Treatment for Patients with Advanced EGFR Mutation- Positive Non-small-cell Lung Cancer (optimal, ctong-0802): A Multicentre, Open-label, Randomised, Phase 3 Study. Lancet Oncol. 2011, 12, 735–742. [Google Scholar] [CrossRef]
- Reck, M.; Bondarenko, I.; Luft, A.; Serwatowski, P.; Barlesi, F.; Chacko, R.; Sebastian, M.; Lu, H.; Cuillerot, J.M.; Lynch, T.J. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: Results from a randomized double-blind multicentre phase 2 trial. Ann. Oncol. 2013, 24, 75–83. [Google Scholar] [CrossRef]
- Stahel, R.; Ginsberg, R.; Havemann, K.; Hirsch, F.R.; Ihde, D.C.; Jassem, J.; Karrer, K.; Maurer, L.H.; Osterlind, K.; Houtte, P.V. Staging and Prognostic Factors in Small Cell Lung Cancer: A Consensus Report. Lung Cancer 1989, 5, 119–126. [Google Scholar] [CrossRef]
- Schreiber, G.; McCrory, D.C. Performance Characteristics of Different Modalities for Diagnosis of Suspected Lung Cancer: Summary of Published Evidence. CHEST 2003, 123, 115Se28S. [Google Scholar] [CrossRef] [Green Version]
- Patz, E.F.; Pinsky, P.; Gatsonis, C.; Sicks, J.D.; Kramer, S.; Tammemägi, M.C.; Chiles, C.; Black, W.C.; Aberle, D.R. Overdiagnosis in Low-dose Computed Tomography Screening for Lung Cancer. JAMA Int. Med. 2014, 174, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Higashi, K.; Ueda, Y.; Yagishita, M.; Arisaka, Y.; Sakurai, A.; Oguchi, M.; Seki, H.; Nambu, Y.; Tonami, H.; Yamamoto, I. FDG PET Measurement of the Proliferative Potential of Non-small Cell Lung Cancer. J. Nucl. Med. 2000, 41, 85–92. [Google Scholar] [PubMed]
- Kubota, R.; Yamada, S.; Kubota, K.; Ishiwata, K.; Tamahashi, N.; Ido, T. Intratumoral Distribution of Fluorine-18-fluorodeoxyglucose in vivo: High Accumulation in Macrophages and Granulation Tissues Studied by Micro Autoradiography. J. Nucl. Med. 1992, 33, 1972–1980. [Google Scholar]
- Osman, M.M.; Cohade, C.; Nakamoto, Y.; Wahl, R.L. Respiratory Motion Artifacts on PET Emission Images Obtained Using CT Attenuation Correction on PET-CT. Eur. J. Nucl. Med. Mol. Imaging 2003, 4, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Goerres, G.W.; Burger, C.; Kamel, E.; Seifert, B.; Kaim, A.H.; Buck, A.; Buehler, T.C.; Von Schulthes, G.K. Respiration-Induced Attenuation Artifact at PET/CT: Technical Considerations. Radiology 2003, 3, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Shroff, G.S.; Shroff, B.S.; Truong, M.T.; Carter, B.W.; Viswanathan, C. PET/CT Interpretative Pitfalls in Thoracic Malignancies. Semin. Ultrasound CT MRI 2018, 39, 282–288. [Google Scholar]
- Shimizu, T.; Takahiro, S.; Imai, N.; Hase, T.; Morise, M.; Hashimoto, N.; Sato, M.; Hasegawa, Y. Risk Factors for Pulmonary Infection after Diagnostic Bronchoscopy in Patients with Lung Cancer. Nagoya J. Med. Sci. 2020, 82, 69–75. [Google Scholar]
- Tang, S.; Li, S.; Liu, T.; He, Y.; Hu, H.; Zhu, Y.; Tang, S.; Zhou, H. MicroRNAs: Emerging Oncogenic and Tumor-suppressive Regulators, Biomarkers and Therapeutic Targets in Lung Cancer. Cancer Lett. 2021, 502, 71–83. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Takamizawa, J.; Konishi, H.; Yanagisawa, K.; Tomida, S.; Osada, H.; Endoh, H.; Harano, T.; Yatabe, Y.; Nagino, M.; Nimura, Y.; et al. Reduced Expression of the let-7 microRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival. Cancer Res. 2004, 64, 3753–3756. [Google Scholar] [CrossRef] [Green Version]
- Ruvkun, G.; Wightman, B.; Ha, I. The 20 Years it Took to Recognize the Importance of Tiny RNAs. Cell 2004, 116, S93–S98. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.P.; Cinegaglia, N.C.; Felix, T.F.; Evangelista, A.F.; Oliveira, R.A.; Hasimoto, E.N.; Cataneo, D.C.; Cataneo, A.J.M.; Scapulatempo, N.C.; Viana, C.R.; et al. De-regulated microRNAs Are Associated with Patient Survival and Predicted to Target Genes That Modulate Lung Cancer Signaling Pathways. Cancers 2020, 12, 2711. [Google Scholar] [CrossRef] [PubMed]
- Boeri, M.; Verri, C.; Conte, D.; Roz, L.; Modena, P.; Facchinetti, F.; Calabro, E.; Croce, C.M.; Pastorino, U.; Sozzi, G. MicroRNA Signatures in Tissues and Plasma Predict Development and Prognosis of Computed Tomography Detected Lung Cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 3713–3718. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Mansoori, B.; Duijf, P.H.; Safarzadeh, E.; Tebbi, L.; Najafi, S.; Shokouhi, B.; Sorensen, G.L.; Holmskov, U.; Baradaran, B. Restoration of miR-330 Expression Suppresses Lung Cancer Cell Viability, Proliferation, and Migration. J. Cell. Physiol. 2021, 236, 273–283. [Google Scholar] [CrossRef]
- Ye, J.; Luo, W.; Luo, L.; Zhai, L.; Huang, P. MicroRNA 671 5p Inhibits Cell Proliferation, Migration and Invasion in Non small Cell Lung Cancer by Targeting MFAP3L. Mol. Med. Rep. 2022, 25, 30. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liao, H.; Pu, Q.; Ke, X.; Hu, X.; Ma, Y.; Luo, X.; Jiang, Q.; Gong, Y.; Wu, M.; et al. miR-410 Induces Both Epithelial–Mesenchymal Transition and Radioresistance Through Activation of the PI3K/mTOR Pathway in non-small Cell Lung Cancer. Signal Transduct. Target. Ther. 2020, 5, 85. [Google Scholar] [CrossRef]
- Pandey, M.; Mukhopadhyay, A.; Sharawat, S.K.; Kumar, S. Role of microRNAs in Regulating Cell Proliferation, Metastasis and Chemoresistance and their Applications as Cancer Biomarkers in Small Cell Lung Cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188552. [Google Scholar] [CrossRef]
- Pal, A.S.; Bains, M.; Agredo, A.; Kasinski, A.L. Identification of microRNAs that Promote Erlotinib Resistance in non-small Cell Lung Cancer. Biochem. Pharmacol. 2021, 189, 114154. [Google Scholar] [CrossRef]
- Chae, D.K.; Park, J.; Cho, M.; Ban, E.; Jang, M.; Yoo, Y.S.; Kim, E.E.; Baik, J.H.; Song, E.J. MiR-195 and miR-497 Suppress Tumorigenesis in Lung Cancer by Inhibiting SMURF2-Induced TGF-β Receptor I Ubiquitination. Mol. Oncol. 2019, 13, 2663–2678. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Xiao, S.; Zhu, X.; Yu, Y.; Cao, M.; Zhang, X.; Li, S.; Zhu, W.; Wu, F.; Zheng, X.; et al. miR-196b-5p-mediated Downregulation of FAS Promotes NSCLC Progression by Activating IL6-STAT3 Signaling. Cell Death Dis. 2020, 11, 785. [Google Scholar] [CrossRef]
- Wang, H.; Deng, Q.; Lv, Z.; Ling, Y.; Hou, X.; Chen, Z.; Dinglin, X.; Ma, S.; Li, D.; Wu, Y.; et al. N6-methyladenosine Induced miR-143-3p Promotes the Brain Metastasis of Lung Cancer via Regulation of VASH1. Mol. Cancer 2019, 18, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, P.; Zhu, M.; Lian, C.; Wang, J.; Chen, Z.; Zhang, X.; Yang, Y.; Chen, X.; Cui, X.; Liu, J.; et al. miR-192-5p Suppresses the Progression of Lung Cancer Bone Metastasis by Targeting TRIM44. Sci. Rep. 2019, 9, 19619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, J.; Hossain, G.S.; Kocerha, J. The Potential for microRNA Therapeutics and Clinical Research. Front. Genet. 2019, 10, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Hua, X.; Qi, N.; Han, G.; Yu, J.; Yu, Y.; Wei, X.; Li, H.; Chen, X.; Leng, C.; et al. MiR-27b Suppresses Epithelial-Mesenchymal Transition and Chemoresistance in Lung Cancer by Targeting Snail1. Life Sci. 2020, 254, 117238. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Sun, Y. Lidocaine Inhibits Proliferation and Metastasis of Lung Cancer Cell via Regulation of miR-539/EGFR axis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2866–2874. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Zhang, J.; Chen, F.; Sun, Y. MiR-148b Suppressed Non-small Cell Lung Cancer Progression via Inhibiting ALCAM through the NF-κB Signaling Pathway. Thorac. Cancer 2020, 11, 415–425. [Google Scholar] [CrossRef]
- Frixa, T.; Sacconi, A.; Cioce, M.; Roscilli, G.; Ferrara, F.F.; Aurisicchio, L.; Pulito, C.; Telera, S.; Carosi, M.; Muti, P.; et al. MicroRNA-128-3p-mediated Depletion of Drosha Promotes Lung Cancer Cell Migration. Carcinogenesis 2018, 39, 293–304. [Google Scholar] [CrossRef]
- Zafari, V.; Shanehbandi, D.; Bornehdeli, S.; Sadeghzadeh, M.; Zarredar, H.; Asadi, M.; Sharifi, A. MicroRNA Profiling in non-small Cell Lung Cancer and its Implications for the Disease Pathogenesis. Middle East J. Cancer 2021, 12, 79–85. [Google Scholar]
- Hashemi, S.; Yari, N.; Rahimi, J.F.; Mahdian, R.; Karimi, M.; Zeinali, S.; Rafiee, M.H.; Azizi, M. The Role of miRNA-377 as a Tumor Suppressor in Lung Cancer by Negative Regulation of Genes Belonging to ErbB Signaling Pathway. Mol. Biol. Rep. 2022, 49, 85–95. [Google Scholar] [CrossRef]
- Senedaa, A.L.; Lapac, R.M.; Felixa, T.F.; Minutentaga, I.W.; Camposa, C.F.; de Oliveirae, R.A.; Oliveiraf, C.C.; Hasimotoa, É.N.; Cataneoa, D.C.; Cataneoa, A.J.; et al. Typical Lung Carcinoids with Metastasis: Potential Role of MicroRNAs in the Regulation of Adaptive Immunity Associated with Disease: A Case Study. Cell Physiol. Biochem. 2021, 55, 1–12. [Google Scholar] [CrossRef]
- Deng, B.; Molina, J.; Aubry, M.C.; Sun, Z.; Wang, L.; Eckloff, B.W.; Vasmatzis, G.; You, M.; Wieben, E.D.; Jen, J.; et al. Clinical Biomarkers of Pulmonary Carcinoid Tumors in never Smokers via Profiling miRNA and Target mRNA. Cell Biosci. 2014, 4, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapa, I.; Votta, A.; Felice, B.; Righi, L.; Giorcelli, J.; Scarpa, A.; Speel, E.J.M.; Scagliotti, G.V.; Papotti, M.; Volante, M. Identification of MicroRNAs Differentially Expressed in Lung Carcinoid Subtypes and Progression. Neuroendocrinology 2015, 101, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.L.; Echols, J.B.; Silva, A.D.; Anderson, J.C.; Owens, P.; Yates, C.; Wei, Q.; Harada, S.; Hurst, D.R.; Edmonds, M.D. miR-31 Displays Subtype Specificity in Lung Cancer. Cancer Res. 2021, 8, 1942–1953. [Google Scholar] [CrossRef]
- Cornett, A.L.; Lutz, C.S. Regulation of COX-2 Expression by miR-146a in Lung Cancer Cells. RNA 2014, 20, 1419–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, M.R.; Kriegel, A.J. MiR-146a/b: A Family with shared Seeds and Different Roots. Physiol. Genome 2017, 49, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Cui, Z.; Ren, Y.; Xia, L.; Li, H.; Zhou, B. MiR-146a Polymorphism Correlates with Lung Cancer Risk in Chinese Nonsmoking Females. Oncotarget 2017, 8, 2275. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Li, Y.; Liu, Y.; Chen, S.; Qi, C.; Zhang, Q.; Lan, T.; He, X.; Guan, X.Y.; et al. microRNA-146 Up-Regulation Predicts the Prognosis of Non-Small Cell Lung Cancer by miRNA in situ Hybridization. Exp. Mol. Pathol. 2014, 96, 195–199. [Google Scholar] [CrossRef]
- Mohamed, R.H.; Pasha, H.F.; Gad, D.M.; Toam, M.M. miR-146a and miR-196a-2 Genes Polymorphisms and its Circulating Levels in Lung Cancer Patients. J. Biochem. 2019, 166, 323–329. [Google Scholar] [CrossRef]
- Pavel, A.B.; Campbell, J.D.; Liu, G.; Elashoff, D.; Dubinett, S.; Smith, K.; Whitney, D.; Lenburg, M.E.; Spira, A. Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection. Cancer Prev. Res. 2017, 10, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.J.; Zheng, Y.H.; Wang, P.; Zhang, J.Z. Serum miR-125a-5p, miR-145 and miR-146a as Diagnostic Biomarkers in non-small Cell Lung Cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 765. [Google Scholar]
