Dual-Energy CT for the Detection of Portal Vein Thrombosis: Improved Diagnostic Performance Using Virtual Monoenergetic Reconstructions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Reference Standard
2.3. DECT Technique
2.4. Quantitative Analysis
2.5. Qualitative Analysis
2.6. Diagnostic Accuracy
2.7. Statistical Analysis
3. Results
3.1. Quantitative Analysis
3.2. Qualitative Analysis
3.3. Diagnostic Accuracy
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNR | Contrast-to-noise ratio |
DECT | Dual-energy computed tomography |
PVT | Portal vein thrombosis |
VMI | Virtual monoenergetic images |
VMI+ | Noise-optimized virtual monoenergetic images |
References
- Janssen, H.L.; Wijnhoud, A.; Haagsma, E.B.; van Uum, S.H.; van Nieuwkerk, C.M.; Adang, R.P.; Chamuleau, R.A.; van Hattum, J.; Vleggaar, F.P.; Hansen, B.E.; et al. Extrahepatic portal vein thrombosis: Aetiology and determinants of survival. Gut 2001, 49, 720–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sogaard, K.K.; Astrup, L.B.; Vilstrup, H.; Gronbaek, H. Portal vein thrombosis; risk factors, clinical presentation and treatment. BMC Gastroenterol. 2007, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidajat, N.; Stobbe, H.; Griesshaber, V.; Felix, R.; Schroder, R.J. Imaging and radiological interventions of portal vein thrombosis. Acta Radiol. 2005, 46, 336–343. [Google Scholar] [CrossRef]
- Apfaltrer, P.; Sudarski, S.; Schneider, D.; Nance, J.W., Jr.; Haubenreisser, H.; Fink, C.; Schoenberg, S.O.; Henzler, T. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur. J. Radiol. 2014, 83, 322–328. [Google Scholar] [CrossRef]
- Grant, K.L.; Flohr, T.G.; Krauss, B.; Sedlmair, M.; Thomas, C.; Schmidt, B. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Investig. Radiol. 2014, 49, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Apfaltrer, P.; Sudarski, S.; Nance, J.W., Jr.; Haubenreisser, H.; Fink, C.; Schoenberg, S.O.; Henzler, T. Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging. Acad. Radiol. 2014, 21, 431–436. [Google Scholar] [CrossRef]
- Sudarski, S.; Apfaltrer, P.; Nance, J.W., Jr.; Schneider, D.; Meyer, M.; Schoenberg, S.O.; Fink, C.; Henzler, T. Optimization of keV-settings in abdominal and lower extremity dual-source dual-energy CT angiography determined with virtual monoenergetic imaging. Eur. J. Radiol. 2013, 82, e574–e581. [Google Scholar] [CrossRef]
- Husarik, D.B.; Gordic, S.; Desbiolles, L.; Krauss, B.; Leschka, S.; Wildermuth, S.; Alkadhi, H. Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions: Ex-vivo and patient experience in various body sizes. Investig. Radiol. 2015, 50, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, M.H.; Scholtz, J.E.; Husers, K.; Beeres, M.; Bucher, A.M.; Kaup, M.; Martin, S.S.; Fischer, S.; Bodelle, B.; Bauer, R.W.; et al. Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: Optimization of kiloelectron volt settings to improve image contrast. Eur. Radiol. 2016, 26, 1863–1870. [Google Scholar] [CrossRef]
- Martin, S.S.; Wichmann, J.L.; Weyer, H.; Albrecht, M.H.; D’Angelo, T.; Leithner, D.; Lenga, L.; Booz, C.; Scholtz, J.E.; Bodelle, B.; et al. Dual-energy computed tomography in patients with cutaneous malignant melanoma: Comparison of noise-optimized and traditional virtual monoenergetic imaging. Eur. J. Radiol. 2017, 95, 1–8. [Google Scholar] [CrossRef]
