Three-Dimensional Angiographic Characteristics versus Functional Stenosis Severity in Fractional and Coronary Flow Reserve Discordance: A DEFINE FLOW Sub Study
Abstract
:1. Introduction
2. Methods
2.1. Patient Population
2.2. Cardiac Catheterization and Physiological Assessment
2.3. Quantitative Coronary Angiography
2.4. Statistical Analysis
3. Results
3.1. Patient and Lesion Characteristics
3.2. Percentage Diameter Stenosis by Visual Estimation
3.3. Comparison of 2D- versus 3D-QCA Analysis
3.4. 3D-QCA versus Functional Stenosis Characteristics across FFR/CFR Groups
3.5. Association of FFR, CFR and CFC
4. Discussion
4.1. Association of 3D-QCA and FFR/CFR Discordance
4.2. Association of CFC with FFR/CFR Discordance
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- De Bruyne, B.; Fearon, W.F.; Pijls, N.H.; Barbato, E.; Tonino, P.; Piroth, Z.; Jagic, N.; Mobius-Winckler, S.; Rioufol, G.; Witt, N.; et al. Fractional Flow Reserve—Guided PCI for Stable Coronary Artery Disease. N. Engl. J. Med. 2014, 371, 1208–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pijls, N.H.; de Bruyne, B.; Peels, K.; van der Voort, P.H.; Bonnier, H.J.; Bartunek, J.; Koolen, J.J. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 1996, 334, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- Pijls, N.H.; Van Gelder, B.; Van der Voort, P.; Peels, K.; Bracke, F.A.; Bonnier, H.J.; El Gamal, M.I. Fractional flow reserve: A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 1995, 92, 3183–3193. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.J.B.D.; Maron, D.J.; Mancini, G.B.; Hayes, S.W.; Hartigan, P.M.; Weintraub, W.S.; O’Rourke, R.A.; Dada, M.; Spertus, J.A.; COURAGE Investigators; et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: Results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008, 10, 1283–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonino, P.A.L.; De Bruyne, B.; Pijls, N.H.J.; Siebert, U.; Ikeno, F.; van’t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; Oldroyd, K.G.; et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 2009, 360, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 55, 84–90. [Google Scholar]
- Nijjer, S.S.; de Waard, G.A.; Sen, S.; van de Hoef, T.P.; Petraco, R.; Echavarría-Pinto, M.; van Lavieren, M.A.; Meuwissen, M.; Danad, I.; Knaapen, P.; et al. Coronary pressure and flow relationships in humans: Phasic analysis of normal and pathological vessels and the implications for stenosis assessment: A report from the Iberian-Dutch-English (IDEAL) collaborators. Eur Heart J. 2016, 37, 2069–2080. [Google Scholar] [CrossRef] [Green Version]
- Tu, S.; Huang, Z.; Koning, G.; Cui, K.; Reiber, J.H.C. A novel three-dimensional quantitative coronary angiography system: In vivo comparison with intravascular ultrasound for assessing arterial segment length. Catheter. Cardiovasc. Interv. 2010, 76, 291–298. [Google Scholar] [CrossRef]
- Meuwissen, M.; Chamuleau, S.A.; Siebes, M.; Schotborgh, C.E.; Koch, K.T.; de Winter, R.J.; Bax, M.; de Jong, A.; Spaan, J.A.; Piek, J.J. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 2001, 103, 184–187. [Google Scholar] [CrossRef] [Green Version]