- Wu, C.; Cao, Y.; He, Z.; He, J.; Hu, C.; Duan, H.; Jiang, J. Serum Levels of miR-19b and miR-146a as Prognostic Biomarkers for non-small Cell Lung Cancer. Tohoku J. Exp. Med. 2014, 232, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, S.; Xue, J.; Wu, C.; Wang, L.; Wu, J.; Xu, S.; Liang, X.; Lou, J. Identification of a Panel of Serum microRNAs as Biomarkers for Early Detection of Lung Adenocarcinoma. J. Cancer 2017, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliman, S.E.; Abdelaleem, A.H.; Alhanafy, A.M.; Ibrahem, R.A.; Elhaded, A.S.; Assar, M.F. Circulating miR-21-5p and miR-126-3p: Diagnostic, Prognostic Value, and Multivariate Analysis in Non-small-cell Lung Cancer. Mol. Biol. Rep. 2021, 48, 2543–2552. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Shi, L. High Expression of miR-155 and miR-21 in the Recurrence or Metastasis of non-small Cell Lung Cancer. Oncol. Lett. 2019, 18, 758–763. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhao, J.J.; Zhang, L.; Xu, Q.F.; Zhao, Y.M.; Shi, X.Y.; Xu, A.G. Serum miR-21 level: A Potential Diagnostic and Prognostic Biomarker for non-small Cell Lung Cancer. Int. J. Clin. Exp. Med. 2015, 8, 14759. [Google Scholar]
- Capodanno, A.; Boldrini, L.; Proietti, A.; Alì, G.; Pelliccioni, S.; Niccoli, C.; D’Incecco, A.; Cappuzzo, F.; Chella, A.; Lucchi, M.; et al. Let-7g and miR-21 Expression in non-small Cell Lung Cancer: Correlation with Clinicopathological and Molecular Features. Int. J. Oncol. 2013, 43, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Zhang, P.; Hu, G.; Xiao, Z.; Xu, F.; Zhong, T.; Huang, F.; Kuang, H.; Zhang, W. Relative Expressions of miR-205-5p, miR-205-3p, and miR-21 in Tissues and Serum of non-small Cell Lung Cancer Patients. Mol. Cell. Biochem. 2013, 383, 67–75. [Google Scholar] [CrossRef]
- Gao, W.; Yu, Y.; Cao, H.; Shen, H.; Li, X.; Pan, S.; Shu, Y. Deregulated Expression of miR-21, miR-143 and miR-181a in non Small Cell Lung Cancer is Related to Clinicopathologic Characteristics or Patient Prognosis. Biomed. Pharmacother. 2010, 64, 399–408. [Google Scholar] [CrossRef]
- Zhu, S.; Si, M.L.; Wu, H.; Mo, Y.Y. MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1). J. Biol. Chem. 2007, 282, 14328–14336. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.H.; Ebrahem, Q.; Moore, N.; Murphy, G.; Claesson-Welsh, L.; Bond, M.; Anand-Apte, B. A Novel Function for Tissue Inhibitor of Metalloproteinases-3 (TIMP3): Inhibition of Angiogenesis by Blockage of VEGF Binding to VEGF receptor-2. Nat. Med. 2003, 9, 407–415. [Google Scholar] [CrossRef]
- Clark, S.J. Action at a Distance: Epigenetic Silencing of Large Chromosomal Regions in Carcinogenesis. Hum. Mol. Genet. 2007, 16, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatley, M.E.; Patrick, D.M.; Garcia, M.R.; Richardson, J.A.; Bassel-Duby, R.; Van, R.E.; Olson, E.N. Modulation of K-Ras-dependent Lung Tumorigenesis by MicroRNA-21. Cancer Cell 2010, 18, 282–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, E.; Navarro, A.; Vinolas, N.; Marrades, R.M.; Diaz, T.; Gel, B.; Quera, A.; Bandres, E.; Garcia-Foncillas, J.; Ramirez, J.; et al. miR-34a as a Prognostic Marker of Relapse in Surgically Resected non-small-cell Lung Cancer. Carcinogenesis 2009, 30, 1903–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franchina, T.; Amodeo, V.; Bronte, G.; Savio, G.; Ricciardi, G.R.; Picciotto, M.; Russo, A.; Giordano, A.; Adamo, V. Circulating miR-22, miR-24 and miR-34a as Novel Predictive Biomarkers to Pemetrexed-based Chemotherapy in Advanced non-small Cell Lung Cancer. J. Cell. Physiol. 2014, 229, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kim, E.J.; Lee, S.; Tan, X.; Liu, X.; Park, S.; Kang, K.; Yoon, J.S.; Ko, Y.H.; Kurie, J.M.; et al. MiR-34a and miR-34b/c Have Distinct Effects on the Suppression of Lung Adenocarcinomas. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, J.F.; Ruffino, L.; Kelnar, K.; Omotola, M.; Patrawala, L.; Brown, D.; Bader, A.G. Development of a Lung Cancer Therapeutic Based on the Tumor Suppressor microRNA-34. Cancer Res. 2010, 70, 5923–5930. [Google Scholar] [CrossRef] [Green Version]
- Stahlhut, C.; Slack, F.J. Combinatorial Action of microRNAs let 7 and miR-34 Effectively Synergizes with Erlotinib to Suppress non-small Cell Lung Cancer Cell Proliferation. Cell Cycle 2015, 14, 2171–2180. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, W.; Tong, H.; Peng, M.; Ou, Y.; Song, Z. Analysis of the Expression Levels and Clinical Value of miR 365 and miR 25 in Serum of Patients with non small Cell Lung Cancer. Oncol. Lett. 2020, 20, 191. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G.; Li, H.; Han, L.; Fu, A.; Zhang, N.; Zheng, Y. Serum microRNA-365 in Combination with its Target gene TTF-1 as a Non-invasive Prognostic Marker for non-small Cell Lung Cancer. Biomed. Pharmacother. 2015, 75, 185–190. [Google Scholar] [CrossRef]
- Kang, S.M.; Lee, H.J.; Cho, J.Y. MicroRNA-365 Regulates NKX2-1, a Key Mediator of Lung Cancer. Cancer Lett. 2013, 335, 487–494. [Google Scholar] [CrossRef]
- Han, Q.; Cheng, P.; Yang, H.; Liang, H.; Lin, F. Altered Expression of microRNA-365 is Related to the Occurrence and Development of non-small-cell Lung Cancer by Inhibiting TRIM25 Expression. J. Cell Physiol. 2019, 234, 22321–22330. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Wang, J.; Ouyang, T.; Lu, N.; Lu, J.; Shen, Y.; Bai, Y.; Xie, X.; Ge, Q. MiR-486-5p Serves as a Good Biomarker in non-small Cell Lung Cancer and Suppresses Cell Growth with the Involvement of a Target PIK3R1. Front. Genet. 2019, 10, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, M.A.; Mohamed, E.I.; El-Kaream, S.A.; Badawi, M.I.; Darwish, S.H. Underexpression of miR-486-5p but not Overexpression of miR-155 is Associated with Lung Cancer Stages. Microrna 2018, 7, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Pang, W.; Zhang, Q.; Huang, H. MicroRNA-486-5p Improves nonsmall-cell Lung Cancer Chemotherapy Sensitivity and Inhibits Epithelial–Mesenchymal Transition by Targeting Twinfilin Actin Binding Protein 1. Int. J. Med. Res. 2019, 47, 3745–3756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.J.; Yuan, W.D.; Yuan, J.Q.; Yuan, K.; Wang, Y. miR-486-5p Functions as an Oncogene by Targeting PTEN in non-small Cell Lung Cancer. Pathol. Res. Pract. 2018, 214, 700–705. [Google Scholar] [CrossRef]
- Jin, X.; Chen, Y.; Chen, H.; Fei, S.; Chen, D.; Cai, X.; Liu, L.; Lin, B.; Su, H.; Zhao, L.; et al. Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-stage Non–small Cell lung Cancer using Next-generation Sequencing. Clin. Cancer Res. 2017, 17, 5311–5319. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Z.L.; Tian, F.M.; Sun, C.L. Downregulation of miR-361-5p Associates with Aggressive Clinicopathological Features and Unfavorable Prognosis in non-small Cell Lung Cancer. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 5132–5136. [Google Scholar]
- Roth, C.; Stückrath, I.; Pantel, K.; Izbicki, J.R.; Tachezy, M.; Schwarzenbach, H. Low Levels of Cell-free Circulating miR-361-3p and miR-625* as Blood-based Markers for Discriminating Malignant from Benign lung tumors. PLoS ONE. 2012, 7, e38248. [Google Scholar] [CrossRef]
- Hou, X.W.; Sun, X.; Yu, Y.; Zhao, H.M.; Yang, Z.J.; Wang, X.; Cao, X.C. miR-361-5p Suppresses Lung Cancer Cell Lines Progression by Targeting FOXM1. Neoplasma 2017, 64, 526–534. [Google Scholar] [CrossRef]
- Lee, H.Y.; Han, S.S.; Rhee, H.; Park, J.H.; Lee, J.S.; Oh, Y.M.; Choi, S.S.; Shin, S.H.; Kim, W.J. Differential Expression of microRNAs and their Target Genes in Non-small-cell Lung Cancer. Mol. Med. Rep. 2015, 11, 2034–2040. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jia, Y.; Jia, L.; Li, T.; Yang, L.; Zhang, G. MicroRNA 615-3p Inhibits the Tumor Growth and Metastasis of NSCLC via Inhibiting IGF2. Oncol. Res. 2019, 27, 269. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.Y.; Xu, R.; Zhang, M.Y.; Yuan, L.J.; Hu, J.Y.; Huang, G.L.; Wang, H.Y. Identification of microRNA-615-3p as a Novel Tumor Suppressor in Non-small Cell Lung Cancer. Oncol. Lett. 2017, 13, 2403–2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Wang, J.; Yang, P.; Lu, Q.; Zhang, T.; Yang, Y. Micro RNA-200 Promotes Lung Cancer Cell Growth Through FOG2-independent AKT Activation. IUBMB Life 2015, 67, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejero, R.; Navarro, A.; Campayo, M.; Viñolas, N.; Marrades, R.M.; Cordeiro, A.; Ruíz-Martínez, M.; Santasusagna, S.; Molins, L.; Ramirez, J.; et al. miR-141 and miR-200c as Markers of Overall Survival in Early Stage non-small Cell Lung Cancer Adenocarcinoma. PLoS ONE 2014, 7, e101899. [Google Scholar] [CrossRef]
- Chen, G.; Umelo, I.A.; Lv, S.; Teugels, E.; Fostier, K.; Kronenberger, P.; Dewaele, A.; Sadones, J.; Geers, C.; De Grève, J. miR-146a Inhibits Cell Growth, Cell Migration and Induces Apoptosis in Non-small Cell lung Cancer Cells. PLoS ONE 2013, 8, e60317. [Google Scholar] [CrossRef] [Green Version]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Goodall, G.J. The miR-200 Family and miR-205 Regulate Epithelial to Mesenchymal Transition by Targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Ahn, Y.H.; Won, H.S.; Sun, D.S.; Kim, Y.H.; Ko, Y.H. Prognostic Role of the microRNA-200 Family in Various Carcinomas: A Systematic Review and Meta-analysis. Biomed. Res. Int. 2017, 15, 1928021. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Li, T.; Chen, G.; Yan, G.; Zhang, X.; Wan, Y.; Li, Q.; Zhu, B.; Zhuo, W. Identification of a Serum microRNA Expression Signature for Detection of Lung Cancer, Involving miR-23b, miR-221, miR-148b and miR-423-3p. Lung Cancer 2017, 114, 6–11. [Google Scholar] [CrossRef]
- Heegaard, N.H.; Schetter, A.J.; Welsh, J.A.; Yoneda, M.; Bowman, E.D.; Harris, C.C. Circulating micro-RNA Expression Profiles in Early Stage Nonsmall Cell Lung Cancer. Int. J. Cancer Res. 2012, 130, 1378–1386. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wen, W.; Shan, X.; Zhu, W.; Xu, J.; Guo, R.; Cheng, W.; Wang, F.; Qi, L.W.; Chen, Y.; et al. A six-microRNA Panel in Plasma was Identified as a Potential Biomarker for Lung Adenocarcinoma Diagnosis. Oncotarget 2017, 8, 6513–6525. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, M.; Di Leva, G.; Romano, G.; Nuovo, G.; Suh, S.S.; Ngankeu, A.; Taccioli, C.; Pichiorri, F.; Alder, H.; Secchiero, P.; et al. miR-221&222 Regulate TRAIL Resistance and Enhance Tumorigenicity Through PTEN and TIMP3 Downregulation. Cancer Cell 2009, 16, 498–509. [Google Scholar] [PubMed] [Green Version]
- Zhang, C.; Zhang, J.; Zhang, A.; Wang, Y.; Han, L.; You, Y.; Pu, P.; Kang, C. PUMA was a Novel Target of miR-221/222 in Human Epithelial Cancers. Int. J. Oncol. 2010, 37, 1621–1626. [Google Scholar] [PubMed] [Green Version]
