Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Gene Concept Finding Using PubTator
2.3. Predicting Gene–miRNA Targets
2.4. Identification and Analysis of Genetic Risk Variants
2.5. Function Analysis
2.6. Pathway Analysis
2.7. Functional Annotation
3. Results
3.1. Collection of MS Cognition Genomic and Transcriptomic Data from Literature
3.2. Identification of miRNA–mRNA Targets
3.3. Functional Analysis of Genetic Variants
3.4. KEGG Pathway Analysis
3.5. Identification of KEGG Pathways Based on Genetic Variants from GWAS
3.6. DAVID Functional Annotation
3.7. Identification of Key Risk Genes in miRNA–Gene Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karussis, D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: A critical review. J. Autoimmun. 2014, 48, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Koch-Henriksen, N.; Sørensen, P.S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010, 9, 520–532. [Google Scholar] [CrossRef]
- Skarke, C. Dissecting the Mystery Around Multiple Sclerosis. Sci. Transl. Med. 2012, 4, 162ec216. [Google Scholar] [CrossRef]
- de Sa, J.C.C.; Airas, L.; Bartholome, E.; Grigoriadis, N.; Mattle, H.; Oreja-Guevara, C.; O’Riordan, J.; Sellebjerg, F.; Stankoff, B.; Vass, K. Symptomatic therapy in multiple sclerosis: A review for a multimodal approach in clinical practice. Ther. Adv. Neurol. Disord. 2011, 4, 139–168. [Google Scholar] [CrossRef] [Green Version]
- Gil-González, I.; Martín-Rodríguez, A.; Conrad, R.; Pérez-San-Gregorio, M.Á. Quality of life in adults with multiple sclerosis: A systematic review. BMJ Open 2020, 10, e041249. [Google Scholar] [CrossRef]
- Benedict, R.H.; Zivadinov, R. Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2011, 7, 332–342. [Google Scholar] [CrossRef]
- Rocca, M.A.; Amato, M.P.; De Stefano, N.; Enzinger, C.; Geurts, J.J.; Penner, I.-K.; Rovira, A.; Sumowski, J.F.; Valsasina, P.; Filippi, M. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015, 14, 302–317. [Google Scholar] [CrossRef]
- Shany-Ur, T.; Rankin, K.P. Personality and social cognition in neurodegenerative disease. Curr. Opin. Neurol. 2011, 24, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Neary, D.; Snowden, J. Fronto-temporal dementia: Nosology, neuropsychology, and neuropathology. Brain Cogn. 1996, 31, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Migliore, S.; Ghazaryan, A.; Simonelli, I.; Pasqualetti, P.; Squitieri, F.; Curcio, G.; Landi, D.; Palmieri, M.; Moffa, F.; Filippi, M. Cognitive impairment in relapsing-remitting multiple sclerosis patients with very mild clinical disability. Behav. Neurol. 2017, 2017, 7404289. [Google Scholar] [CrossRef]
- Harris, V.K.; Sadiq, S.A. Biomarkers of therapeutic response in multiple sclerosis: Current status. Mol. Diagn. Ther. 2014, 18, 605–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, P.; Chen, W.; Feng, D.; Jia, Y.; Xie, L.-X. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin. Chem. Lab. Med. 2012, 50, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Sahab, Z.J.; Semaan, S.M.; Sang, Q.-X.A. Methodology and applications of disease biomarker identification in human serum. Biomark. Insights 2007, 2, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Comabella, M.; Montalban, X. Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 2014, 13, 113–126. [Google Scholar] [CrossRef]
- Gaetani, L.; Salvadori, N.; Chipi, E.; Gentili, L.; Borrelli, A.; Parnetti, L.; Di Filippo, M. Cognitive impairment in multiple sclerosis: Lessons from cerebrospinal fluid biomarkers. Neural Regen. Res. 2021, 16, 36. [Google Scholar] [PubMed]
- Jakimovski, D.; Bergsland, N.; Dwyer, M.G.; Traversone, J.; Hagemeier, J.; Fuchs, T.A.; Ramasamy, D.P.; Weinstock-Guttman, B.; Benedict, R.H.; Zivadinov, R. Cortical and deep gray matter perfusion associations with physical and cognitive performance in multiple sclerosis patients. Front. Neurol. 2020, 11, 700. [Google Scholar] [CrossRef]
