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Abstract: Breast cancer has evolved as the most lethal illness impacting women all over the globe.
Breast cancer may be detected early, which reduces mortality and increases the chances of a full
recovery. Researchers all around the world are working on breast cancer screening tools based
on medical imaging. Deep learning approaches have piqued the attention of many in the medical
imaging field due to their rapid growth. In this research, mammography pictures were utilized to
detect breast cancer. We have used four mammography imaging datasets with a similar number of
1145 normal, benign, and malignant pictures using various deep CNN (Inception V4, ResNet-164,
VGG-11, and DenseNet121) models as base classifiers. The proposed technique employs an ensemble
approach in which the Gompertz function is used to build fuzzy rankings of the base classification
techniques, and the decision scores of the base models are adaptively combined to construct final
predictions. The proposed fuzzy ensemble techniques outperform each individual transfer learning
methodology as well as multiple advanced ensemble strategies (Weighted Average, Sugeno Integral)
with reference to prediction and accuracy. The suggested Inception V4 ensemble model with fuzzy
rank based Gompertz function has a 99.32% accuracy rate. We believe that the suggested approach
will be of tremendous value to healthcare practitioners in identifying breast cancer patients early on,
perhaps leading to an immediate diagnosis.

Keywords: breast cancer; deep CNN; fuzzy; ensemble; VGG-11; ResNet-164; DenseNet121;
Inception V4; Gompertzfunction

1. Introduction

In both emerging and developing nations, breast cancer is the deadliest disease among
women. Breast cancer will be diagnosed 19.3 million times by 2025, as per the World
Health Organization (WHO) [1]. Patients may be able to receive appropriate therapy if
breast cancer is detected and classified early. Breast cancer is the most prevalent cancer in
women, affecting 2.1 million people yearly and is responsible for the majority of cancer-
related fatalities in women. In the year 2018, an estimated 627,000 women died from
breast cancer [1]. According to a current study released by the National Cancer Registry
Program (NCRP), cancer cases in India are predicted to grow by about 20% by 2025, from
13.9 lakhs in 2020 to 15.7 lakhs in 2025 [2]. In high-income countries, age-standardized
breast cancer mortality reduced by 40% between 1980 and 2020. Breast cancer mortality
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has decreased by 2–4 percent every year in countries that have succeeded in decreasing
it. If worldwide mortality rates reduced by 2.5 percent every year between 2020 and 2040,
2.5 million breast cancer deaths could be avoided [3]. Breast cancer is a category of diseases
in which cells in the breast tissue alter and divide unregulated, leading to a tumor. Most
breast cancers develop in the lobules that link the lobules to the nipple. Breast discomfort,
changes in breast skin color, creation of a breast mass and changes in breast shape and
size are all symptoms of breast cancer. X-rays, magnetic imaging and ultrasound are all
commonly used to discover breast cancer [4]. Mammography, which employs low-dose
X-rays to produce pictures, is one of the most effective treatments for detecting breast
cancer early [5]. Researchers from all around the world are working on deep learning
models for breast cancer screening based on medical imaging. Breast cancer screening
sometimes requires a good visual examination to identify any irregularities, such as lumps,
that may signify disease. After these nodules have been found, relevant measurements may
be obtained to help clinicians in determining the presence or absence of malignant tissue.
Mammography may detect more subtle signs, including structural distortion and bi-lateral
asymmetry, as well as more obvious abnormalities such as calcification and masses. A
nodule, mass or densities are all possible abnormalities in mammography. Nevertheless,
not all anomalies are malignant. For example, a smooth bounded bulge is often benign.
A starburst-shaped, irregularly bordered tumor, on the other hand, might be malignant,
and a biopsy is necessary to confirm this [6]. Breast cancer cells may move to lymph
glands and cause injury to lungs and other regions of body. The most prevalent cause
of breast cancer is a malfunction of the milk-producing ducts, often known as invasive
ducts. It may also begin in the breast’s lobules, a kind of glandular tissue, or other cells
and tissues. Environmental, hormonal and lifestyle factors have all been linked to an
increased risk of breast cancer, according to researchers. Due to the unequal function and
massive multiplication of abnormal cells, it creates a tumor in the breast and results in
death [7]. These mammography images are examined by radiologists in order to diagnose
breast cancer. Nevertheless, radiologists’ assessments on the existence of breast cancer
may vary owing to variations in their past experiences and understanding. As a result, a
deep-CNN-based breast cancer detection approach may be employed to boost radiologist
confidence and serve as a second opinion in the diagnosis of breast cancer. The present
study includes many studies on several deep CNN models for detecting breast cancer using
mammography images.