- Geng, Q.; Fan, T.; Zhang, B.; Wang, W.; Xu, Y.; Hu, H. Five microRNAs in Plasma as Novel Biomarkers for Screening of Early-Stage Non-small Cell Lung Cancer. Respir. Res. 2014, 15, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquela-Kerscher, A.; Trang, P.; Wiggins, J.F.; Patrawala, L.; Cheng, A.; Ford, L.; Weidhaas, J.B.; Brown, D.; Bader, A.G.; Slack, F.J. The let-7 microRNA Reduces Tumor Growth in Mouse Models of Lung Cancer. Cell Cycle 2008, 7, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.S.; Erkeland, S.J.; Pester, R.E.; Chen, C.Y.; Ebert, M.S.; Sharp, P.A.; Jacks, T. Suppression of Non-small Cell Lung Tumor Development by the let-7 microRNA Family. Proc. Natl. Acad. Sci. USA 2008, 105, 3903–3908. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cao, L.E.; Wang, Y.; Wang, X.; Liu, N.; You, Y. Regulation of let-7 and its Target Oncogenes. Oncol. Lett. 2012, 3, 955–960. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, J.; Hu, W.; Yang, G.; Yu, H.; Wang, R.; Wang, L.; Zhang, G.; Fu, W.; Dai, L.; et al. Disturbance of the let-7/LIN28 Double-negative Feedback Loop is Associated with Radio-and Chemo-resistance in Non-small Cell Lung Cancer. PLoS ONE 2017, 12, e0172787. [Google Scholar] [CrossRef]
- Jusufovic, E.; Rijavec, M.; Keser, D.; Korosec, P.; Sodja, E.; Iljazovic, E.; Radojevic, Z.; Kosnik, M. let-7b and miR-126 are Down-Regulated in Tumor Tissue and Correlate with Microvessel Density and Survival Outcomes in non–small–cell Lung Cancer. PLoS ONE 2012, 7, e45577. [Google Scholar] [CrossRef]
- Zhu, W.Y.; Luo, B.; An, J.Y.; He, J.Y.; Chen, D.D.; Xu, L.Y.; Huang, Y.Y.; Liu, X.G.; Le, H.B.; Zhang, Y.K. Differential Expression of miR-125a-5p and let-7e predicts the Progression and Prognosis of Non-small Cell Lung Cancer. Cancer Investig. 2014, 32, 394–401. [Google Scholar] [CrossRef]
- Xu, S.; Zheng, L.; Kang, L.; Xu, H.; Gao, L. microRNA-let-7e in Serum-derived Exosomes Inhibits the Metastasis of Non-small-cell Lung Cancer in a SUV39H2/LSD1/CDH1-Dependent Manner. Cancer Gene Ther. 2021, 3, 250–264. [Google Scholar] [CrossRef]
- Chen, Q.; Si, Q.; Xiao, S.; Xie, Q.; Lin, J.; Wang, C.; Chen, L.; Chen, Q.; Wang, L. Prognostic Significance of Serum miR-17-5p in Lung Cancer. Med. Oncol. 2013, 30, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Chattopadhyay, D.; Chakrabarti, G. miR-17-5p Downregulation Contributes to Paclitaxel Resistance of Lung Cancer Cells through Altering Beclin1 Expression. PLoS ONE 2014, 9, e95716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serva, A.; Knapp, B.; Tsai, Y.T.; Claas, C.; Lisauskas, T.; Matula, P.; Harder, N.; Kaderali, L.; Rohr, K.; Erfle, H.; et al. miR-17-5p Regulates Endocytic Trafficking through Targeting TBC1D2/Armus. PLoS ONE 2012, 7, e52555. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lin, J.; Wang, P.; Sun, J. miR-17-5p Down-regulation Contributes to Erlotinib Resistance in Non-small Cell Lung Cancer Cells. J. Drug Target. 2017, 25, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Marrades, R.M.; Vinolas, N.; Quera, A.; Agusti, C.; Huerta, A.; Ramirez, J.; Torres, A.; Monzo, M. MicroRNAs Expressed During Lung Cancer Development are Expressed in Human Pseudoglandular Lung Embryogenesis. Oncology 2009, 76, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Chen, T.; Lin, Q.; Lin, G.; Lin, J.; Chen, G.; Guo, L. Serum miR-19a Expression Correlates with Worse Prognosis of Patients with Non-small Cell Lung Cancer. J. Surg. Oncol. 2013, 107, 767–771. [Google Scholar] [CrossRef]
- Baumgartner, U.; Berger, F.; Gheinani, A.H.; Burgener, S.S.; Monastyrskaya, K.; Vassella, E. miR-19b Enhances Proliferation and Apoptosis Resistance via the EGFR Signaling Pathway by Targeting PP2A and BIM in Non-small Cell Lung Cancer. Mol. Cancer 2018, 17, 44–50. [Google Scholar] [CrossRef]
- Cao, X.; Lai, S.; Hu, F.; Li, G.; Wang, G.; Luo, X.; Fu, X.; Hu, J. miR-19a Contributes to Gefitinib Resistance and Epithelial Mesenchymal Transition in Non-small Cell Lung Cancer Cells by Targeting c-Met. Sci. Rep. 2017, 7, 2939. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wu, L.; Li, D.; Xu, Y.; Zhang, L.; Niu, K.; Kong, R.; Gu, J.; Xu, Z.; Chen, Z.; et al. Radiosensitizing Effects of miR-18a-5p on Lung Cancer Stem-like Cells via Downregulating both ATM and HIF-1α. Cancer Med. 2018, 8, 3834–3847. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Wang, H.M.; Liu, X.M.; Zhang, X.J.; Zheng, B.; Qian, G.R.; Ma, Z.L. MicroRNA-18a-5p Functions as an Oncogene by Directly Targeting IRF2 in Lung Cancer. Cell Death. Dis. 2017, 8, e2764. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhu, S.; Tao, Z.; Ye, S. High Circulating miR-18a, miR-20a, and miR-92a Expression Correlates with Poor Prognosis in Patients with Non-small Cell Lung Cancer. Cancer Med. 2018, 7, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Qi, P.; Ma, Z. Biology of MiR-17-92 Cluster and Its Progress in Lung Cancer. Int. J. Med. Sci. 2018, 15, 1443–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Cai, Y.; Rong, X.; Chen, J.; Zheng, D.; Chen, L.; Zhang, J.; Luo, R.; Zhao, P.; Ruan, J. MiR-661 Promotes Tumor Invasion and Metastasis by Directly Inhibiting RB1 in Non Small Cell Lung Cancer. Mol. Cancer 2017, 16, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.H.; Yang, W.H.; Sun, B. Clinical Impact of Serum miR-661 in Diagnosis and Prognosis of Non-small Cell Lung Cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5696–5701. [Google Scholar]
- Wang, Y.; Li, Y.; Wu, B.; Shi, C.; Li, C. MicroRNA-661 Promotes Non-small Cell Lung Cancer Progression by Directly Targeting RUNX3. Mol. Med. Rep. 2017, 16, 2113–2120. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.F.; Lin, D.; Li, W.J.; Xu, H.P.; Zhang, J. MiR-26a-5p Serves as an Oncogenic microRNA in Non-small Cell Lung Cancer by Targeting FAF1. Cancer Manag. Res. 2020, 12, 7131–7140. [Google Scholar] [CrossRef]
- Song, Q.; Liu, B.; Li, X.; Zhang, Q.; Cao, L.; Xu, M.; Meng, Z.; Wu, X.; Xu, K. MiR-26a-5p Potentiates Metastasis of Human Lung Cancer Cells by Regulating ITGβ8-JAK2/STAT3 Axis. Biochem. Biophys. Res. Commun. 2018, 50, 494–500. [Google Scholar] [CrossRef]
- Gasparini, P.; Cascione, L.; Landi, L.; Carasi, S.; Lovat, F.; Tibaldi, C.; Alì, G.; D’Incecco, A.; Minuti, G.; Chella, A.; et al. microRNA Classifiers are Powerful Diagnostic/Prognostic Tools in ALK-, EGFR-, and KRAS-driven Lung Cancers. Proc. Natl. Acad. Sci. USA 2015, 48, 14924–14929. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Yang, Y.; Ran, J.; Zhang, L.; Yao, M.; Liu, Z.; Zhang, L. miR-15a-5p Inhibits Metastasis and Lipid Metabolism by Suppressing Histone Acetylation in Lung Cancer. Free Radic. Biol. Med. 2020, 161, 150–162. [Google Scholar] [CrossRef]
- Ji, K.X.; Cui, F.; Qu, D.; Sun, R.Y.; Sun, P.; Chen, F.Y.; Wang, S.L.; Sun, H.S. MiR-378 Promotes the Cell Proliferation of Non-small Cell Lung Cancer by Inhibiting FOXG1. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1011–1019. [Google Scholar]
- San, H.C.; Noor, S.M.; Nagoor, N.H. MiR-378 and MiR-1827 Regulate Tumor Invasion, Migration and Angiogenesis in Human Lung Adenocarcinoma by Targeting RBX1 and CRKL, Respectively. J. Cancer 2018, 9, 331–340. [Google Scholar]
- Chen, X.; Jiang, Y.; Huang, Z.; Li, D.; Chen, X.; Cao, M.; Meng, Q.; Pang, H.; Sun, L.; Zhao, Y.; et al. miRNA-378 Reverses Chemoresistance to Cisplatin in Lung Adenocarcinoma Cells by Targeting Secreted Clusterin. Sci. Rep. 2016, 19, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liang, M.; Zhang, Y.; Yuan, B.; Gao, W.; Shi, Z.; Bai, J. miR-93, miR-373, and miR-17-5p Negatively Regulate the Expression of TBP2 in Lung Cancer. Front. Oncol. 2020, 10, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Lu, X.; Zhou, Y.; Wang, Y.; Wang, X.; Zhuang, Z.; Gong, J. Altered miR-93-5p/miR-18a Expression in Serum for Diagnosing Non-small Cell Lung Cancer. Am. J. Transl. Res. 2021, 13, 5073–5075. [Google Scholar]
- Yang, W.; Bai, J.; Liu, D.; Wang, S.; Zhao, N.; Che, R.; Zhang, H. MiR-93-5p Up-Regulation is Involved in Non-small Cell Lung Cancer Cells Proliferation and Migration and Poor Prognosis. Gene 2018, 647, 13–20. [Google Scholar] [CrossRef]
- Du, L.; Zhao, Z.; Ma, X.; Hsiao, T.H.; Chen, Y.; Young, E.; Suraokar, M.; Wistuba, I.; Minna, J.D.; Pertsemlidis, A. miR-93-directed Downregulation of DAB2 Defines a Novel Oncogenic Pathway in Lung Cancer. Oncogene 2014, 34, 4307–4315. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.W.; Chang, Y.L.; Chang, Y.C.; Lin, J.C.; Chen, C.C.; Pan, S.H.; Wu, C.T.; Chen, H.Y.; Yang, S.C.; Hong, T.M.; et al. MicroRNA-135b Promotes Lung Cancer Metastasis by Regulating Multiple Targets in the Hippo Pathway and LZTS1. Nat. Commun. 2013, 4, 1877. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chen, K.; Zhou, Y.; Hu, Z.; Chen, S.; Huang, Y. Application of Serum microRNA-9-5p, 21–25p, and 223-3p Combined with Tumor Markers in the Diagnosis of Non-small-cell Lung Cancer in Yunnan in southwestern China. OncoTargets Ther. 2018, 11, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Le, H.; Wang, X.; Zha, Y.; Wang, J.; Zhu, W.; Ye, Z.; Liu, X.; Ma, H.; Zhang, Y. Peripheral Lung Adenocarcinomas Harboring Epithelial Growth Factor Receptor Mutations with microRNA 135b Overexpression are more likely to Invade Visceral Pleura. Oncol. Lett. 2017, 14, 7931–7940. [Google Scholar] [CrossRef]
- Chen, T.; Xiao, Q.; Wang, X.; Wang, Z.; Hu, J.; Zhang, Z.; Gong, Z.; Chen, S. miR-16 Regulates Proliferation and Invasion of Lung Cancer Cells via the ERK/MAPK Signaling Pathway by Targeted Inhibition of MAPK kinase 1 (MEK1). Int. J. Med. Res. 2019, 10, 5194–5204. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.Q.; Dong, Z.Q.; Zhou, Y.; Zhang, H.; Long, C. miR-16-1-3p Targets TWIST1 to Inhibit Cell Proliferation and Invasion in NSCLC. Bratisl. Lek. Listy 2018, 119, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, P.P.; Drigo, S.A.; Carvalho, R.F.; Lopez Lapa, R.M.; Felix, T.F.; Patel, D.; Cheng, D.; Pintilie, M.; Liu, G.; Tsao, M.S. Circulating miR-16-5p, miR-92a-3p, and miR-451a in plasma from lung cancer patients: Potential application in early detection and a regulatory role in tumorigenesis pathways. Cancers 2020, 12, 2071. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Zhao, W.; Xiong, J.; Cao, R. Downregulation of miR-16 promotes growth and motility by targeting HDGF in non-small cell lung cancer cells. FEBS Lett. 2013, 587, 3153–3157. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Diaz, T.; Gallardo, E.; Viñolas, N.; Marrades, R.M.; Gel, B.; Campayo, M.; Quera, A.; Bandres, E.; Garcia-Foncillas, J.; et al. Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer. J. Surg. Oncol. 2011, 103, 411–415. [Google Scholar] [CrossRef]