- Verhoeff, B.J.; van de Hoef, T.P.; Spaan, J.A.; Piek, J.J.; Siebes, M. Minimal effect of collateral flow on coronary microvascular resistance in the presence of intermediate and noncritical coronary stenoses. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, 422–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegehuis, V.E.; Wijntjens, G.W.; van de Hoef, T.P.; Casadonte, L.; Kirkeeide, R.L.; Siebes, M.; Spaan, J.A.; Gould, K.L.; Johnson, N.P.; Piek, J. Distal Evaluation of Functional performance with Intravascular sensors to assess the Narrowing Effect—Combined pressure and Doppler FLOW velocity measurements (DEFINE-FLOW) trial: Rationale and trial design. Am. Heart J. 2019, 222, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Adjedj, J.; Toth, G.G.; Johnson, N.P.; Pellicano, M.; Ferrara, A.; Floré, V.; Di-Gioia, G.; Barbato, E.; Muller, O.; De Bruyne, B. TCT-293 Intracoronary Adenosine: Dose-Response Relationship with Hyperemia. J. Am. Coll. Cardiol. 2015, 66, B115–B116. [Google Scholar] [CrossRef]
- Toth, G.G.; Johnson, N.P.; Jeremias, A.; Pellicano, M.; Vranckx, P.; Fearon, W.F.; Barbato, E.; Kern, M.J.; Pijls, N.H.J.; de Bruyne, B. Standardization of Fractional Flow Reserve Measurements. J. Am. Coll. Cardiol. 2016, 68, 742–753. [Google Scholar] [CrossRef] [PubMed]
- van de Hoef, T.P.; Echavarría-Pinto, M.; van Lavieren, M.A.; Meuwissen, M.; Serruys, P.W.J.C.; Tijssen, J.P.; Pocock, S.J.; Escaned, J.; Piek, J.J. Diagnostic and Prognostic Implications of Coronary Flow Capacity: A Comprehensive Cross-Modality Physiological Concept in Ischemic Heart Disease. JACC Cardiovasc. Interv. 2015, 8, 1670–1680. [Google Scholar] [CrossRef] [PubMed]
- Tonino, P.A.; Fearon, W.F.; De Bruyne, B.; Oldroyd, K.G.; Leesar, M.A.; Lee, P.N.V.; MacCarthy, P.A.; Veer, M.V.; Pijls, N.H. Angiographic Versus Functional Severity of Coronary Artery Stenoses in the FAME Study: Fractional Flow Reserve Versus Angiography in Multivessel Evaluation. J. Am. Coll. Cardiol. 2010, 55, 2816–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, G.; Hamilos, M.; Pyxaras, S.; Mangiacapra, F.; Nelis, O.; De Vroey, F.; Di Serafino, L.; Muller, O.; Van Mieghem, C.; Wyffels, E.; et al. Evolving concepts of angiogram: Fractional flow reserve discordances in 4000 coronary stenoses. Eur. Heart J. 2014, 35, 2831–2838. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Onishi, K.; Kakehi, K.; Takase, T.; Yamaji, K.; Ueno, M.; Kobuke, K.; Miyazaki, S.; Iwanaga, Y. Clinical and angiographic factors predicting fractional flow reserve and explaining the visual–functional mismatch in patients with intermediate coronary artery stenosis. Coron. Artery Dis. 2020, 31, 73–80. [Google Scholar] [CrossRef]
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V. Low diagnostic yield of elective coronary angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Levine, G.N.; Bates, E.R.; Blankenship, J.C.; Bailey, S.R.; Bittl, J.A.; Cercek, B.; Chambers, C.E.; Ellis, S.G.; Guyton, R.A.; Hollenberg, S.M. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 2011, 124, 2574–2609. [Google Scholar]