Naji et al. [8] employed Decision Tree (DT), Nave Bayes (NB), Simple Logistic, and
advanced ensembles technologies such as Majority Voting and Random Forest (RF) ap-
proach to diagnose breast cancer with 98.1% accuracy and a 0.01 percent error rate.
Chakravarthy et al. [9] proposed an improved crow search optimized extreme learning
machine (ICSELM) technique and achieved an accuracy of 98.26%, 97.193%, and 98.137%
for the INbreast, DDSM, and MI-AS datasets, respectively. Faisal et al. [10] used and
compared individual classifiers such as the Neural Network, MLP, NB, SVM, Gradient
boosted Tree (GBT) and DT. The use of MV-based ensembles and RF is also looked at.
The author obtained 90% accuracy with the GBT ensemble. A back propagation neural
network (BPNN) classification model was used by Mughal et al. [11]. In the early-stage
DDSM and MIAS datasets, their system properly recognized the tumor with 99% accu-
racy. Wei et al. [12] proposed a BiCNN model, which was proven to be 97.97% accurate.
Khuriwal et al. [13] used logistic regression and Artificial Neural Network (ANN) fused
with a voting algorithm technique for diagnosing breast cancer and achieved 98% accuracy.
Thuy et al. [14] used a hybrid deep learning model that incorporated VGG19 and VGG16
models, as well as a generative adversarial network (GAN) to improve classification per-
formance and reached 98.1% accuracy. Bhowal et al. [15] used the Coalition Game and
Information Theory to present Choquet Integral-based deep CNN models for a four-class
problem in breast cancer histology and achieved 95% accuracy. Khan et al. [16] recom-
mended a novel CNN model combined with various transfer learning algorithms and
achieved 97.67% accuracy. Muduli et al. [17] promote a novel deep CNN model that yields
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96.55% accuracy. Furthermore, several studies [18–25] used several deep CNN models to
diagnose breast cancer.

2. Motivation and Contributions

According to a study of the relevant literature, few researchers worked on fuzzy
ensemble techniques linked with deep CNN models. An ensemble method is a machine
learning strategy that blends numerous base models into a single best prediction model.
The results of various models are merged to boost overall performance. Numerous deep
CNN approaches are integrated into a single predictive model to boost overall performance
and predictions while minimizing bias and variation. In addition, merging deep transfer
learning models with fuzzy ensemble techniques may boost the accuracy and robustness of
a detection system. In this work, we employed the Gompertz function to construct a fuzzy
ranking algorithm. The benefit of such fusion is that it provides the final prediction for each
sample using adaptive weights relay on each classifier confidence scores used to create the
ensemble. The Gompertz function was developed on the notion that as an individual aged,
mortality reduces exponentially until it approaches an asymptote. It might be useful for
fusing the confidence scores of classifiers in a complicated image classification issue, in
which the confidence score for a prediction category by a classifier ever achieves absolute
zero value but rather some lesser value.

The study looked at the following objectives:

1. The aim of our study is to build a fuzzy ensemble methodology that takes breast
mammography images as input. Initially, we employed multiple pre-trained deep
CNN models to diagnose cancer in mammography images, including VGG-11, ResNet-
164, DenseNet121, and Inception V4.

2. We used dense and softmax layers to extract characteristics and categorize mammog-
raphy pictures utilizing pre-trained deep CNN models. An ensemble technique was
utilized to combine the decision scores of the aforementioned models.