- Tung, Y.T.; Huang, P.W.; Chou, Y.C.; Lai, C.W.; Wang, H.P.; Ho, H.C.; Yen, C.C.; Tu, C.Y.; Tsai, T.C.; Yeh, D.C.; et al. Lung tumorigenesis induced by human vascular endothelial growth factor (hVEGF)-A165 overexpression in transgenic mice and amelioration of tumor formation by miR-16. Oncotarget 2015, 6, 10222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ergun, S.; Güney, S.; Temiz, E.; Petrovic, N.; Gunes, S. Significance of miR-15a-5p and CNKSR3 as novel prognostic biomarkers in non-small cell lung cancer. Anticancer Agents Med. Chem. 2018, 18, 1695–1701. [Google Scholar] [CrossRef]
- Guo, S.; Li, M.; Li, J.; Lv, Y. Inhibition mechanism of lung cancer cell metastasis through targeted regulation of Smad3 by miR 15a. Oncol. Lett. 2020, 19, 1516–1522. [Google Scholar] [CrossRef]
- He, J. Knocking down MiR-15a expression promotes the occurrence and development and induces the EMT of NSCLC cells in vitro. Saudi J. Biol. Sci. 2017, 24, 1859. [Google Scholar]
- Yang, T.; Thakur, A.; Chen, T.; Yang, L.; Lei, G.; Liang, Y.; Zhang, S.; Ren, H.; Chen, M. MicroRNA-15a induces cell apoptosis and inhibits metastasis by targeting BCL2L2 in non-small cell lung cancer. Tumor Biol. 2015, 36, 4357–4365. [Google Scholar] [CrossRef]
- Kumar., S.; Sharawat, S.K.; Ali, A.; Gaur, V.; Malik, P.S.; Kumar, S.; Mohan, A.; Guleria, R. Identification of differentially expressed circulating serum microRNA for the diagnosis and prognosis of Indian non–small cell lung cancer patients. Curr. Probl. Cancer 2020, 44, 100540. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; Peng, J.; Wu, X.; Zhang, Y.; Zhu, W.; Guo, L. Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol. Cancer 2015, 14, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, J.; Yang, H.; Zhu, Y.; Ruan, M.; Huang, Y.; Zhang, Q. MiR-7-5p-mediated downregulation of PARP1 impacts DNA homologous recombination repair and resistance to doxorubicin in small cell lung cancer. BMC Cancer 2019, 19, 602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, A.Q.; Xie, Y.N.; Wang, J.; Sun, L.; Wei, J.; Lu, W.Y.; Lan, J.Y.; Wang, W.W.; Wang, L.; Wang, L.L. Predicative values of serum microRNA-22 and microRNA-126 levels for non-small cell lung cancer development and metastasis: A case-control study. Neoplasma 2017, 64, 453–459. [Google Scholar] [CrossRef]
- Yang, X.; Su, W.; Li, Y.; Zhou, Z.; Zhou, Y.; Shan, H.; Han, X.; Zhang, M.; Zhang, Q.; Bai, Y.; et al. MiR-22-3p suppresses cell growth via MET/STAT3 signaling in lung cancer. Am. J. Transl. Res. 2021, 13, 1221. [Google Scholar] [PubMed]
- Ling, B.; Wang, G.X.; Long, G.; Qiu, J.H.; Hu, Z.L. Tumor suppressor miR-22 suppresses lung cancer cell progression through post-transcriptional regulation of ErbB3. J. Cancer Res. Clin. Oncol. 2012, 138, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Iorio, M.V.; Croce, C.M. Causes and Consequences of microRNA, Dysregulation. Cancer J. 2012, 18, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Wang, I.X.; So, E.; Devlin, J.L.; Zhao, Y.; Wu, M.; Cheung, V.G. ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep. 2013, 5, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Allegra, D.; Bilan, V.; Garding, A.; Döhner, H.; Stilgenbauer, S.; Kuchenbauer, F.; Mertens, D. Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia 2014, 28, 98–107. [Google Scholar] [CrossRef]
- Su, X.; Chakravarti, D.; Cho, M.S.; Liu, L.; Gi, Y.J.; Lin, Y.L.; Leung, M.L.; El-Naggar, A.; Creighton, C.J.; Suraokar, M.B.; et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 2010, 467, 986–990. [Google Scholar] [CrossRef] [Green Version]
- Karube, Y.; Tanaka, H.; Osada, H.; Tomida, S.; Tatematsu, Y.; Yanagisawa, K.; Yatabe, Y.; Takamizawa, J.; Miyoshi, S.; Mitsudomi, T.; et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005, 96, 111–115. [Google Scholar] [CrossRef]
- Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 2004, 101, 2999–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Huang, J.; Yang, N.; Greshock, J.; Megraw, M.S.; Giannakakis, A.; Liang, S.; Naylor, T.L.; Barchetti, A.; Ward, M.R.; et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl. Acad. Sci. USA 2006, 103, 9136–9141. [Google Scholar] [CrossRef] [Green Version]
- Chin, L.J.; Ratner, E.; Leng, S.; Zhai, R.; Nallur, S.; Babar, I.; Muller, R.U.; Straka, E.; Su, L.; Burki, E.A.; et al. A SNP in a let-7 microRNA complementary site in the KRAS 3’ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008, 68, 8535–8540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Xia, W.; Khotskaya, Y.B.; Huo, L.; Nakanishi, K.; Lim, S.O.; Du, Y.; Wang, Y.; Chang, W.C.; Chen, C.H.; et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 2013, 497, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Davis-Dusenbery, B.N.; Hata, A. Mechanisms of control of microRNA biogenesis. J. Biochem. 2010, 148, 381–392. [Google Scholar]
- Du, J.; Johnson, L.M.; Jacobsen, S.E.; Patel, D.J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell. Biol. 2015, 16, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, H.; Lu, S.; Wu, Z.; Zhou, L.; Cheng, Z.; Bai, Y.; Zhao, J.; Zhang, Q.; Mao, H. Quantitative assessment of gene promoter methylation in non small cell lung cancer using methylation sensitive high resolution melting. Oncol. Lett. 2018, 15, 7639–7648. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chen, Z.; Gao, Y.; Li, N.; Li, B.; Tan, F.; Tan, X.; Lu, N.; Sun, Y.; Sun, L.; et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage nonsmall cell lung cancer. Cancer Biol. Ther. 2011, 11, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Ceppi, P.; Mudduluru, G.; Kumarswamy, R.; Rapa, I.; Scagliotti, G.V.; Papotti, M.; Allgayer, H. Loss of miR-200c expression induces an aggressive, invasive and chemoresistant phenotype in non-small cell lung cancer. Mol. Cancer. Res. 2010, 8, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Davalos, V.; Moutinho, C.; Villanueva, A.; Boque, R.; Silva, P.; Carneiro, F.; Esteller, M. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 2012, 31, 2062–2074. [Google Scholar] [CrossRef]
- Incoronato, M.; Urso, L.; Portela, A.; Laukkanen, M.O.; Soini, Y.; Quintavalle, C.; Keller, S.; Esteller, M.; Condorelli, G. Epigenetic regulation of miR-212 expression in lung cancer. PLoS ONE 2011, 6, e27722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Chendrimada, T.P.; Wang, Q.; Higuchi, M.; Seeburg, P.H.; Shiekhattar, R.; Nishikura, K. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 2006, 13, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigita, G.; Distefano, R.; Veneziano, D.; Romano, G.; Rahman, M.; Wang, K.; Nana-Sinkam, P. Tissue and exosomal miRNA editing in non-small cell lung cancer. Sci. Rep. 2018, 8, 10222. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, X.; Quan, X.; Li, H.; Hao, X.; Jiang, M.; Zhou, B. Association between two polymorphisms in the promoter region of miR-143/miR-145 and the susceptibility of lung cancer in northeast Chinese nonsmoking females. DNA Cell Biol. 2019, 38, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Hayashita, Y.; Osada, H.; Tatematsu, Y.; Yamada, H.; Yanagisawa, K.; Tomida, S.; Yatabe, Y.; Kawahara, K.; Sekido, Y.; Takahashi, T. A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005, 65, 9628–9632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.L.; Zhang, J.X.; Yang, J.J.; Wei, Y.B.; Peng, J.F.; Fu, C.J.; Huang, M.H.; Wang, R.; Wang, P.Y.; Sun, G.B.; et al. MiR-205-5p promotes lung cancer progression and is valuable for the diagnosis of lung cancer. Thorac. Cancer 2022, 13, 832–843. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, W.; Rao, X.; Du, Y.; Xue, J. MicroRNA-9-5p Facilitates Lung Adenocarcinoma Cell Malignant Progression via Targeting STARD13. Biochem. Genet. 2022, 60, 1–6. [Google Scholar] [CrossRef]
- Qin, X.; Wang, X.Y.; Fei, J.W.; Li, F.H.; Han, J.; Wang, H.X. MiR-20a Promotes Lung Tumorigenesis by Targeting RUNX3 via TGF-β Signaling Pathway. J. Biol. Regul. Homeost. Agents 2020, 2, 34. [Google Scholar]
- Ren, P.; Gong, F.; Zhang, Y.; Jiang, J.; Zhang, H. MicroRNA-92a promotes growth, metastasis, and chemoresistance in non-small cell lung cancer cells by targeting PTEN, International Society of Oncology and BioMarkers (ISOBM). Tumor Biol. 2015, 37, 3215–3225. [Google Scholar] [CrossRef]
- Weidle, U.H.; Birzele, F.; Nopora, A. MicroRNAs as potential targets for therapeutic intervention with metastasis of non-small cell lung cancer. Cancer Genom. Proteom. 2019, 16, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Park, S.; Kim, H.; Choi, Y.J.; Kim, S.Y.; Sung, K.J.; Sung, Y.H.; Choi, C.M.; Yun, M.; Yi, Y.S.; et al. Tumor-derived exosomal miR-619-5p promotes tumor angiogenesis and metastasis through the inhibition of RCAN1. 4. Cancer Lett. 2020, 475, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yu, L.; Dong, H.; Liu, Z.; Sun, Y. MiR-182 enhances radioresistance in non-small cell lung cancer cells by regulating FOXO3. Clin. Exp. Pharmacol. Physiol. 2019, 46, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Ito, T.; Mizutani, T.; Minoguchi, S.; Yamamichi, N.; Sakurai, K.; Iba, H. miR-21 gene expression triggered by AP-1 was sustained through a double-negative feedback mechanism. J. Mol. Biol. 2008, 378, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Hagedorn, C.H.; Cullen, B.R. Human microRNAs were processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004, 10, 1957–1966. [Google Scholar] [CrossRef] [Green Version]
- Saab, A.A.R.; Raafat, R.H.; Alkady, M.S.; El Din, M.M.K. Clinical value of serum miR-21 as a potential biomarker in Non-Small Cell Lung Cancer (NSCLC). Med. Sci. 2021, 25, 1477–1485. [Google Scholar]
- Volinia, S.; Calin, G.A.; Liu, C.G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [Green Version]
- Gabriely, G.; Wurdinger, T.; Kesari, S.; Esau, C.C.; Burchard, J.; Linsley, P.S.; Krichevsky, A.M. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol. Cell. Biol. 2008, 28, 5369–5380. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Volinia, S.; Bonome, T.; Calin, G.A.; Greshock, J.; Yang, N.; Johnstone, C.N. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc. Natl. Acad. Sci. USA 2008, 105, 7004–7009. [Google Scholar] [CrossRef] [Green Version]
- Fei, J.; Lan, F.; Guo, M.; Li, Y.; Liu, Y. Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. J. Drug Target. 2008, 16, 688–693. [Google Scholar] [CrossRef]
- Zhang, J.G.; Wang, J.J.; Zhao, F.; Liu, Q.; Jiang, K.; Yang, G.H. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin. Chim. Acta 2010, 411, 846–852. [Google Scholar] [CrossRef]
- Seike, M.; Goto, A.; Okzhaano, T.; Bowman, E.D.; Schetter, A.J.; Horikawa, I.; Mathe, E.A.; Jen, J.; Yang, P.; Sugimura, H.; et al. MiR-21 was an EGFR-regulated antiapoptotic factor in lung cancer in never-smokers. Proc. Natl. Acad. Sci. USA 2009, 106, 12085–12090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.; Zhu, F.; Liu, J.; Xu, T.; Pei, D.; Wang, R.; Qian, Y.; Li, Q.; Wang, L.; Shi, Z.; et al. Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer. PLoS ONE 2014, 9, e103305. [Google Scholar] [CrossRef] [PubMed]