- Martin, S.S.; Wichmann, J.L.; Scholtz, J.E.; Leithner, D.; D’Angelo, T.; Weyer, H.; Booz, C.; Lenga, L.; Vogl, T.J.; Albrecht, M.H. Noise-Optimized Virtual Monoenergetic Dual-Energy CT Improves Diagnostic Accuracy for the Detection of Active Arterial Bleeding of the Abdomen. J. Vasc. Interv. Radiol. 2017, 28, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Schabel, C.; Bongers, M.; Sedlmair, M.; Korn, A.; Grosse, U.; Mangold, S.; Claussen, C.D.; Thomas, C. Assessment of the hepatic veins in poor contrast conditions using dual energy CT: Evaluation of a novel monoenergetic extrapolation software algorithm. RöFo 2014, 186, 591–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongers, M.N.; Schabel, C.; Krauss, B.; Tsiflikas, I.; Ketelsen, D.; Mangold, S.; Claussen, C.D.; Nikolaou, K.; Thomas, C. Noise-optimized virtual monoenergetic images and iodine maps for the detection of venous thrombosis in second-generation dual-energy CT (DECT): An ex vivo phantom study. Eur. Radiol. 2015, 25, 1655–1664. [Google Scholar] [CrossRef]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.; et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Radiology 2015, 277, 826–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, M.H.; Scholtz, J.E.; Kraft, J.; Bauer, R.W.; Kaup, M.; Dewes, P.; Bucher, A.M.; Burck, I.; Wagenblast, J.; Lehnert, T.; et al. Assessment of an Advanced Monoenergetic Reconstruction Technique in Dual-Energy Computed Tomography of Head and Neck Cancer. Eur. Radiol. 2015, 25, 2493–2501. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Meisamy, S.; Bolan, P.J.; Baker, E.H.; Pollema, M.G.; Le, C.T.; Kelcz, F.; Lechner, M.C.; Luikens, B.A.; Carlson, R.A.; Brandt, K.R.; et al. Adding in vivo quantitative 1 H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: Preliminary results of observer performance study at 4.0 T. Radiology 2005, 236, 465–475. [Google Scholar] [PubMed]
- Reimer, P.; Jahnke, N.; Fiebich, M.; Schima, W.; Deckers, F.; Marx, C.; Holzknecht, N.; Saini, S. Hepatic lesion detection and characterization: Value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology 2000, 217, 152–158. [Google Scholar] [CrossRef]
- Weiss, J.; Notohamiprodjo, M.; Bongers, M.; Schabel, C.; Mangold, S.; Nikolaou, K.; Bamberg, F.; Othman, A.E. Effect of Noise-Optimized Monoenergetic Postprocessing on Diagnostic Accuracy for Detecting Incidental Pulmonary Embolism in Portal-Venous Phase Dual-Energy Computed Tomography. Investig. Radiol. 2017, 52, 142–147. [Google Scholar] [CrossRef]
- Leithner, D.; Wichmann, J.L.; Vogl, T.J.; Trommer, J.; Martin, S.S.; Scholtz, J.E.; Bodelle, B.; de Cecco, C.N.; Duguay, T.; Nance, J.W., Jr.; et al. Virtual Monoenergetic Imaging and Iodine Perfusion Maps Improve Diagnostic Accuracy of Dual-Energy Computed Tomography Pulmonary Angiography with Suboptimal Contrast Attenuation. Investig. Radiol. 2017, 52, 659–665. [Google Scholar] [CrossRef]
- Martin, S.S.; Pfeifer, S.; Wichmann, J.L.; Albrecht, M.H.; Leithner, D.; Lenga, L.; Scholtz, J.E.; Vogl, T.J.; Bodelle, B. Noise-optimized virtual monoenergetic dual-energy computed tomography: Optimization of kiloelectron volt settings in patients with gastrointestinal stromal tumors. Abdom. Radiol. 2017, 42, 718–726. [Google Scholar] [CrossRef]