3. Using a re-parameterized Gompertz function, the ensemble approach delivers fuzzy
rankings to the component classifiers. Fuzzy fusion outperforms traditional ensemble
algorithms because it uses adaptive priority depending on the classifiers’ confidence
levels for each sample to be predicted.

4. The Gompertz function displays exponential growth before saturating to an asymptote,
and that is beneficial for assembling the decision values of deep CNN methodologies,
since the decision value of a class forecasted by a classifier typically reaches zero.

5. The framework’s efficiency was assessed using recall, precision, F1-Score, specificity,
and sensitivity. The gathered results beat the present methodologies by a signifi-
cant amount.

We used the accuracy of each classifier to estimate the fuzzy membership values of
each classifier when using the Gompertz function with other advanced models such as the
Sugeno Integral and the Weighted Average. This kind of fusion seems to have the benefit
of employing adaptive weights depending on the sample’s confidence values to generate
each sample’s final prediction.

The following is how the rest of the article is structured. Section 2 discusses the motive
and contribution. The materials and methods are described in Section 3. The experimental
findings, evaluations, and comparative analyses are presented in Section 4. Section 5
contains the discussion and conclusion.

3. Materials and Methods
3.1. Deep CNN Models
3.1.1. VGG-11

The Visual Geometry Group (VGG) [26] models are one of the deep CNN models. The
VGG group emphasizes the importance of a CNN model’s depth for visual depictions and
correct application to a broad variety of computer vision classification applications. By
reducing the size of the convolution filters to 3 × 3 kernels, it was feasible to add many
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weight layers ranging from 16 to 19 layers. VGG-11 is made up of eleven weight layers,
eight convolution layers, and three fully linked layers. The pooling layer’s window size
is 2 × 2 and the stride size is 2. It is used to minimize the size of the convoluted feature
image while also ensuring the model’s translation invariance. Finally, a softmax classifier
layer categorized it. All hidden layers are equipped with the RELU function as activation
function. Figure 1 depicts the VGG-11 CNN architecture.
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3.1.2. ResNet-164

ResNet-164 combines the basic residual structure with 164 deep layers. It uses several
convergence filters that have been trained on millions of pictures to avoid degradation [27].
ResNet-164 is the outcome of adding the residual block to the model, which feeds residual
data to the subsequent layers. This is no longer a ResNet-164 classic model feature. It was
developed by a Microsoft research team to prevent gradient convergence from reaching
zero in very deep networks. The ResNet-164’s operation is simple: a few layers collect and
activate the activation function in front of the input of the current activation function. As a
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result, an output is created even if the result of the linear transform of the layer on which
the operation is performed is 0.

The ResNet-164 network was built by combining shortcuts with the standard network
seen in Figure 2, which is formed up of leftover blocks. The value is received as input
and sent via the residual block’s convolution. A sequence of activation convolutions is
generated, as well as a function f (x). h(x) = f (x)+ x is then formed by adding the original
input value of x to the function f (x). The function h (x) is equivalent to the function
f (x) in the standard convolution operation [28]. The original data are also incorporated
once the convolution method is applied to this network’s input. Figure 2 depicts the
ResNet-164 architecture.
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3.1.3. DenseNet121

Each layer in the Dense Net [29] design is linked to every other layer. It is utilized
to solve the issue of gradient vanishing. L(L + 1)/2 direct connections exist in this model
with L layer. It connects the output and input feature maps, giving each layer access to all
preceding layers’ collective knowledge. This study helps to solve the vanishing gradient
problem, reduce the number of parameters, and introduce the idea of feature reuse. Because
of its dense connection architecture, it requires less parameters than typical convolutional
networks because it does not require relearning excessive feature mappings. The network
is organized into dense blocks, with the feature map dimensions remaining constant within
each block but the number of filters varying between them. It provides various significantly
lowered number of parameters, the reuse of features, and the mitigation of the vanishing
gradient. Figure 3 depicts the DenseNet121architecture.