- Markou, A.; Tsaroucha, E.G.; Kaklamanis, L.; Fotinou, M.; Georgoulias, V.; Lianidou, E.S. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non- small cell lung cancer by quantitative real-time RT-PCR. Clin. Chem. 2008, 54, 54,1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Gao, W.; Zhu, C.J.; Liu, Y.Q.; Mei, Z.; Cheng, T.; Shu, Y.Q. Identification of plasma microRNA- 21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin. J. Cancer 2011, 30, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Tu, H.B.; Wu, L.; Liu, M.; Jiang, G.N. MicroRNA-21 regulates non-small cell lung cancer cell invasion and chemo-sensitivity through SMAD7. Cell Physiol. Biochem. 2016, 38, 2152–2162. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhu, Z.; Watabe, K.; Zhang, X.; Bai, C.; Xu, M.; Wu, F.; Mo, Y.Y. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ. 2013, 20, 1558–1568. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Chen, J.; Ou, B.; Liu, C.; Zou, Y. GAS5 knockdown reduces the chemo-sensitivity of non-small cell lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/ PTEN axis. Biomed. Pharmacother. 2017, 93, 570–579. [Google Scholar] [CrossRef]
- Tang, J.; Li, X.; Cheng, T.; Wu, J. miR-21-5p/SMAD7 axis promotes the progress of lung cancer. Thorac. Cancer 2021, 12, 2307–2313. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, H.; Pang, Y.; Wang, M.; Liu, S. UTMD-mediated delivery of miR-21-5p inhibitor suppresses the development of lung cancer. Tissue Cell 2021, 23, 101719. [Google Scholar] [CrossRef]
- Grillari, J.; Hackl, M.; Grillari-Voglauer, R. miR-17-92 cluster: Ups and downs in cancer and aging. Biogerontology 2010, 11, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Ota, A.; Tagawa, H.; Karnan, S.; Tsuzuki, S.; Karpas, A.; Kira, S.; Yoshida, Y.; Seto, M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004, 64, 3087–3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Thomson, J.M.; Hemann, M.T.; Hernando-Monge, E.; Mu, D.; Goodson, S.; Powers, S.; Cordon-Cardo, S.; Lowe, S.W.; Hannon, G.J.; et al. A microRNA polycistron as a potential human oncogene. Nature 2005, 435, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Cai, J.; Tang, Y.; Zhao, Q. MiR-17-92 cluster is a novel regulatory gene of cardiac ischemic/reperfusion injury. Med. Hypotheses 2013, 81, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Olive, V.; Bennett, M.J.; Walker, J.C.; Ma, C.; Jiang, I.; Cordon-Cardo, C.; Li, Q.J.; Lowe, S.W.; Hannon, G.J.; He, L. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 2009, 23, 2839–2849. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, Y.; Yin, Y.; Li, S. Detection of circulating exosomal miR-17-5p serves as a novel non-invasive diagnostic marker for non-small cell lung cancer patients. Pathol. Res. Pract. 2019, 215, 152466. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, X.; Wang, Z.; Li, B.; Zhu, X. Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 643–648. [Google Scholar]
- Xiao, H.; Liu, Y.; Liang, P.; Wang, B.; Tan, H.; Zhang, Y.; Gao, J. TP53TG1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci. 2018, 8, 23. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Yan, W.; Yang, J.; Qin, Y.J.; Lin, X.L.; Xie, R.Y.; Wang, S.C.; Jin, W.; Gao, F.; et al. MicroRNA-19 triggers epithelial–mesenchymal transition of lung cancer cells accompanied by growth inhibition. Lab. Investig. 2015, 95, 1056–1070. [Google Scholar] [CrossRef] [Green Version]
- Woods, K.; Thomson, J.M.; Hammond, S.M. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J. Biol. Chem. 2007, 282, 2130–2134. [Google Scholar] [CrossRef] [Green Version]
- Sylvestre, Y.; De Guire, V.; Querido, E.; Mukhopadhyay, U.K.; Bourdeau, V.; Major, F.; Ferbeyre, G.; Chartrand, P. An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem. 2007, 282, 2135–2143. [Google Scholar] [CrossRef] [Green Version]
- Novotny, G.W.; Sonne, S.B.; Nielsen, J.E.; Jonstrup, S.P.; Hansen, M.A.; Skakkebaek, N.E.; Meyts, E.; Kjems, J.; Leffers, H. Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ. 2007, 14, 879–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Li, X.; Quan, X.; Li, X.; Zhou, B. MiR-92a Family: A Novel Diagnostic Biomarker and Potential Therapeutic Target in Human Cancers. Front. Mol. Biosci. 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Ranade, A.R.; Cherba, D.; Sridhar, S.; Richardson, P.; Webb, C.; Paripati, A.; Bowles, B.; Weiss, G.J. MicroRNA 92a-2*: A biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J. Thorac. Oncol. 2010, 5, 1273–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Jia, X.; Zhou, J.; Sun, Q.; Ma, Z. The MiR-17-92 gene cluster is a blood-based marker for cancer detection in non-small-cell lung cancer. Am. J. Med. Sci. 2020, 360, 248–260. [Google Scholar] [CrossRef]
- Galardi, S.; Mercatelli, N.; Giorda, E.; Massalini, S.; Frajese, G.V.; Ciafrè, S.A.; Farace, M.G. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 2007, 282, 23716–23724. [Google Scholar] [CrossRef] [Green Version]
- Mercatelli, N.; Coppola, V.; Bonci, D.; Miele, F.; Costantini, A.; Guadagnoli, M.; Bonanno, E.; Muto, G.; Frajese, G.V.; De Maria, R.; et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE 2008, 3, e4029. [Google Scholar] [CrossRef]
- Visone, R.; Russo, L.; Pallante, P.; De Martino, I.; Ferraro, A.; Leone, V.; Borbone, E.; Petrocca, F.; Alder, H.; Croce, C.M.; et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr. Relat. Cancer 2007, 14, 791–798. [Google Scholar] [CrossRef]
- Zheng, P.L.; Zhang, N.; Liang, W.C.; Du, X.J.; Gong, X.W. miR-221 promotes proliferation of lung cancer A549 cells by down-regu-lating PTEN. Chin. J. Pathophysiol. 2017, 33, 2208–2211. [Google Scholar]
- Acunzo, M.; Visone, R.; Romano, G.; Veronese, A.; Lovat, F.; Palmieri, D.; Bottoni, A.; Garofalo, M.; Gasparini, P.; Condorelli, G.; et al. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 2012, 31, 634–642. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Chang, T.; Liu, Y.; Shih, J. MicroRNA in Lung Cancer Metastasis. Cancers 2019, 11, 265. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.J.; Li, J.; Chen, C.H. Effects of miR-221 on the apoptosis of non-small cell lung cancer cells by lncRNA HOTAIR. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4226–4233. [Google Scholar] [PubMed]
- Ventura, L.; Gnetti, L.; Rossi, M.; Tiseo, M.; Giordano, G.; Corradi, M.; Silva, M.; Milanese, G.; Minari, R.; Leonetti, A.; et al. The role of miRNA-221 and miRNA-126 in patients with benign metastasizing leiomyoma of the lung: An overview with new interesting scenarios. Mol. Biol. Rep. 2021, 48, 3485–3494. [Google Scholar] [CrossRef] [PubMed]
- Abdel Ghany, S.M.; Ali, E.; Ahmed, A.; Hozayen, W.G.; Mohamed-Hussein, A.A.; Elnaggar, M.S.; Hetta, H.F. Circulating mirna-30a and mirna-221 AS novel biomarkers for the early detection of non-small-cell lung cancer. Middle East J. Cancer 2020, 11, 50–58. [Google Scholar]
- Wang, W.; Chen, D.; Chen, W.; Xin, Z.; Huang, Z.; Zhang, X.; Xi, K.; Wang, G.; Zhang, R.; Zhao, D.; et al. Early detection of Non-Small cell lung cancer by using a 12-microRNA panel and a nomogram for assistant diagnosis. Front. Oncol. 2020, 10, 855. [Google Scholar] [CrossRef]
- Mataki, H.; Seki, N.; Chiyomaru, T.; Enokida, H.; Goto, Y.; Kumamoto, T.; Machida, K.; Mizuno, K.; Nakagawa, M.; Inoue, H. Tumor-suppressive microRNA-206 as a dual inhibitor of MET and EGFR oncogenic signaling in lung squamous cell carcinoma. Int. J. Oncol. 2015, 46, 1039–1050. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Liu, Z.; Li, S.; Yang, C.; Xue, R.; Xi, Y.; Wang, L.; Wang, S.; He, Q.; Huang, J.; et al. Down-regulation of c-Met and Bcl2 by microRNA-206, activates apoptosis, and inhibits tumor cell proliferation, migration and colony formation. Oncotarget 2015, 6, 625533–625574. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Tong, Z.K.; Zhou, J.Y.; Yao, Y.K.; Zhang, S.M.; Zhou, J.Y. MicroRNA-206 inhibits the viability and migration of human lung adenocarcinoma cells partly by targeting MET. Oncol. Lett. 2016, 12, 1171–1177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.X.; Yang, W.; Wu, J.Z.; Zhou, C.; Liu, S.; Shi, H.B.; Zhou, W.Z. MicroRNA-32-5p inhibits epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting SMAD family 3. J. Cancer 2021, 12, 2258. [Google Scholar] [CrossRef]
- Jasim, S.A.; Omear, H.A.; Al-Marzoqi, A.H. The role of miRNA-571 and miRNA-559 in lung cancer by affecting the expression of genes associated with the ErbB signaling pathway. Gene Rep. 2022, 26, 101436. [Google Scholar] [CrossRef]
- Gibbons, D.L.; Lin, W.; Creighton, C.J.; Rizvi, Z.H.; Gregory, P.A.; Goodall, G.J.; Thilaganathan, N.; Du, L.; Zhang, Y.; Pertsemlidis, A.; et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009, 23, 2140–2151. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Liang, Y.; Zhu, T.; Long, Y.; Chen, Z.; Zhang, X.; Jiang, L. Epigenetic silencing of microRNA 199a 5p promotes the proliferation of non small cell lung cancer cells by increasing AKAP1 expression. Oncol. Lett. 2021, 21, 434. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Finch-Edmondson, M.; Lee, Y.; Wan, Y.; Sudol, M.; DasGupta, R. miR-582-5p is a tumor suppressor microRNA targeting the Hippo-YAP/TAZ signaling pathway in non-small cell lung cancer. Cancers 2021, 13, 756. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, S.; Deng, X.; Rao, J.; Huang, K.; Xu, G.; Wang, X. MicroRNA-582-5p suppresses non-small cell lung cancer cells growth and invasion via downregulating NOTCH1. PLoS ONE 2019, 14, e0217652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandelwal, A.; Sharma, U.; Barwal, T.S.; Seam, R.K.; Gupta, M.; Rana, M.K.; Vasquez, K.M.; Jain, A. Circulating miR-320a Acts as a Tumor Suppressor and Prognostic Factor in Non-small Cell Lung Cancer. Front. Oncol. 2021, 11, 727. [Google Scholar] [CrossRef]
- Lee, S.B.; Park, Y.S.; Sung, J.S.; Lee, J.W.; Kim, B.; Kim, Y.H. Tumor suppressor miR-584-5p inhibits migration and invasion in smoking related non-small cell lung cancer cells by targeting YKT6. Cancers 2021, 13, 1159. [Google Scholar] [CrossRef]
- Luo, J.; Jin, Y.; Li, M.; Dong, L. Tumor suppressor miR 613 induces cisplatin sensitivity in non small cell lung cancer cells by targeting GJA1. Mol. Med. Rep. 2021, 23, 385. [Google Scholar]
- Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J. The 21 nucleotide let 7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403, 901–906. [Google Scholar] [CrossRef]
- Yamada, H.; Yanagisawa, K.; Tokumaru, S.; Taguchi, A.; Nimura, Y.; Osada, H.; Nagino, M.; Takahashi, T. Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes Cancer 2008, 47, 810–818. [Google Scholar] [CrossRef]
- Boyerinas, B.; Park, S.M.; Hau, A.; Murmann, A.E.; Peter, M.E. The role of let-7 in cell differentiation and cancer. Endocr. Relat. Cancer 2010, 17, F19–F36. [Google Scholar] [CrossRef]