- Rossi, S.; Ghittoni, G.; Ravetta, V.; Viera, F.T.; Rosa, L.; Serassi, M.; Scabini, M.; Vercelli, A.; Tinelli, C.; Bello, B.D.; et al. Contrast-enhanced ultrasonography and spiral computed tomography in the detection and characterization of portal vein thrombosis complicating hepatocellular carcinoma. Eur. Radiol. 2008, 18, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Gines, P.; Guevara, M.; Arroyo, V.; Rodes, J. Hepatorenal syndrome. Lancet 2003, 362, 1819–1827. [Google Scholar] [PubMed]
- Salerno, F.; Gerbes, A.; Gines, P.; Wong, F.; Arroyo, V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Postgrad. Med. J. 2008, 84, 662–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wichmann, J.L.; Katzberg, R.W.; Litwin, S.E.; Zwerner, P.L.; de Cecco, C.N.; Vogl, T.J.; Costello, P.; Schoepf, U.J. Contrast-Induced Nephropathy. Circulation 2015, 132, 1931–1936. [Google Scholar] [CrossRef]
- McDonald, J.S.; McDonald, R.J.; Williamson, E.E.; Kallmes, D.F. Is Intravenous Administration of Iodixanol Associated with Increased Risk of Acute Kidney Injury, Dialysis, or Mortality? A Propensity Score-adjusted Study. Radiology 2017, 285, 414–424. [Google Scholar] [CrossRef]
- McDonald, R.J.; McDonald, J.S.; Newhouse, J.H.; Davenport, M.S. Controversies in Contrast Material-induced Acute Kidney Injury: Closing in on the Truth? Radiology 2015, 277, 627–632. [Google Scholar] [CrossRef]
- Bittner, D.O.; Arnold, M.; Klinghammer, L.; Schuhbaeck, A.; Hell, M.M.; Muschiol, G.; Gauss, S.; Lell, M.; Uder, M.; Hoffmann, U.; et al. Contrast volume reduction using third generation dual source computed tomography for the evaluation of patients prior to transcatheter aortic valve implantation. Eur. Radiol. 2016, 26, 4497–4504. [Google Scholar] [CrossRef]
- Nash, K.; Hafeez, A.; Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis. 2002, 39, 930–936. [Google Scholar] [CrossRef]
- Rudnick, M.R.; Goldfarb, S.; Wexler, L.; Ludbrook, P.A.; Murphy, M.J.; Halpern, E.F.; Hill, J.A.; Winniford, M.; Cohen, M.B.; VanFossen, D.B. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: A randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995, 47, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Park, S.J.; Yi, B.H.; Yeon, E.K.; Kim, J.H.; Hong, H.S. Portal vein thrombosis: CT features. Abdom. Imaging 2008, 33, 72–79. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Age (years) | 60.1 ± 10.7 |
Male patients | 68 (64%) |
Female patients | 39 (36%) |
BMI (kg/m2) | 25.1 ± 6.7 |
PVT present | 38 (36%) |
PVT absent | 69 (64%) |
Liver disease: | |
Liver cirrhosis | n = 27 |
HCC | n = 35 |
Liver metastasis | n = 45 |
M_0.6 | 40 VMI | 60 VMI | 80 VMI | 100 VMI | 40 VMI+ | 60 VMI+ | 80VMI+ | 100 VMI+ | |
---|---|---|---|---|---|---|---|---|---|
Portal vein attenutation (HU) | 127.9 ± 23.8 | 396.3 ± 106.4 | 195.5 ± 44.0 | 117.9 ± 22.6 | 84.8 ± 32.3 | 390.7 ± 59.4 | 194.7 ± 29.7 | 119.5 ± 18.7 | 86.1 ± 16.6 |
SNR | |||||||||
Portal vein | 7.5 ± 2.0 | 4.2 ± 1.7 | 7.7 ± 3.1 | 7.6 ± 2.2 | 3.8 ± 1.0 | 14.0 ± 5.7 | 11.7 ± 4.1 | 9.7 ± 3.1 | 7.6 ± 2.3 |
Portal branch | 7.5 ± 2.1 | 4.2 ± 1.7 | 7.6 ± 2.9 | 7.7 ± 2.1 | 3.8 ± 1.0 | 13.1 ± 5.1 | 11.3 ± 3.6 | 9.8 ± 2.8 | 7.9 ± 2.2 |
SMV | 7.2 ± 2.0 | 4.2 ± 1.7 | 7.7 ± 3.2 | 7.6 ± 2.3 | 3.7 ± 1.1 | 14.0 ± 5.9 | 11.5 ± 4.1 | 9.5 ± 3.0 | 7.3 ± 2.1 |
Splenic vein | 7.7 ± 2.5 | 4.4 ± 1.7 | 8.0 ± 3.2 | 7.9 ± 2.4 | 3.9 ± 1.1 | 14.7 ± 5.9 | 12.2 ± 4.1 | 10.1 ± 3.1 | 7.8 ± 2.3 |
Liver parenchyma | 5.4 ± 1.4 | 2.2 ± 0.9 | 4.8 ± 0.9 | 5.8 ± 1.5 | 3.3 ± 0.8 | 7.4 ± 3.1 | 7.3 ± 2.5 | 7.3 ± 2.2 | 6.6 ± 1.9 |