3.1.4. Inception V4

Inception V4 is a deep CNN architecture that improves on earlier inception family
generations by simplifying the architecture, adding a stem layer, and utilizing more incep-
tion modules than Inception v3 [30]. Unlike prior versions of Inceptions, which required
various replicas to fit in memory, this model may be trained without partitioning replicas.
Memory optimization on back propagation is used in this design to decrease memory
requirements. Internal layers can determine which filter size is most useful to acquiring the
essential information thanks to Inception layers. Between the three Inception modules, the
Reduction modules serve as pooling layers. Four Inception A layers, seven inception B lay-
ers, and three inception C layers are depicted in Figure 4. The overall system configuration
presented in Figure 5.
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3.2. Data Set

For testing purposes, we employed multi-modal breast cancer datasets such as mam-
mography images. Four widely used and publicly available mammography databases
are included in this study: the Breast Cancer Digital Repository (BCDR) [31], the Mini
Mammographic Image Analysis Society (Mini-MIAS) [32], INbreast [33], and the Digital
Database for Mammography Screening (DDSM) [34]. We used an equal number of normal,
benign, and malignant mammography images from the whole dataset. Each class has
1145 images. Using normal, benign, and malignant mammography pictures, the deep
learning models Tensor Flow and Keras were trained to identify whether or not a person
had breast cancer. The data were separated into two groups: 30% for the test set and 70%
for the training set, with the same groups used for all models.

3.3. Experimental Environment

Our experiment is built in Python and runs on Google Colaboratory, a machine
with a GPU and 12 GB of RAM that runs the Keras deep learning framework backend.
In mammography images of breast cancer, our approach has been deployed to three-
class classification concerns (normal, benign, and malignant). We use the same set of
hyperparameters to train all four deep CNN models on the mammography images dataset.
We resize the images to 224 × 224 × 3 throughout the input process. It is important to
adjust the images to a size that is compatible. As a result, black borders are applied to the
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edges of the images to verify that they correspond to the square input. The original model’s
architecture has been kept, excluding the layers that follow the convolutional layers.

After the feature extractors, the weights of the convolutional layers are frozen, and
more layers, such as the max pooling layer, fully connected layers, dense layers, etc.,
are added according to the various deep CNN models. The softmax activation function
is included in the last layer of each CNN model. The output of this layer represents
a probability distribution over the predicted output classes, which we refer to as the
confidence score generated by the classifier. To avoid overfitting of the deep CNN models,
we utilize 100 epochs and a learning rate of 1 × 10−4. We utilized ADAM as our optimizer
for compilation, and after extracting features from the pre-trained models, we employed
two dense layers with 4096 neurons each as part of the classifier with ReLU as the activation
function. The last layer consists of three Softmax output nodes.

3.4. Proposed Framework

The suggested framework for breast cancer classification from mammography images
is divided into two stages: producing confidence values from various models and fusing
the decision scores utilizing fusion of fuzzy rank and Gompertz function to create final
predictions. Figure 6 depicts the workflow of the proposed system. Figure 7 shows the
training loss and validation graphs for four deep CNN models.
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3.5. Ensemble Technologies

Ensemble models incorporate the best features of all participating classifiers, enabling
them to outperform single models. Numerous advanced ensemble techniques have arisen
throughout time, and some of them have been examined in this study to demonstrate the
recommended ensemble’s superiority over existing methods.

3.5.1. Weighted Average (WA)

An approach for computing the fuzzy weighted average was presented by Dong
and Wong [35]. The weighted average approach averages the final prediction output
from numerous weak learning devices. Instead of using serial and parallel structures, the
weighted average technique assigns various weights to each learner to arrive at the final
findings. Let W1, W2 . . . . . . Wn and A1, A2 . . . . . . An be the fuzzy numbers defined on
the universes Z1, Z2 . . . . . . Zn and X1, X2 . . . . . . Xn, respectively. If f is a function which
maps from Z1 × Z2 × . . . × Zn × X1 × X2 × . . . × Xn to the universe Y, then the fuzzy
weighted average y is represented as

y = f (x1 , x2...... , xn, w1 , w2...... , wn)= (x1 w1 + x2 w2 + . . . . . . + xnwn) /(w1 + w2 + . . . . . . + wn),

where, for each i = 1, 2 . . . . . . n, xi ∈ Xiwi ∈ Zi and (w1 + w2 + . . . . . . + wn) > 0.