- Slack, F.J.; Joanne, B.W. MicroRNAs as a potential magic bullet in cancer. Future Oncol. 2006, 2, 73–82. [Google Scholar] [CrossRef]
- Trang, P.; Wiggins, J.F.; Daige, C.L.; Cho, C.; Omotola, M.; Brown, D.; Weidhaas, J.B.; Bader, A.G.; Slack, F.J. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. 2011, 19, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhu, Y.; Zhou, X.; Chen, Y. Low expression of let-7 predicts poor prognosis in patients with multiple cancers: A meta-analysis. Tumor Biol. 2014, 35, 5143–5148. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Maitah, M.Y.; Ginnebaugh, K.R.; Li, Y.; Bao, B.; Gadgeel, S.M.; Sarkar, F.H. Inhibition of Hedgehog signalling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J. Hematol. Oncol. 2013, 6, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Hu, W.; Pan, L.; Fu, W.; Dai, L.; Jiang, Z.; Zhang, F.; Zhao, J. let-7 and miR-17 promote self-renewal and drive gefitinib resistance in non-small cell lung cancer. Oncol. Rep. 2019, 42, 495–508. [Google Scholar] [CrossRef]
- Viswanathan, S.R.; Daley, G.Q. Lin28: A microRNA regulator with a macro role. Cell 2010, 140, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.T.; Zhang, G.X.; Gao, S.S. The Potential Diagnostic Accuracy of Let-7 Family for Cancer: A Meta-Analysis. Technol. Cancer Res. Treat. 2021, 20, 15330338211033061. [Google Scholar] [CrossRef]
- Liu, J.K.; Liu, H.F.; Ding, Y.; Gao, G.D. Predictive value of microRNA let-7a expression for efficacy and prognosis of radiotherapy in patients with lung cancer brain metastasis: A case–control study. Medicine 2018, 97, e12847. [Google Scholar] [CrossRef]
- Wang, F.; Quan, Q. The long non-coding RNA SNHG4/microRNA-let-7e/KDM3A/p21 pathway is involved in the development of non-small cell lung cancer. Mol. Ther.-Oncolytics 2021, 20, 634–645. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.; Fillmore, R.; Xi, Y. MiR-200, a new star miRNA in human cancer. Cancer Lett. 2014, 344, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Wellner, U.; Schubert, J.; Burk, U.C.; Schmalhofer, O.; Zhu, F.; Sonntag, A.; Waldvogel, B.; Vannier, C.; Darling, D.; Zur Hausen, A.; et al. The EMT- activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 2009, 11, 1487–1495. [Google Scholar] [CrossRef]
- Hill, L.; Browne, G.; Tulchinsky, E. ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int. J. Cancer 2013, 132, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Roybal, J.D.; Zang, Y.; Ahn, Y.H.; Yang, Y.; Gibbons, D.L.; Baird, B.N.; Alvarez, C.; Thilaganathan, N.; Liu, D.D.; Saintigny, P.; et al. miR-200 inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol. Cancer Res. 2011, 9, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, A.K.; Muer, A.; Mairinger, F.D.; Weichert, W.; Stenzinger, A.; Hummel, M.; Budach, V.; Tinhofer, I. MiR-200b and miR-155 as predictive biomarkers for the efficacy of chemoradiation in locally advanced head and neck squamous cell carcinoma. Eur. J. Cancer 2017, 77, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Cortez, M.A.; Valdecanas, D.; Zhang, X.; Zhan, Y.; Bhardwaj, V.; Calin, G.A.; Komaki, R.; Giri, D.K.; Quini, C.C.; Wolfe, T.; et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol. Ther. 2014, 22, 1494–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishijima, N.; Seike, M.; Soeno, C.; Chiba, M.; Miyanaga, A.; Noro, R.; Sugano, T.; Matsumoto, M.; Kubota, K.; Gemma, A. miR-200/ZEB axis regulates sensitivity to nintedanib in non-small cell lung cancer cells. Int. J. Oncol. 2016, 48, 937–944. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Liu, Y.; Wang, Y.; Zhao, M.; Tu, L.; Luo, F. Decitabine reverses TGF-β1-induced epithelial–mesenchymal transition in non-small-cell lung cancer by regulating miR-200/ZEB axis. Drug Des. Dev. Ther. 2017, 11, 969. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Kim, J.S.; Lee, S.; Lee, H.; Yoon, J.S.; Hong, J.H.; Chun, S.H.; Sun, D.S.; Won, H.S.; Hong, S.A.; et al. QKI, a miR-200 target gene, suppresses epithelial-to-mesenchymal transition and tumor growth. Int. J. Cancer 2019, 145, 1585–1595. [Google Scholar] [CrossRef]
- Hydbring, P.; De Petris, L.; Zhang, Y.; Brandén, E.; Koyi, H.; Novak, M.; Kanter, L.; Hååg, P.; Hurley, J.; Tadigotla, V.; et al. Exosomal RNA-profiling of pleural effusions identifies adenocarcinoma patients through elevated miR-200 and LCN2 expression. Lung Cancer 2018, 124, 45–52. [Google Scholar] [CrossRef]
- Xue, B.; Chuang, C.H.; Prosser, H.M.; Fuziwara, C.S.; Chan, C.; Sahasrabudhe, N.; Kühn, M.; Wu, Y.; Chen, J.; Biton, A. miR-200 deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts. Genes Dev. 2021, 35, 1109–1122. [Google Scholar] [CrossRef]
- Koutsoulidou, A.; Mastroyiannopoulos, N.P.; Furling, D.; Uney, J.B.; Phylactou, L.A. Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev. Biol. 2011, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Xue, D.; Yang, Y.; Liu, Y.; Wang, P.; Dai, Y.; Liu, Q.; Chen, L.; Shen, J.; Ju, H.; Li, Y.; et al. MicroRNA- 206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3- 3zeta/STAT3/HIF-1alpha/VEGF signaling. Oncotarget 2016, 7, 79805–79813. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Yu, X.; Yang, F.; Zhang, Z.; Shen, J.; Sun, J.; Choksi, S.; Jitkaew, S.; Shu, Y. Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by miRNAs-Mediated CCL2/VEGFA Signaling. PLoS Genet. 2016, 12, e1006244. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Y.; Jiao, D.M.; Wang, J.; Hu, H.; Tang, X.; Chen, J.; Mou, H.; Lu, W. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget 2016, 7, 24510–24526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Happel, C.; Manna, S.K.; Acquaah-Mensah, G.; Carrerero, J.; Kumar, S.; Nasipuri, P.; Krausz, K.W.; Wakabayashi, N.; Dewi, R.; et al. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J. Clin. Investig. 2013, 123, 2921–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, K.G.; Feng, G.; Tong, Y.S.; Tao, G.Z.; Xu, L. miR-206 regulates non-small-cell lung cancer cell aerobic glycolysis by targeting hexokinase 2. J. Biochem. 2020, 167, 365–370. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Shi, Y.; Teng, T. LncRNA SNHG14 contributes to the progression of NSCLC through miR-206/G6PD pathway. Thorac. Cancer 2020, 11, 1202–1210. [Google Scholar] [CrossRef]
- Liao, M.; Peng, L. MiR-206 may suppress non-small lung cancer metastasis by targeting CORO1C. Cell. Mol. Biol. Lett. 2020, 25, 22. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Li, Z.J.; Shi, Y.; Deng, J.; Bai, J.; Ma, L.; Zeng, X.X.; Feng, S.S.; Ren, J.L.; et al. Unravelling the role of LncRNA WT1-AS/mIR-206/NAMPT axis as prognostic biomarkers in lung adenocarcinoma. Biomolecules 2021, 11, 203. [Google Scholar] [CrossRef]
- Jiao, D.; Chen, J.; Li, Y.; Tang, X.; Wang, J.; Xu, W.; Song, J.; Li, Y.; Tao, H.; Chen, Q. miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT. J. Cell. Mol. Med. 2018, 22, 3526–3536. [Google Scholar] [CrossRef]
- Wang, J.; Bao, Z.; Qiao, Y. miR-206 regulates EVI1 gene expression and cell biological behavior in stem cells of small cell lung cancer. Chin. J. Tissue Eng. Res. 2022, 26, 1027. [Google Scholar]
- Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA. 2006, 103, 12481–12486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; VandenBoom, T.G.; Wang, Z.; Kong, D.; Ali, S.; Philip, P.A.; Sarkar, F.H. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010, 70, 1486–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacona, J.R.; Monteleone, N.J.; Lutz, C.S. miR-146a suppresses 5-lipoxygenase activating protein (FLAP) expression and Leukotriene B4 production in lung cancer cells. Oncotarget 2018, 9, 26751–26769. [Google Scholar] [CrossRef] [PubMed]
- Boldin, M.P.; Taganov, K.D.; Rao, D.S.; Yang, L.; Zhao, J.L.; Kalwani, M.; Garcia-Flores, Y.; Luong, M.; Devrekanli, A.; Xu, J.; et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 2011, 208, 1189–1201. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, Y.; Wei, Q.K.; Yuan, Y.; Zhou, F.; Ge, Y.Y.; Yang, J.R.; Su, H.; Zhuang, S.M. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 2008, 29, 2126–2131. [Google Scholar] [CrossRef]
- Xu, B.; Feng, N.H.; Li, P.C.; Tao, J.; Wu, D.; Zhang, Z.D.; Tong, N.; Wang, J.F.; Song, N.H.; Zhang, W.; et al. A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate 2010, 70, 467–472. [Google Scholar] [CrossRef]
- Pang, L.; Lu, J.; Huang, J.; Xu, C.; Li, H.; Yuan, G.; Cheng, X.; Chen, J. Upregulation of miR 146a increases cisplatin sensitivity of the non small cell lung cancer A549 cell line by targeting JNK 2. Oncol. Lett. 2017, 14, 7745–7752. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Xu, Z.; Wu, G.; Chen, X.; Huang, Y.; Wang, Y.; Jiang, W.; Ke, B. Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin. BMC Cancer 2017, 17, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Cui, S.; Fu, X.; Liu, C.; Wang, Z.; Liu, Y. MicroRNA-146-5p promotes proliferation, migration and invasion in lung cancer cells by targeting claudin-12. Cancer Biomark. 2019, 25, 89–99. [Google Scholar] [CrossRef]
- Vashchenko, V.I.; Romashova, J.E.; Shabanov, P.D. Pathophysiology of miR-146a in lung cancer. Prospects of rising of efficiency of targeted therapy. Rev. Clin. Pharmacol. Drug Ther. 2021, 19, 359–381. [Google Scholar] [CrossRef]
- Pereira, D.M.; Rodrigues, P.M.; Borralho, P.M.; Rodrigues, C.M. Delivering the promise of miRNA cancer therapeutics. Drug Discov. Today 2013, 18, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, G.; Ozpolat, B.; Coleman, R.L.; Sood, A.K.; Lopez-Berestein, G. Preclinical and clinical development of siRNA-based therapeutics. Adv. Drug Deliv. Rev. 2015, 87, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchie, A. First microRNA mimic enters clinic. Nat. Biotechnol. 2013, 31, 577. [Google Scholar] [CrossRef] [PubMed]
- Talekar, M.; Trivedi, M.; Shah, P.; Ouyang, Q.; Oka, A.; Gandham, S.; Amiji, M.M. Combination wt-p53 and MicroRNA-125b transfection in a genetically engineered lung cancer model using dual CD44/EGFR-targeting nanoparticles. Mol. Ther. 2016, 24, 759–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Yuan, Y.; Gong, Y.; Luo, X.; Su, X.; Hu, X.; Zhu, W. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. J. Cancer Res. Clin. Oncol. 2019, 145, 2951–2967. [Google Scholar] [CrossRef]
- Jeong, K.; Yu, Y.J.; You, J.Y.; Rhee, W.J.; Kim, J.A. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model. Lab Chip 2020, 20, 548–557. [Google Scholar] [CrossRef]
- Watashi, K.; Yeung, M.L.; Starost, M.F.; Hosmane, R.S.; Jeang, K.T. Identification of small molecules that suppress microRNA function and reverse tumorigenesis. J. Biol. Chem. 2010, 285, 24707–24716. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Zhang, L.; Zhang, Y.; Wu, Z.; He, D.; Li, X.; Wang, Z. Long non-coding RNA TUG1 enhances chemosensitivity in non-small cell lung cancer by impairing microRNA-221-dependent PTEN inhibition. Aging 2019, 11, 7553. [Google Scholar] [CrossRef]
- Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabol. 2006, 3, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Vester, B.; Wengel, J. LNA (locked nucleic acid): High-affinity targeting of complementary RNA and DNA. Biochemistry 2004, 43, 3233–3241. [Google Scholar] [CrossRef]
- Duan, F.G.; Wang, M.F.; Cao, Y.B.; Li, D.; Li, R.Z.; Fan, X.X.; Khan, I.; Lai, H.L.; Zhang, Y.Z.; Hsiao, W.W.; et al. MicroRNA-421 confers paclitaxel resistance by binding to the KEAP1 3′ UTR and predicts poor survival in non-small cell lung cancer. Cell Death Dis. 2019, 10, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Li, C.; Wu, X.; Yang, G. Docetaxel inhibits the proliferation of non-small-cell lung cancer cells via upregulation of microRNA-7 expression. Int. J. Clin. Exp. Pathol. 2015, 8, 9072. [Google Scholar] [PubMed]
- Jin, H.; Qiao, F.; Wang, Y.; Xu, Y.; Shang, Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol. Rep. 2015, 34, 2782–2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res. 2017, 115, 133–148. [Google Scholar] [CrossRef]
- Wang, N.; Feng, T.; Liu, X.; Liu, Q. Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharm. 2020, 70, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, M.A. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Ferracin, M.; Veronese, A.; Negrini, M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev. Mol. Diagn. 2010, 10, 297–308. [Google Scholar] [CrossRef]
- Yu, S.L.; Chen, H.Y.; Chang, G.C.; Chen, C.Y.; Chen, H.W.; Singh, S.; Cheng, C.L.; Yu, C.J.; Lee, Y.C.; Chen, H.S.; et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008, 13, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Dvinge, H.; Git, A.; Gräf, S.; Salmon-Divon, M.; Curtis, C.; Sottoriva, A.; Zhao, Y.; Hirst, M.; Armisen, J.; Miska, E.A.; et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 2013, 497, 378–382. [Google Scholar] [CrossRef]
- Yanaihara, N.; Caplen, N.; Bowman, E.; Seike, M.; Kumamoto, K.; Yi, M.; Stephens, R.M.; Okamoto, A.; Yokota, J.; Tanaka, T.; et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006, 9, 89–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foss, K.M.; Sima, C.; Ugolini, D.; Neri, M.; Allen, K.E.; Weiss, G.J. miR-1254 and miR-574-5p: Serum based microRNA biomarkers for early-stage non-small cell lung cancer. J. Thorac. Oncol. 2011, 6, 482–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, D.; Haddadin, H.; Wang, Y.; Gu, L.Q.; Perry, M.C.; Freter, C.E.; Wang, M.X. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int. J. Clin. Exp. Pathol. 2011, 4, 575–586. [Google Scholar] [PubMed]
- Hou, J.; Meng, F.; Chan, L.W.; Cho, W.; Wong, S.C. Circulating plasma MicroRNAs as diagnostic markers for NSCLC. Front. Gentics 2016, 7, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, N.; Aharonov, R.; Meiri, E.; Rosenwald, S.; Spector, Y.; Zepeniuk, M.; Benjamin, H.; Shabes, N.; Tabak, S.; Levy, A.; et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. 2008, 26, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Wang, J.; Shan, B.; Peng, Z.; Dong, Y.; Shi, W.; He, D.; Cheng, Y.; Zhao, W.; Zhang, C.; et al. Diagnostic and prognostic potential of circulating long non-coding RNAs in non-small cell lung cancer. Cell Physiol. Biochem. 2018, 49, 816–827. [Google Scholar] [CrossRef]
- Xie, Y.; Todd, N.W.; Liu, Z.; Zhan, M.; Fang, H.; Peng, H.; Alattar, M.; Deepak, J.; Stass, S.A.; Jiang, F. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 2010, 67, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Nicassio, F.; Marzi, M.; Belloni, E.; Dall’olio, V.; Bernard, L.; Pelosi, G.; Maisonneuve, P.; Veronesi, G.; Di Fiore, P.P. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early-stage lung cancer. EMBO Mol. Med. 2011, 3, 495–503. [Google Scholar] [CrossRef]
- Liao, J.; Shen, J.; Leng, Q.; Qin, M.; Zhan, M.; Jiang, F. MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC). Thorac. Cancer 2020, 11, 762–768. [Google Scholar] [CrossRef] [Green Version]
- Lebanony, D.; Benjamin, H.; Gilad, S.; Ezagouri, M.; Dov, A.; Ashkenazi, K.; Gefen, N.; Izraeli, S.; Rechavi, G.; Pass, H.; et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J. Clin. Oncol. 2009, 27, 2030–2037. [Google Scholar] [CrossRef]
- Landi, M.T.; Zhao, Y.; Rotunno, M.; Koshiol, J.; Liu, H.; Bergen, A.W.; Rubagotti, M.; Goldstein, A.M.; Linnoila, I.; Marincola, F.M.; et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin. Cancer. Res. 2010, 16, 430–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Mu, D. MicroRNAs and lung cancers: From pathogenesis to clinical implications. Front. Med. 2012, 6, 134–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barshack, I.; Lithwick-Yanai, G.; Afek, A.; Rosenblatt, K.; Tabibian-Keissar, H.; Zepeniuk, M.; Cohen, L.; Dan, H.; Zion, O.; Strenov, Y.; et al. MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol. Res. Pract. 2010, 206, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Kryczka, J.; Migdalska-Sęk, M.; Kordiak, J.; Kiszałkiewicz, J.M.; Pastuszak-Lewandoska, D.; Antczak, A.; Brzeziańska-Lasota, E. Serum Extracellular Vesicle-Derived miRNAs in Patients with Non-Small Cell Lung Cancer—Search for Non-Invasive Diagnostic Biomarkers. Diagnostics 2021, 11, 425. [Google Scholar] [CrossRef]
- Jiang, H.G.; Dai, C.H.; Xu, Y.P.; Jiang, Q.; Xia, X.B.; Shu, Y.; Li, J. Four plasma miRNAs act as biomarkers for diagnosis and prognosis of non small cell lung cancer. Oncol. Lett. 2021, 22, 792. [Google Scholar] [CrossRef]
- MacDonagh, L.; Gallagher, M.F.; Ffrench, B.; Gasch, C.; Gray, S.G.; Reidy, M.; Nicholson, S.; Leonard, N.; Ryan, R.; Young, V.; et al. MicroRNA expression profiling and biomarker validation in treatment-naïve and drug resistant non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 1773. [Google Scholar] [CrossRef]
- Kong, D.; Wang, K.; Zhang, Q.N.; Bing, Z.T. Systematic analysis reveals key microRNAs as diagnostic and prognostic factors in progressive stages of lung cancer. arXiv 2022, arXiv:2201.05408. [Google Scholar]
- Visan, K.S.; Lobb, R.J.; Wen, S.W.; Bedo, J.; Lima, L.G.; Krumeich, S.; Palma, C.; Ferguson, K.; Green, B.; Niland, C.; et al. Blood-Derived Extracellular Vesicle-Associated miR-3182 Detects Non-Small Cell Lung Cancer Patients. Cancers 2022, 14, 257. [Google Scholar] [CrossRef]
- Montani, F.; Marzi, M.J.; Dezi, F.; Dama, E.; Carletti, R.M.; Bonizzi, G.; Bertolotti, R.; Bellomi, M.; Rampinelli, C.; Maisonneuve, P.; et al. miR-Test: A blood test for lung cancer early detection. J. Natl. Cancer. Inst. 2015, 107, djv063. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef]
- Chen, J.; Chopp, M. Exosome therapy for stroke. Stroke 2018, 49, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, B. The functional role of exosome in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2018, 144, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Prattichizzo, F.; Micolucci, L.; Cricca, M.; De Carolis, S.; Mensà, E.; Ceriello, A.; Procopio, A.D.; Bonafè, M.; Olivieri, F. Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging. Mech. Ageing Dev. 2017, 168, 44–53. [Google Scholar] [CrossRef]
- Sruthi, T.V.; Edatt, L.; Raji, G.R.; Kunhiraman, H.; Shankar, S.S.; Shankar, V.; Ramachandran, V.; Poyyakkara, A.; Kumar, S.V. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J. Cell. Physiol. 2018, 233, 3498–3514. [Google Scholar] [CrossRef]
- Fu, X.; Liu, M.; Qu, S.; Ma, J.; Zhang, Y.; Shi, T.; Wen, H.; Yang, Y.; Wang, S.; Wang, J.; et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J. Exp. Clin. Cancer Res. 2018, 37, 52. [Google Scholar] [CrossRef] [Green Version]
- Głuszko, A.; Szczepański, M.J.; Ludwig, N. Exosomes in cancer: Circulating immune-related biomarkers. Biomed. Res. Int. 2019, 2019, 1628029. [Google Scholar] [CrossRef] [PubMed]
- Kok, V.C.; Yu, C.C. Cancer-derived exosomes: Their role in cancer biology and biomarker development. Int. J. Nanomed. 2020, 15, 8019–8036. [Google Scholar] [CrossRef] [PubMed]
- Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thorac. Oncol. 2013, 8, 1156–1162. [Google Scholar] [CrossRef] [Green Version]
- Munagala, R.; Aqil, F.; Gupta, R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumor Biol. 2016, 37, 10703–10714. [Google Scholar] [CrossRef]
- Lamichhane, S.R.; Thachil, T.; De Ieso, P.; Gee, H.; Moss, S.A.; Milic, N. Prognostic role of MicroRNAs in human non-small-cell lung Cancer: A systematic review and Meta-analysis. Dis. Markers 2018, 2018, 8309015. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Zhong, Y.; Wu, L.; Yang, D.; Ye, S.; Zhang, M. Prognostic value of microRNAs in lung cancer: A systematic review and meta analysis. Mol. Clin. Oncol. 2019, 10, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Roth, J.A.; Yu, H.; Ye, Y.; Xie, K.; Zhao, H.; Chang, D.W.; Huang, M.; Li, H.; Qu, J.; et al. A 5-microRNA signature identified from serum microRNA profiling predicts survival in patients with advanced stage non-small cell lung cancer. Carcinogenesis 2019, 40, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Xin, S.; Ma, J.; Wang, H.; Zhang, H.; Liu, J. A three microRNA-based prognostic signature for small cell lung cancer overall survival. J. Cell. Biochem. 2019, 120, 8723–8730. [Google Scholar] [CrossRef]
- Nakhla, S.; Kamel, M.K.; Moussa, S.; Ali, I.M.; Elnaggar, M.; Talima, S.A.; Fitoury, S.; Ibrahim, L.; Morsi, M.I. The diagnostic and predictive values of miRNA-21, miRNA-126, miRNA-513a, and miRNA-98 in patients with non-small cell lung cancer (NSCLC). Int. J. Cancer. Biomed. Res. 2021, 5, 109–120. [Google Scholar] [CrossRef]
- Zhu, S.J.; Wang, X.; Hu, S.L.; Fang, Y.; Guan, B.X.; Li, J.; Li, G.; Xu, J.Y. Clinical Significance and Biological Function of miR-1274a in Non-small Cell Lung Cancer. Mol. Biotechnol. 2022, 64, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Ma, C.N.; Li, X.D.; Zhang, Y.J. Examining the effect of gene reduction in miR-95 and enhanced radiosensitivity in non-small cell lung cancer. Cancer Gene Ther. 2016, 23, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hawkins, P.G.; Bi, N.; Dess, R.T.; Tewari, M.; Hearn, J.W.; Hayman, J.A.; Kalemkerian, G.P.; Lawrence, T.S.; Ten Haken, R.K.; et al. Serum microRNA signature predicts response to high-dose radiation therapy in locally advanced non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phy. 2018, 100, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Pritchard., C.C.; Cheng, H.H.; Tewari, M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet. 2012, 13, 358–369. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, J.A.; Majid, S.; Khan, A.; Arafah, A.; Ahmad, A.; Jan, B.L.; Shah, N.N.; Kazi, M.; Rehman, M.U. Clinico-Pathological Importance of miR-146a in Lung Cancer. Diagnostics 2021, 2, 274. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- KomarTili, E.; Michaille, J.J.; Croce, C.M. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol. Rev. 2013, 253, 167–184. [Google Scholar]