- Jakimovski, D.S.; Gandhi, I.; Paunkoski, N.; Bergsland, J.; Hagemeier, D.P.; Ramasamy, D.; Hojnacki, D.; Kolb, C.; Benedict, R.H.B.; Weinstock-Guttman, B.; et al. Hypertension and heart disease are associated with development of brain atrophy in multiple sclerosis: A 5-year longitudinal study. Eur. J. Neurol. 2019, 26, 87-e8. [Google Scholar] [CrossRef] [Green Version]
- Wandinger, K.P.; Stürzebecher, C.S.; Bielekova, B.; Detore, G.; Rosenwald, A.; Staudt, L.M.; McFarland, H.F.; Martin, R. Complex immunomodulatory effects of interferon-β in multiple sclerosis include the upregulation of T helper 1-associated marker genes. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2001, 50, 349–357. [Google Scholar] [CrossRef]
- Wandinger, K.-P.; Lünemann, J.D.; Wengert, O.; Bellmann-Strobl, J.; Aktas, O.; Weber, A.; Grundström, E.; Ehrlich, S.; Wernecke, K.-D.; Volk, H.-D. TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet 2003, 361, 2036–2043. [Google Scholar] [CrossRef]
- Ingram, G.; Hakobyan, S.; Hirst, C.L.; Harris, C.L.; Pickersgill, T.P.; Cossburn, M.D.; Loveless, S.; Robertson, N.P.; Morgan, B.P. Complement regulator factor H as a serum biomarker of multiple sclerosis disease state. Brain 2010, 133, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Quintana, E.; Coll, C.; Salavedra-Pont, J.; Muñoz-San Martín, M.; Robles-Cedeño, R.; Tomàs-Roig, J.; Buxó, M.; Matute-Blanch, C.; Villar, L.; Montalban, X. Cognitive impairment in early stages of multiple sclerosis is associated with high cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain. Eur. J. Neurol. 2018, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Cortez, M.A.; Calin, G.A. MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 2009, 9, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Liu, F.; Vongsangnak, W.; Jing, Q.; Shen, B. Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Res. 2012, 40, 4298–4305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalala, O.G.; Srikanth, M.; Kessler, J.A. The emerging roles of microRNAs in CNS injuries. Nat. Rev. Neurol. 2013, 9, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-m.; Xu, L.; Giffard, R.G. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J. Cereb. Blood Flow Metab. 2013, 33, 1976–1982. [Google Scholar] [CrossRef] [Green Version]
- Liguori, M.; Nuzziello, N.; Simone, M.; Amoroso, N.; Viterbo, R.G.; Tangaro, S.; Consiglio, A.; Giordano, P.; Bellotti, R.; Trojano, M. Association between miRNAs expression and cognitive performances of Pediatric Multiple Sclerosis patients: A pilot study. Brain Behav. 2019, 9, e01199. [Google Scholar] [CrossRef] [Green Version]
- Comi, G.; Filippi, M.; Barkhof, F.; Durelli, L.; Edan, G.; Fernández, O.; Hartung, H.-P.; Seeldrayers, P.; Sørensen, P.S.; Rovaris, M. Effect of early interferon treatment on conversion to definite multiple sclerosis: A randomised study. Lancet 2001, 357, 1576–1582. [Google Scholar] [CrossRef]
- Siva, A. The spectrum of multiple sclerosis and treatment decisions. Clin. Neurol. Neurosurg. 2006, 108, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Scapoli, C.; Ziliotto, N.; Lunghi, B.; Menegatti, E.; Salvi, F.; Zamboni, P.; Baroni, M.; Mascoli, F.; Bernardi, F.; Marchetti, G. Combination of genomic and transcriptomic approaches highlights vascular and circadian clock components in multiple sclerosis. Int. J. Mol. Sci. 2021, 23, 310. [Google Scholar] [CrossRef]