3.5.2. Sugeno Integral (SI)

Takagi-Sugeno [36] is a fuzzy inference approach for generating fuzzy rules from a
particular input–output dataset. The inputs are hazy, but the result is crystal clear. Takagi
Sugeno uses a weighted average to calculate the crisp output. This technique is more
computationally efficient and may be used alongside optimization and adaptive methods.

3.5.3. Fuzzy-Rank-Based Fusion with Gompertz Function (FRGF)

The Gompertz function is used to identify time series that expand slowly at the start
and conclusion of a period. It was developed to represent the rate of child mortality as
they became older, but it is now extensively used in biology. A population’s growth, a
malignant tumor’s development, a bacterial colony’s growth, and the number of persons
impacted during an epidemic may all be explained using the Gompertz function. In the
classic ensemble technique, the classification scores of all component models are given
equal weight, whereas the classifiers are given pre-computed weights. The fundamental
problem with such an ensemble is the production of static weights, which are hard to
change after the test samples have been classified. On the other hand, the suggested fuzzy
rank ensemble technique evaluates each base classifier’s predictions scores for each unique
test case separately. Improved and more accurate classification scores may be produced
using this above methodology. There is no need to alter the weights for various test datasets
since this is a dynamic process.

Gompertz function [37] is written as:

f (t) = ae−ed−kt
(1)

where d sets the x-axis displacement, a is an asymptote, e is the Euler’s Number, and k is
used for y-scaling.

The fundamental reason for utilizing a fuzzy rank method is because, unlike classic en-
semble approaches such as the weighted average rule and the average rule, each classifier’s
confidence in its predictions is prioritized for each individual test case.

In order to diagnose breast cancer from mammography pictures, the re-parameterized
Gompertz algorithm [38] is utilized to build the fuzzy ranks of each deep CNN classifier. We
have X number of prediction scores for each picture database’s test split if X is the number
of component models. As previously mentioned, we used four transfer learning models;
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hence, X = 4. For each picture, suppose there are X number of decision scores of classifiers{
DC1, DC2, . . . DCX} for each image. If Y is the dataset’s number of classes, then:

∑Y
y=1 DC(n)

y = 1 (2)

where n = 1, 2, 3 . . . X.
When creating the fuzzy rankings, the decision scores represented by DC in Equation (2)

of each class for each supplied data are taken into consideration. DC(n)
y is the output of a

softmax function. Figure 8 depicts the recommended re-parameterized Gompertz function,
in which the independent variable ‘x’ signifies a classifier’s projected confidence score for a
test sample.
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The confidence scores are used to create the fuzzy rankings for all samples in the
dataset that correspond to distinct classes. The Gompertz function generates the fuzzy rank
for a class y using the confidence ratings of the kth classifier, as shown in Equation (3):

FR(n)
y = 1− e−e−2∗DC(n)y

(3)

where y = 1, 2, 3 . . . .Y and n = 1, 2, 3 . . . .X.
The value of FR(n)

y ranges from 0.127 to 0.632, while the lowest value 0.127 cor-
responding to higher confidence results in a lower value of rank. Fuzzy rank sum
(FRSum) and the complement of confidence factor sum (CCFSum) are determined as
in Equations (4) and (5), respectively. If M(i) denotes the top, most m ranks, i.e., rankings
1, 2, . . . , m, belonging to class y.