- Vaupel, P.; Mayer, A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26, 225–239. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Wu, S.Y.; Pradeep, S.; Ivan, C.; Pecot, C.V.; Gharpure, K.M.; Nagaraja, A.S.; Armaiz-Pena, G.N.; McGuire, M.; Zand, B.; et al. Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nat. Commun. 2014, 5, 5202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ova, Y.; Malik, A.B. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu. Rev. Physiol. 2010, 72, 463–493. [Google Scholar]
- Varkouhi, A.K.; Scholte, M.; Storm, G.; Haisma, H.J. Endosomal escape pathways for delivery of biologicals. J. Control Release 2011, 151, 220–228. [Google Scholar] [CrossRef]
- Endoh, T.; Ohtsuki, T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv. Drug Deliv. Rev. 2009, 61, 704–709. [Google Scholar] [CrossRef]
- Lam, J.K.; Chow, M.Y.; Zhang, Y.; Leung, S.W. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids 2015, 4, e252. [Google Scholar] [CrossRef] [Green Version]
miRNA | Relative Expression Level in Lung Cancer | Clinical Association | Experimental Models | Experimentally Validated Targets | Effect on Lung Carcinogenesis | References |
---|---|---|---|---|---|---|
miR-146a | Serum (↓↓), serum (↑↑), tissue (↓) | Dual | Xenograft mouse models, cell lines | COX-2, CCJN, FLAP, IRAK1, TRAF6 | Suppression | [45,46,47,48,49,50,51,52] |
miR-21 | Serum (↑↑↑↑) tissue (↑↑↑) | chemoresistance and poor prognosis | Xenograft mouse models, cell lines, | RECK, NFIB, TIMP3, TPM1, STAT3, Spry1, Spry2, Btg2, and Pdcd4 | Enhancement | [53,54,55,56,57,58,59,60,61,62,63] |
miR-34a/b/c | Tissue (↓), whole blood (↑) | poor prognosis and relapse | Syngenic mouse model, transgenic mouse model, murine cell lines | Cdh2, Kras, Fn1 SNAIL, | Suppression | [64,65,66,67,68] |
miR-365 | Serum (↓↓) | poor prognosis | Knock out, malignant cell lines | CDC25, NKX2-1, TRIM25 | Suppression | [69,70,71,72] |
miR-486-5p | Serum (↓), tissue (↓↓), endobronchial mucosa (↓), | poor overall survival and chemoresistance | Xenograft mouse model, Knock out, cell lines | ARHGAP5 (RhoA GTPase), mTOR, Pten | Dual | [73,74,75,76] |
miR-361 | tissue (↓), serum (↓ | poor prognosis and clinical outcome | cell lines, xenograft mouse model | SH2B1, FOXM1 | Suppression | [77,78,79,80] |
miR-615-3p | Tissue (↓), tissue (↑↑), | Differential diagnosis | cell lines, xenograft mouse model | IGF2 | Suppression | [81,82,83] |
miR-200 family | Tissue (↑, ↑) | Dual | Xenograft mouse model, Knock out, cell lines | ZEB1, ZEB2, VEGF, VEGFR1 PRDX2, GAPB/Nrf2, and SESN1, | Suppression | [84,85,86,87,88] |
miR-221 | Tissue (↑↑), serum (↑↑), serum (↓), plasma (↑↑) | Diagnosis, poor prognosis, and relapse | Xenograft mouse model, Knock out, cell lines | P27kip1, TIMP3, PUMA, PTEN, MDM2, | Enhancement | [89,90,91,92,93] |
Let-7a/b | tissue(↓↓), FFPE tissue (↓↓) | Poor survival rate and clinical outcome | Transgenic mouse, Knock out, malignant cell lines | KRAS, c-MYC, CDK6, HOXA9, TGFBR1, BCL-XL, MAP4K3 | Suppression | [21,94,95,96,97,98] |
Let-7e | Tissue (↓), FFPE tissue (↓↓↓) | Poor survival rate and clinical outcome | Transgenic mouse, malignant cell lines | SUV39H2 | Suppression | [21,99,100,101] |
miR-17-5p | Tissue (↓), tissue (↑), serum (↑), plasma (↓) | Dual | Transgenic mouse | BECN1, TBC1D2 | Enhancement | [102,103,104,105] |
miR-19a/b | Serum (↑↑), tissue (↑) | Poor prognosis | cell lines, xenograft mouse model | c-MET, PP2A, BIM, E-cadherin, ZO-1, α-catenin, TNF-α | Enhancement | [90,106,107,108,109] |
miR-18a | Plasma (↑↑), | Poor prognosis and radio resistance | cell lines | IRF2, ATM, HIF1-α | Enhancement | [102,110,111,112] |
miR-661 | Tissue (↑↑), Serum (↑) | Differential diagnosis and poor prognosis | cell lines | SOX7, RB1, RUNX3 | Enhancement | [113,114,115,116] |
miR-26a-5p | FFPE tissue (↑) | Differential diagnosis | Cell lines, | Integrin-β8, FAF1 | Enhancement | [117,118] |
miR-128-3p | Tissue (↑), tissue (↓) | Differential diagnosis, | Cell lines, xenograft mouse | SMURF2, cpp1, AXIN1, W1F1, SRFP2, DROSHA, DICER | Enhancement | [76,119] |
miR-378 | Tissue (↑↑) | Diagnosis and chemoresistance | Cell lines, xenograft mouse | RBX1, FOXG1, RBX1, clustin | Enhancement | [120,121,122,123] |
miR-93 | Tissue (↑↑↑) Serum (↑) | Diagnosis, Poor overall survival | Cell lines, xenograft mouse | LKB1, TBP2, DAB2 | Enhancement | [124,125,126,127] |
miR-135b | Serum (not significant), tissue (↑) | Diagnosis, EGFR mutations, invasion of visceral pleura | Cell lines, xenograft mouse | LZTS1, LATS1, MOB-1A, Dbf2, βTrCP | Enhancement | [128,129,130] |
miR-16 | Plasma (↑↑) Tissue (↓) | Lung cancer subtype diagnosis, poor prognosis | Cell lines, xenograft mouse, transgenic mice | TWIST1, MEK1, HDGF, VEGF, | Suppression | [131,132,133,134,135,136] |
miR-15a | Serum (↓), Tissue (↓↓↓) | Diagnosis, poor clinical outcome | Cell lines, xenograft mouse | ACSS2, PDL1, FGFR1, DDX3X, SLC1A5 Smad3, FXR1, BCL2L2 | Suppression | [137,138,139,140] |
miR-7 | Tissue (↓) | Shorter survival and chemoresistance | SCLC cell lines | KIR2.1, ABCC1, PARP1 | Suppression | [141,142,143] |
miR-22 | Serum (↑), tissue (↓↓ | Differential diagnosis, | cell lines, Murine xenograft mouse | MET-STAT3, ErbB3 | Suppression | [144,145,146] |
miRNAs Expression (Lung Carcinoma) | Effect on Lung Carcinoma | Type of miRNA | Experimentally Validated Targets | Clinical Significance | References |
---|---|---|---|---|---|
miR-21↑ | Enhancement | Tumor enhancer | RECK, NFIB, TIMP3, TPM1, STAT3, Spry1, Spry2, Btg2, and Pdcd4 | Promotes cell proliferation, metastasis and discourages apoptosis | [60,61,62,63] |
miR-205-5p | Enhancement | Tumor enhancer | TP53INP1 | Promotes proliferation and metastasis of lung cancer cells | [167] |
miR-9-5p | Enhancement | Tumor enhancer | STARD13 | Promotes the progression of lung adenocarcinoma cell malignancy | [168] |
miR-221↑ | Enhancement | Tumor enhancer | P27kip1, TIMP3, PUMA, PTEN, | Promotes TRAIL resistance | [92,93] |
miR-17-92↑ | Enhancement | Tumor enhancer | PTEN, RB1, P53, IRF2 SPRY4 | Promotes proliferation and metastasis and linked with short survival | [101,102,112] |
miR-95↑ | Enhancement | Tumor enhancer | Caspase-3, Caspase-9, Bcl-2, | Sensitises tumor tissue to radiotherapy, enhances apoptosis, and decreases proliferation | [169,170] |
miR-19a↑ | Enhancement | Tumor enhancer | c-MET, PP2A, BIM, E-cadherin, ZO-1, and α-catenin | Promotes gefitinib-resistance in NSCLC cells and is associated with poor prognosis in NSCLC patients | [107,108,109] |
miR-18a↑ | Enhancement | Tumor enhancer | IRF2 | Associated with shorter survival and poor therapeutic response | [111,112,113] |
miR-150↑ | Enhancement | Tumor enhancer | FOXO4 | Associated with metastatic malignant lung cells and tissues | [171] |
miR-619-5p | Enhancement | Tumor enhancer | RCAN1.4 | Promotes tumor angiogenesis and metastasis | [172] |
miR-135b↑ | Enhancement | Tumor enhancer | LZTS1, LATS1, MOB-1A, Dbf2, βTrCP | The combined expression of LZTS1, TAZ, and miR-135b predict the prognosis of NSCLC patients. | [171] |
miRNA-182 | Enhancement | Tumor enhancer | FOXO3 | Promotes tumor proliferation, chemo- and radioresistance | [173] |
miRNAs Expression (Lung Carcinoma) | Effect on Lung Carcinoma | Type of miRNA | Experimentally Validated Targets | Clinical Significance | References |
---|---|---|---|---|---|
miR-146↓ | Suppression | Tumor suppressor | COX-2, CCJN, FLAP, IRAK1, TRAF6 | Discourages inflammation, associated with better overall survival, better response to chemotherapy (EGFR-TKI) | [45,46,47] |
miR-206↓ | Suppression | Tumor suppressor | c-MET, EGFR, Bcl2, VEGFA, VEGF | Discourages proliferation, tumour angiogenesis and promotes apoptosis | [216,217,218] |
miR-34a↓ | Suppression | Tumor suppressor | p21 WAF1/CIP1, MDM2, | Adjunctive treatment of NSCLC patients with erlotinib along with miR-34a and Let7b sensitizes its action | [67,68] |
miR-32-5p | Suppression | Tumor suppressor | SMAD family 3 | Inhibits EMT and metastasis in lung adenocarcinoma | [219] |
miR-377 | Suppression | Tumor suppressor | ErbB | Reduces proliferation and induces apoptosis | [52] |
miR-205-5p | Enhancement | Tumor enhancer | TP53INP1 | Promotes proliferation and metastasis of lung cancer cells | [167] |
miR-571 | Suppression | Tumor suppressor | EGFR, MAPK1, PAK2 | Inhibits proliferation and induces apoptosis in lung cancer cells | [220] |
miR-486-5p↓ | Suppression | Tumor suppressor | ARHGAP5 (RhoA GTPase) | Inversely associated with lymph node metastasis | [171] |
miR-200↓ | Suppression | Tumor suppressor | ZEB1, ZEB2, VEGF, VEGFR1 PRDX2, GAPB/Nrf2, and SESN1 | Suppresses angiogenesis, EMT and promotes radiosensitivity | [87,88,221] |
Let-7↓ | Suppression | Tumor suppressor | KRAS, c-MYC, CDK6, HOXA9, TGFBR1, BCL-XL, MAP4K3 | Associated with poor postoperative survival, chemoresistance or radio-resistance | [21,97,98] |
miR-199a-5p | Suppression | Tumor suppressor | AKAP1 | Inhibits NSCLC proliferation and tumorigenecity | [222] |
miR-582 | Suppression | Tumor suppressor | Hippo-YAP/TAZ | Increases YAP/TAZ phosphorylation with a simultaneous reduction in cellular proliferation and promotion of apoptosis | [223] |
miR-582-5p | Suppression | Tumor suppressor | NOTCH1 | Suppresses tumor growth and invasion | [224] |
miR-320a | Suppression | Tumor suppressor | AKT3 | Lower levels correlated with poor prognosis and rate of survival | [225] |
miR-584 | Suppressor | Tumor suppressor | YKT6 | Suppresses migration and invasion in NSCLC | [226] |
miR-613 | Suppressor | Tumor suppressor | GJA1 | Inhibits lung cancer cell proliferation, migration, and formation of a colony | [227] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, J.A.; Majid, S.; Imtiyaz, Z.; Rehman, M.U.; Alsaffar, R.M.; Shah, N.N.; Alshehri, S.; Ghoneim, M.M.; Imam, S.S. MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics 2022, 12, 1610. https://doi.org/10.3390/diagnostics12071610
Wani JA, Majid S, Imtiyaz Z, Rehman MU, Alsaffar RM, Shah NN, Alshehri S, Ghoneim MM, Imam SS. MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics. 2022; 12(7):1610. https://doi.org/10.3390/diagnostics12071610
Chicago/Turabian StyleWani, Javaid Ahmad, Sabhiya Majid, Zuha Imtiyaz, Muneeb U. Rehman, Rana M. Alsaffar, Naveed Nazir Shah, Sultan Alshehri, Mohammed M. Ghoneim, and Syed Sarim Imam. 2022. "MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential" Diagnostics 12, no. 7: 1610. https://doi.org/10.3390/diagnostics12071610
APA StyleWani, J. A., Majid, S., Imtiyaz, Z., Rehman, M. U., Alsaffar, R. M., Shah, N. N., Alshehri, S., Ghoneim, M. M., & Imam, S. S. (2022). MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics, 12(7), 1610. https://doi.org/10.3390/diagnostics12071610