- Marchetti, G.; Ziliotto, N.; Meneghetti, S.; Baroni, M.; Lunghi, B.; Menegatti, E.; Pedriali, M.; Salvi, F.; Bartolomei, I.; Straudi, S. Changes in expression profiles of internal jugular vein wall and plasma protein levels in multiple sclerosis. Mol. Med. 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Ricaño-Ponce, I.; Wijmenga, C. Mapping of immune-mediated disease genes. Annu. Rev. Genom. Hum. Genet. 2013, 14, 325–353. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, F.; Li, T.; Lu, M.; Wang, L.; Yue, W.; Zhang, D. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genom. 2012, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, K.; Tremmel, R.; Winter, S.; Fehr, S.; Battke, F.; Scheurenbrand, T.; Schaeffeler, E.; Biskup, S.; Schwab, M.; Zanger, U.M. A new panel-based next-generation sequencing method for ADME genes reveals novel associations of common and rare variants with expression in a human liver cohort. Front. Genet. 2019, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegeman, S.; Amankwah, E.; Klein, K.; O’Mara, T.A.; Kim, D.; Lin, H.-Y.; Permuth-Wey, J.; Sellers, T.A.; Srinivasan, S.; Eeles, R. A large-scale analysis of genetic variants within putative miRNA binding sites in prostate cancer. Cancer Discov. 2015, 5, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Cipolla, G.A.; Park, J.K.; de Oliveira, L.A.; Lobo-Alves, S.C.; de Almeida, R.C.; Farias, T.D.; Lemos, D.d.S.; Malheiros, D.; Lavker, R.M.; Petzl-Erler, M.L. A 3′ UTR polymorphism marks differential KLRG1 mRNA levels through disruption of a miR-584-5p binding site and associates with pemphigus foliaceus susceptibility. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2016, 1859, 1306–1313. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Yao, Y.; Zhang, Y.; Tian, J. Integrating genome-wide association studies with pathway analysis and gene expression analysis highlights novel osteoarthritis risk pathways and genes. Front. Genet. 2019, 10, 827. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.-H.; Kao, H.-Y.; Lu, Z. PubTator: A web-based text mining tool for assisting biocuration. Nucleic Acids Res. 2013, 41, W518–W522. [Google Scholar] [CrossRef]
- Wei, C.-H.; Leaman, R.; Lu, Z. Beyond accuracy: Creating interoperable and scalable text-mining web services. Bioinformatics 2016, 32, 1907–1910. [Google Scholar] [CrossRef] [Green Version]
- Povey, S.; Lovering, R.; Bruford, E.; Wright, M.; Lush, M.; Wain, H. The HUGO gene nomenclature committee (HGNC). Human Genet. 2001, 109, 678–680. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Barrett, T.; Benson, D.A.; Bryant, S.H.; Canese, K.; Chetvernin, V.; Church, D.M.; DiCuccio, M.; Edgar, R.; Federhen, S. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2007, 36, D13–D21. [Google Scholar] [CrossRef] [Green Version]
- Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.; Kavakiotis, I.; Maniou, S.; Skoufos, G. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018, 46, D239–D245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabahar, A.; Natarajan, J. Prediction of microRNAs involved in immune system diseases through network based features. J. Biomed. Inform. 2017, 65, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, L.D.; Kellis, M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staley, J.R.; Blackshaw, J.; Kamat, M.A.; Ellis, S.; Surendran, P.; Sun, B.B.; Paul, D.S.; Freitag, D.; Burgess, S.; Danesh, J. PhenoScanner: A database of human genotype–phenotype associations. Bioinformatics 2016, 32, 3207–3209. [Google Scholar] [CrossRef] [Green Version]
- Yue, M.; Zhou, D.; Zhi, H.; Wang, P.; Zhang, Y.; Gao, Y.; Guo, M.; Li, X.; Wang, Y.; Zhang, Y. MSDD: A manually curated database of experimentally supported associations among miRNAs, SNPs and human diseases. Nucleic Acids Res. 2018, 46, D181–D185. [Google Scholar] [CrossRef]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3. 0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef]