A penalty value of PFR
y and DC(n)

y is placed on the relevant class if the label y does
not quite fall inside the top M classes. The PFR

y value is 0.632, which is obtained by putting

DC(n)
y = 0 in Equation (3), and the PDC

y value is set to zero. The penalty values prevent
class y from being a probable winner. As stated in Equation (6), the final decision scores
FDC for the data instance Z are generated by multiplying (FRSum) and (CCFSum) and
evaluating the lowest value across all of the classes:

FRSumy =

X

∑
n=1

(
FR(n)

y , i f FR(n)
y ∈ M(i)

PFR
y , Otherwise

)
(4)
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CCFSumy =
1
X

X

∑
n=1

(
DC(n)

y , i f FR(n)
y ∈ M(i)

PDC
y , Otherwise

)
(5)

class(Z) = min
{(

FRSumy
)
∗
(
CCFSumy

)}
(6)

where y = 1, 2, 3 . . . .Y.

4. Experimental Results and Evaluations

The fuzzy-logic-based ensemble works particularly well when assigning weights to
the predictions for rendering a final judgment on the classification of an image, since the
confidence in a classifier’s prediction is taken into consideration for each sample when
assigning weights to the predictions. Table 1 displays the results of the ensemble built using
the four deep CNN models, showing that the Gompertz function fused with fuzzy rank
beats the others outstandingly. Sugeno Integral’s fuzzy-integrals-based ensemble approach
values come closer to the recommended ensemble strategy. The Weighted Average ensemble
is a static approach in which the weights of the classifiers cannot be changed dynamically
at prediction time, and it also performs well. The Fuzzy-fusion-based solutions may be
able to address this problem by prioritizing confidence scores, resulting in a more effective
ensemble method. The sensitivity, specificity, accuracy, and F1-Score of each model were
evaluated, with the results displayed in Table 1. The confusion matrices of the VGG-11,
ResNet-164, DenseNet121, and Inception V4 employing fuzzy ensemble techniques are
shown in Figures 9–12, respectively. Table 2 compares the performance of multiple transfer
learning approaches with the proposed mammography-image-based methodology.
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Figure 12. Confusion matrix representation of Inception V4 deep CNN model with various fuzzy
ensemble technologies. Inception V4, Inception V4+ WA, Inception V4+ SI, and Inception V4+ FRGF
showed 96.79%, 97.76%, 98.45%, and 99.32% accuracy, respectively.

Table 1. Performance indicators for a variety of deep CNN models using fuzzy ensemble approaches
based on testing datasets.

Models Class Precision (%) Recall (%) Specificity (%) F1-Score (%) Accuracy (%)

ResNet-164

Normal 0.959 0.956 0.980 0.958

96.11Benign 0.962 0.965 0.981 0.964

Malignant 0.962 0.962 0.981 0.962

ResNet-164+
Weighted Average

Normal 0.956 0.959 0.978 0.958

96.21Benign 0.962 0.965 0.981 0.964

Malignant 0.968 0.962 0.984 0.965

ResNet-164+
Sugeno Integral

Normal 0.957 0.962 0.978 0.959

96.40Benign 0.968 0.965 0.984 0.966

Malignant 0.968 0.965 0.984 0.966

ResNet-164+
Fuzzy rank based

Gompertz function

Normal 0.965 0.965 0.983 0.965

96.79Benign 0.968 0.968 0.984 0.968

Malignant 0.971 0.971 0.985 0.971

VGG-11

Normal 0.956 0.959 0.978 0.958

96.21Benign 0.962 0.968 0.981 0.965

Malignant 0.968 0.959 0.984 0.963
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Table 1. Cont.

Models Class Precision (%) Recall (%) Specificity (%) F1-Score (%) Accuracy (%)