- Pothineni, N.V.; Shah, N.N.; Rochlani, Y.; Nairooz, R.; Raina, S.; Leesar, M.A.; Uretsky, B.F.; Hakeem, A.U.S. Trends in Inpatient Utilization of Fractional Flow Reserve and Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2016, 67, 732–733. [Google Scholar] [CrossRef]
- Park, S.J.; Kang, S.J.; Ahn, J.M.; Shim, E.B.; Kim, Y.T.; Yun, S.C.; Song, H.; Lee, J.; Kim, W.; Park, D.; et al. Visual-Functional Mismatch Between Coronary Angiography and Fractional Flow Reserve. JACC Cardiovasc. Interv. 2012, 5, 1029–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonetsu, T.; Murai, T.; Kanaji, Y.; Lee, T.; Matsuda, J.; Usui, E.; Hoshino, M.; Araki, M.; Niida, T.; Hada, M.; et al. Significance of Microvascular Function in Visual—Functional Mismatch Between Invasive Coronary Angiography and Fractional Flow Reserve. J. Am. Heart Assoc. 2017, 6, e005916. [Google Scholar] [CrossRef] [PubMed]
- Echavarria-Pinto, M.; van de Hoef, T.P.; Nijjer, S.; Gonzalo, N.; Nombela-Franco, L.; Ibañez, B.; Sen, S.; Petraco, R.; Jimenez-Quevedo, P.; Nuñez-Gil, I.J.; et al. Influence of the amount of myocardium subtended to a coronary stenosis on the index of microcirculatory resistance. Implications for the invasive assessment of microcirculatory function in ischaemic heart disease. EuroInterv. J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2017, 13, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Heusch, G. Myocardial ischemia: Lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H1439–H1446. [Google Scholar] [CrossRef] [PubMed]
- van de Hoef, T.P.; van Lavieren, M.A.; Damman, P.; Delewi, R.; Piek, M.A.; Chamuleau, S.A. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ. Cardio-Vasc. Interv. 2014, 7, 301–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishi, T.; Piroth, Z.; De Bruyne, B.; Jagic, N.; Möbius-Winkler, S.; Kobayashi, Y.; Derimay, F.; Fournier, S.; Barbato, E.; Tonino, P.; et al. Fractional Flow Reserve and Quality-of-Life Improvement After Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease. Circulation 2018, 138, 1797–1804. [Google Scholar] [CrossRef]
- Pijls, N.H.; van Schaardenburgh, P.; Manoharan, G.; Boersma, E.; Bech, J.W.; van’t Veer, M.; Bär, F.; Hoorntje, J.; Koolen, J.; Wijns, W.; et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J. Am. Coll. Cardiol. 2007, 49, 2105–2111. [Google Scholar] [CrossRef] [Green Version]
- Xaplanteris, P.; Fournier, S.; Pijls, N.H.; Fearon, W.F.; Barbato, E.; Tonino, P.A.; Engstrøm, T.; Kääb, S.; Dambrink, J.-H.; Rioufol, G.; et al. Five-Year Outcomes with PCI Guided by Fractional Flow Reserve. N. Engl. J. Med. 2018, 379, 250–259. [Google Scholar] [CrossRef]
- Xu, B.; Tu, S.; Qiao, S.; Qu, X.; Chen, Y.; Yang, J.; Guo, L.; Sun, Z.; Tian, F.; Fang, W.; et al. Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online As-sessment of Coronary Stenosis. J. Am. Coll. Cardiol. 2017, 70, 3077–3087. [Google Scholar] [CrossRef]