Average | 7.1 ± 2.0 | 3.8 ± 1.5 | 7.1 ± 2.9 | 7.3 ± 2.1 | 3.7 ± 1.0 | 12.6 ± 5.1 | 10.8 ± 3.7 | 9.3 ± 2.8 | 7.5 ± 2.1 |
CNR | |||||||||
Portal vein | 4.2 ± 1.6 | 3.4 ± 1.5 | 5.3 ± 2.3 | 4.1 ± 1.6 | 1.4 ± 0.7 | 11.0 ± 4.8 | 7.9 ± 3.2 | 5.1 ± 2.1 | 2.9 ± 1.4 |
Portal branch | 4.2 ± 1.8 | 3.4 ± 1.5 | 5.1 ± 2.2 | 4.1 ± 1.7 | 1.4 ± 0.9 | 10.1 ± 4.4 | 7.5 ± 2.9 | 5.2 ± 2.0 | 3.2 ± 1.5 |
SMV | 3.9 ± 1.7 | 3.4 ± 1.5 | 5.2 ± 2.4 | 4.0 ± 1.8 | 1.3 ± 0.8 | 11.0 ± 5.0 | 7.7 ± 3.2 | 4.9 ± 2.0 | 2.6 ± 1.3 |
Splenic vein | 4.4 ± 2.1 | 3.6 ± 1.6 | 5.5 ± 2.5 | 4.3 ± 1.9 | 1.5 ± 0.8 | 11.7 ± 5.0 | 8.3 ± 3.3 | 5.5 ± 2.3 | 3.1 ± 1.6 |
Liver parenchyma | 2.1 ± 1.0 | 1.4 ± 0.7 | 2.4 ± 1.1 | 2.2 ± 0.9 | 0.9 ± 0.5 | 4.4 ± 2.3 | 3.5 ± 1.6 | 2.6 ± 1.2 | 1.9 ± 1.0 |
Average | 3.8 ± 1.7 | 3.0 ± 1.4 | 4.7 ± 2.1 | 3.7 ± 1.6 | 1.3 ± 0.7 | 9.6 ± 4.3 | 7.0 ± 2.8 | 4.7 ± 1.9 | 2.7 ± 1.4 |
Parameter | M_0.6 | 60 keV VMI | 40 keV VMI+ | 60 keV VMI+ |
---|---|---|---|---|
Image noise | 4 (2–5) [0.62; 0.49–0.76] | 3 (1–4) [0.63; 0.50–0.76] | 2 (1–4) [0.63; 0.50–0.76] | 4 (4–5) [0.64; 0.49–0.79] |
Image contrast | 3 (2–4) [0.25; 0.07–0.44] | 3 (1–4) [0.54; 0.36–0.71] | 5 (3–5) [0.58; 0.43–0.73] | 4 (2–5) [0.47; 0.31–0.63] |
Image quality | 3 (2–4) [0.54; 0.39–0.69] | 3 (1–4) [0.67; 0.54–0.81] | 3 (1–4) [0.46; 0.30–0.63] | 4 (3–5) [0.58; 0.42–0.73] |
Suitability | 3 (1–4) [0.61; 0.47–0.76] | 3 (1–4) [0.33; 0.17–0.50] | 4 (3–5) [0.63; 0.49–0.77] | 3 (2–5) [0.58; 0.44–0.72] |
Parameter | M_0.6 | 60 keV VMI | 40 keV VMI+ | 60 keV VMI+ |
---|---|---|---|---|
Sensitivity | 87% [0.77–0.94] | 87% [0.77–0.94] | 96% [0.89–0.99] | 92% [0.84–0.97] |
Specificity | 92% [0.87–0.96] | 97% [0.93–0.99] | 96% [0.93–0.99] | 97% [0.93–0.99] |
AUC | 0.94 [0.90–0.97] | 0.95 [0.91–0.98] | 0.99 [0.98–1.00] | 0.97 [0.93–0.99] |
p-value | p < 0.001 | p = 0.001 | N/A | p = 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, S.S.; Kolaneci, J.; Czwikla, R.; Booz, C.; Gruenewald, L.D.; Albrecht, M.H.; Thompson, Z.M.; Lenga, L.; Yel, I.; Vogl, T.J.; et al. Dual-Energy CT for the Detection of Portal Vein Thrombosis: Improved Diagnostic Performance Using Virtual Monoenergetic Reconstructions. Diagnostics 2022, 12, 1682. https://doi.org/10.3390/diagnostics12071682
Martin SS, Kolaneci J, Czwikla R, Booz C, Gruenewald LD, Albrecht MH, Thompson ZM, Lenga L, Yel I, Vogl TJ, et al. Dual-Energy CT for the Detection of Portal Vein Thrombosis: Improved Diagnostic Performance Using Virtual Monoenergetic Reconstructions. Diagnostics. 2022; 12(7):1682. https://doi.org/10.3390/diagnostics12071682
Chicago/Turabian StyleMartin, Simon S., Jetlir Kolaneci, Rouben Czwikla, Christian Booz, Leon D. Gruenewald, Moritz H. Albrecht, Zachary M. Thompson, Lukas Lenga, Ibrahim Yel, Thomas J. Vogl, and et al. 2022. "Dual-Energy CT for the Detection of Portal Vein Thrombosis: Improved Diagnostic Performance Using Virtual Monoenergetic Reconstructions" Diagnostics 12, no. 7: 1682. https://doi.org/10.3390/diagnostics12071682
APA StyleMartin, S. S., Kolaneci, J., Czwikla, R., Booz, C., Gruenewald, L. D., Albrecht, M. H., Thompson, Z. M., Lenga, L., Yel, I., Vogl, T. J., Wichmann, J. L., & Koch, V. (2022). Dual-Energy CT for the Detection of Portal Vein Thrombosis: Improved Diagnostic Performance Using Virtual Monoenergetic Reconstructions. Diagnostics, 12(7), 1682. https://doi.org/10.3390/diagnostics12071682