VGG-11+
Weighted Average

Normal 0.968 0.968 0.984 0.968

96.70Benign 0.960 0.974 0.980 0.967

Malignant 0.973 0.959 0.987 0.966

VGG-11+
Sugeno Integral

Normal 0.974 0.968 0.987 0.971

97.08Benign 0.971 0.965 0.985 0.968

Malignant 0.968 0.980 0.984 0.974

VGG-11+
Fuzzy rank based

Gompertz function

Normal 0.977 0.980 0.988 0.978

97.67Benign 0.977 0.977 0.988 0.977

Malignant 0.977 0.974 0.988 0.975

DenseNet121

Normal 0.962 0.962 0.981 0.962

96.31Benign 0.965 0.968 0.983 0.967

Malignant 0.962 0.959 0.981 0.961

DenseNet121+
Weighted Average

Normal 0.971 0.971 0.985 0.971

96.99Benign 0.971 0.965 0.985 0.968

Malignant 0.968 0.974 0.984 0.971

DenseNet121+
Sugeno Integral

Normal 0.982 0.974 0.991 0.978

97.47Benign 0.974 0.974 0.987 0.974

Malignant 0.968 0.977 0.984 0.972

DenseNet121+
Fuzzy rank based

Gompertz function

Normal 0.988 0.983 0.994 0.985

98.35Benign 0.985 0.980 0.993 0.982

Malignant 0.977 0.988 0.988 0.983

Inception V4

Normal 0.977 0.974 0.988 0.975

96.79Benign 0.957 0.968 0.978 0.962

Malignant 0.971 0.962 0.985 0.966

Inception V4+
Weighted Average

Normal 0.977 0.983 0.988 0.980

97.76Benign 0.977 0.977 0.988 0.977

Malignant 0.979 0.974 0.990 0.977

Inception V4+
Sugeno Integral

Normal 0.983 0.988 0.991 0.985

98.45Benign 0.985 0.980 0.993 0.982

Malignant 0.985 0.985 0.993 0.985

Inception V4+
Fuzzy rank based

Gompertz function

Normal 0.994 0.994 0.997 0.994

99.32Benign 0.988 0.994 0.994 0.991

Malignant 0.997 0.991 0.999 0.994

Table 2. Comparison of the performance of several deep CNN models with the suggested breast
cancer detection methodologies.

Authors Technology Accuracy (%)

Naji et al. [8] DT, NB, Simple Logistic with RF, and majority-voting-based ensembles 98.1

Faisal et al. [10] GBT with Majority voting and RF-based ensembles 90

Wei et al. [12] BiCNN model 97.97

Khuriwal et al. [13] Voting algorithm ensemble with logistic regression and ANN 98

Bhowal et al. [15] Choquet-Integral-based deep CNN models using Coalition Game and
Information Theory 95

Rajaraman et al. [20] Stacked ensemble 98.07

Lakhani et al. [21] Weighted Average 99.14

Proposed Model Inception V4 with Fuzzy-rank-based Gompertz function ensemble 99.32
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5. Discussion and Conclusions

Breast cancer has become the main cause of mortality among women all over the globe.
Breast cancer identification and treatment at an early stage is predicted to decrease the
need for surgery and raise the survival rate. Transfer learning on supplementary advanced
CNNs was initially applied to produce decision scores from medical pictures. Then, a
fuzzy ensemble framework was constructed employing the Weighted Average, Sugeno
Integral, and Fuzzy-rank-based Gompertz function to aggregate CNN decision scores using
an adaptive combination approach dependent on the confidence of each decision score. The
suggested framework may be applied to boost the predicted accuracy of current approaches
that, in the overwhelming majority of instances, do not apply a classifier fusion strategy.
The fuzzy integral based ensemble technique we used has an influence on the dynamic
evaluations of each classifier’s confidence. The findings from the complementary set of
classifiers are merged using fuzzy ensemble techniques, which dynamically modify weights
to the component deep CNNs depending on the confidence ratings of their predictions.
Extensive testing on a range of datasets using a number of measurements reveals the
resilience of our method, which frequently surpasses the state-of-the-art in the area. For
breast cancer, the suggested framework employed an ensemble model employing the
Gompertz function and attained a three-class classification accuracy of 99.32%. It also
works well on the overwhelming majority of datasets in the field. We have also shown
how to apply fuzzy rank fusion using decision values acquired from various deep CNN
methodologies to diagnose breast cancer.

In the future, the proposed approach might be extended to breast tissue localization
and segmentation to enable medical professionals in better disease identification. A next
goal would be to test our model on a more demanding breast cancer picture dataset that
could help us show the durability of the model. We want to apply this strategy to other
aspects of healthcare where it may benefit the biomedical community as a whole.
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