- Gould, K.L.; Johnson, N.P.; Roby, A.E.; Nguyen, T.T.; Kirkeeide, R.L.; Haynie, M.; Lai, D.; Zhu, H.; Patel, M.B.; Smalling, R.W.; et al. Regional, Artery-Specific Thresholds of Quantitative Myocardial Perfusion by PET Associated with Reduced Myocardial Infarction and Death After Revascularization in Stable Coronary Artery Disease. J. Nucl. Med. 2018, 60, 410–417. [Google Scholar] [CrossRef]
- Gould, K.L.; Kitkungvan, D.; Johnson, N.P.; Nguyen, T.; Kirkeeide, R.; Bui, L.; Patel, M.B.; Roby, A.E.; Madjid, M.; Zhu, H.; et al. Mortality Prediction by Quantitative PET Perfusion Expressed as Coronary Flow Capacity With and Without Revascularization. JACC Cardiovasc. Imaging 2020, 14, 1020–1034. [Google Scholar] [CrossRef] [PubMed]
- Gould, K.L.; Johnson, N.P.; Bateman, T.M.; Beanlands, R.S.; Bengel, F.M.; Bober, R.; Camici, P.G.; Cerqueira, M.D.; Chow, B.J.W.; di Carli, M.F.; et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J. Am. Coll. Cardiol. 2013, 62, 1639–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piek, J.J.; Boersma, E.; di Mario, C.; Schroeder, E.; Vrints, C.; Probst, P.; Serruys, P.W. Angiographical and Doppler flow-derived parameters for assessment of coronary lesion severity and its relation to the result of exercise electrocardiography. Eur. Heart J. 2000, 21, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, M.J.; de Bruyne, B.; Pijls, N.H. From Research to Clinical Practice: Current Role of Intracoronary Physiologically Based Decision Making in the Cardiac Catheteriza-tion Laboratory. J. Am. Coll Cardiol. 1997, 30, 613–620. [Google Scholar] [CrossRef]
FFR + | FFR ≤ 0.80 |
FFR − | FFR > 0.80 |
CFR + | CFR < 2.0 |
CFR − | CFR ≥ 2.0 |
Clinical characteristics (n = 366) | |
Age, years | 66.8 ± 10.1 |
Male | 304 (74%) |
LVEF, % | 60 ± 8 |
Hypertension | 283 (68%) |
Smoking (current) | 136 (34%) |
Dyslipidemia | 375 (88%) |
Renal disease | 36 (8%) |
Diabetes mellitus | 115 (27%) |
Previous PCI | 174 (41%) |
Previous MI | 116 (27%) |
Family history | 150 (38%) |
Lesion characteristics (n = 430) | |
Left anterior descending artery (LAD) | 283 (66%) |
Left circumflex artery | 80 (19%) |
Right coronary artery | 65 (15%) |
FFR | 0.84 [0.76, 0.89] |
FFR ≤ 0.80 | 0.73 [0.67, 0.77] |
CFR | 2.3 [1.9, 2.8] |
CFR < 2.0 | 1.7 [1.5, 1.8] |
Lesions | FFR+/CFR+ | FFR+/CFR− | FFR−/CFR+ | FFR−/CFR− | p-Value across Groups |
---|---|---|---|---|---|
Patient characteristics | N = 63 | N = 71 | N = 47 | N = 185 | |
Age, years | 66.7 ± 9.9 | 64.8 ± 10.6 | 68.8 ± 10.8 | 66.6 ± 9.9 | 0.112 |
Male, n (%) | 48 (76%) | 55 (81%) | 35 (80%) | 127 (72%) | 0.705 |
Hypertension | 40 (65%) | 47 (67%) | 36 (77%) | 119 (66%) | 0.752 |
Smoking (current) | 24 (41%) | 23 (34%) | 13 (29%) | 58 (34%) | 0.107 |
Dyslipidemia | 57 (92%) | 68 (96%) | 42 (89%) | 158 (86%) | 0.548 |
Renal disease | 4 (6%) | 6 (8%) | 5 (11%) | 17 (9%) | 0.946 |
Diabetes mellitus | 26 (41%) | 17 (24%) | 12 (26%) | 46 (25%) | 0.301 |
Previous PCI | 28 (44%) | 28 (39%) | 20 (43%) | 68 (37%) | 0.722 |
Previous MI | 20 (32%) | 20 (28%) | 14 (30%) | 41 (22%) | 0.688 |
Family history | 19 (33%) | 30 (44%) | 18 (43%) | 65 (37%) | 0.801 |
Lesion characteristics | N = 71 | N = 81 | N = 61 | N = 217 | |
Median FFR | 0.7 [0.59, 0.75] | 0.74 [0.71, 0.77] */† | 0.87 [0.83, 0.92] * | 0.87 [0.84, 0.92] | < 0.001 |
Median CFR | 1.5 [1.3, 1.7] | 2.5 [2.3, 2.9] * | 1.7 [1.6, 1.9] */† | 2.5 [2.3, 3] | < 0.001 |
2D-QCA DS, % | 51 ± 11.2 | 47 ± 8.3 † | 40 ± 11.3 | 45 ± 10.5 | 0.024 |
3D-QCA DS, % | 61 ± 11.1 | 53 ± 11.6 † | 44 ± 10.3 * | 43 ± 13.1 | < 0.001 |
2D-QCA MLD, mm | 1.29 [1.09, 1.34] | 1.29 [1.03, 1.5] † | 1.78 [1.27, 2.08] * | 1.55 [1.19, 1.79] | 0.003 |
3D-QCA MLD, mm | 0.8 [0.6, 1.1] | 1.2 [0.9, 1.5] */† | 1.4 [1.2, 1.7] * | 1.5 [1.2, 1.8] | < 0.001 |
2D-QCA Lesion length, mm | 9.5 [8.4, 13] | 8.7 [7.6, 10.9] | 7.3 [6.9, 7.9] | 9.7 [6.5, 13] | 0.275 |
3D-QCA Lesion length, mm | 17.9 [13.7, 26.7] | 23.4 [13.3, 29.6] | 13.4 [9.2, 20.6] | 16.3 [10.4, 23] | 0.025 |
2D-QCA Area stenosis, % | 76.2 [70.9, 76.9] | 72.8 [65.6, 78.4] | 67.4 [50.6, 74] | 71.3 [58.6, 79] | 0.067 |
3D-QCA Area stenosis, % | 82 [70.8, 85.3] | 73.3 [60.6, 81.2] † | 62.9 [53, 71.3] * | 61.9 [50.3, 72.3] | < 0.001 |
2D-QCA Mean RLD, mm | 2.71 [2.5, 3] | 2.5 [2, 2.8] | 2.9 [2.2, 3.4] | 2.7 [2.5, 3] | 0.168 |
3D-QCA Mean RLD, mm | 2.3 [2.1, 2.6] | 2.5 [2.3, 2.7] | 2.7 [2.3, 3] | 2.7 [2.4, 3.2] | 0.007 |
LAD lesion, n (%) | 48 (68%) | 60 (74%) * | 35 (59%) | 140 (65%) | 0.281 |
Normal to mildly reduced CFC, n (%) | 16 (23%) | 77 (95%) * | 27 (44%) */† | 202 (94%) | < 0.001 |
Moderately to severely reduced CFC, n (%) | 55 (77%) | 4 (5%) * | 34 (56%) | 15 (6%) | < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stegehuis, V.; Westra, J.; Boerhout, C.; Sejr-Hansen, M.; Eftekhari, A.; Mejía-Renteria, H.; Cambero-Madera, M.; Van Royen, N.; Matsuo, H.; Nakayama, M.; et al. Three-Dimensional Angiographic Characteristics versus Functional Stenosis Severity in Fractional and Coronary Flow Reserve Discordance: A DEFINE FLOW Sub Study. Diagnostics 2022, 12, 1770. https://doi.org/10.3390/diagnostics12071770
Stegehuis V, Westra J, Boerhout C, Sejr-Hansen M, Eftekhari A, Mejía-Renteria H, Cambero-Madera M, Van Royen N, Matsuo H, Nakayama M, et al. Three-Dimensional Angiographic Characteristics versus Functional Stenosis Severity in Fractional and Coronary Flow Reserve Discordance: A DEFINE FLOW Sub Study. Diagnostics. 2022; 12(7):1770. https://doi.org/10.3390/diagnostics12071770
Chicago/Turabian StyleStegehuis, Valerie, Jelmer Westra, Coen Boerhout, Martin Sejr-Hansen, Ashkan Eftekhari, Hernan Mejía-Renteria, Maribel Cambero-Madera, Niels Van Royen, Hitoshi Matsuo, Masafumi Nakayama, and et al. 2022. "Three-Dimensional Angiographic Characteristics versus Functional Stenosis Severity in Fractional and Coronary Flow Reserve Discordance: A DEFINE FLOW Sub Study" Diagnostics 12, no. 7: 1770. https://doi.org/10.3390/diagnostics12071770
APA StyleStegehuis, V., Westra, J., Boerhout, C., Sejr-Hansen, M., Eftekhari, A., Mejía-Renteria, H., Cambero-Madera, M., Van Royen, N., Matsuo, H., Nakayama, M., Siebes, M., Christiansen, E. H., Van de Hoef, T., & Piek, J. (2022). Three-Dimensional Angiographic Characteristics versus Functional Stenosis Severity in Fractional and Coronary Flow Reserve Discordance: A DEFINE FLOW Sub Study. Diagnostics, 12(7), 1770. https://doi.org/10.3390/diagnostics12071770