- Cline, M.S.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; Workman, C.; Christmas, R.; Avila-Campilo, I.; Creech, M.; Gross, B. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2007, 2, 2366–2382. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef] [Green Version]
- Ni, W.-J.; Leng, X.-M. Dynamic miRNA–mRNA paradigms: New faces of miRNAs. Biochem. Biophys. Rep. 2015, 4, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhang, Y.; Yan, Z.; Tian, F. The role of mTOR signaling pathway on cognitive functions in cerebral ischemia-reperfusion. Exp. Ther. Med. 2017, 14, 2839–2844. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.; Michailidis, V.; Martin, L.J. Revealing brain mechanisms of mTOR-mediated translational regulation: Implications for chronic pain. Neurobiol. Pain 2018, 4, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Mammana, S.; Bramanti, P.; Mazzon, E.; Cavalli, E.; Basile, M.S.; Fagone, P.; Petralia, M.C.; McCubrey, J.A.; Nicoletti, F.; Mangano, K. Preclinical evaluation of the PI3K/Akt/mTOR pathway in animal models of multiple sclerosis. Oncotarget 2018, 9, 8263. [Google Scholar] [CrossRef] [Green Version]
- Uher, T.; Fellows, K.; Horakova, D.; Zivadinov, R.; Vaneckova, M.; Sobisek, L.; Tyblova, M.; Seidl, Z.; Krasensky, J.; Bergsland, N. Serum lipid profile changes predict neurodegeneration in interferon-β1a-treated multiple sclerosis patients. J. Lipid Res. 2017, 58, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Eshaghi, A.; Kievit, R.A.; Prados, F.; Sudre, C.H.; Nicholas, J.; Cardoso, M.J.; Chan, D.; Nicholas, R.; Ourselin, S.; Greenwood, J. Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proc. Natl. Acad. Sci. USA 2019, 116, 11020–11027. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-Y.; Shao, S.; Zhang, Y.; Zheng, J.; Chen, X.; Cui, S.; Liu, F.-Y.; Wan, Y.; Yi, M. Neural pathways in medial septal cholinergic modulation of chronic pain: Distinct contribution of the anterior cingulate cortex and ventral hippocampus. Pain 2018, 159, 1550–1561. [Google Scholar] [CrossRef] [PubMed]
- Cotter, J.; Muhlert, N.; Talwar, A.; Granger, K. Examining the effectiveness of acetylcholinesterase inhibitors and stimulant-based medications for cognitive dysfunction in multiple sclerosis: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2018, 86, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, M.; Portaccio, E.; Mancini, A.; Calabresi, P. Multiple sclerosis and cognition: Synaptic failure and network dysfunction. Nat. Rev. Neurosci. 2018, 19, 599–609. [Google Scholar] [CrossRef]
- Nguyen, J.; Rothman, A.; Fitzgerald, K.; Whetstone, A.; Syc-Mazurek, S.; Aquino, J.; Balcer, L.J.; Frohman, E.M.; Frohman, T.C.; Crainiceanu, C. Visual pathway measures are associated with neuropsychological function in multiple sclerosis. Curr. Eye Res. 2018, 43, 941–948. [Google Scholar] [CrossRef]
- Motl, R.W.; Sandroff, B.M. Exercise as a countermeasure to declining central nervous system function in multiple sclerosis. Clin. Ther. 2018, 40, 16–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandroff, B.M.; Motl, R.W.; Kam, J.P.; Pula, J.H. Accelerometer measured physical activity and the integrity of the anterior visual pathway in multiple sclerosis. Mult. Scler. Relat. Disord. 2014, 3, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2011, 221, 555–563. [Google Scholar] [CrossRef]
- Kimura, Y.; Sato, N.; Ota, M.; Maikusa, N.; Maekawa, T.; Sone, D.; Enokizono, M.; Sugiyama, A.; Imabayashi, E.; Matsuda, H. A structural MRI study of cholinergic pathways and cognition in multiple sclerosis. eNeurologicalSci 2017, 8, 11–16. [Google Scholar] [CrossRef]
- Hu, X.; Pickering, E.; Hall, S.; Naik, S.; Liu, Y.; Soares, H.; Katz, E.; Paciga, S.; Liu, W.; Aisen, P. Genome-wide association study identifies multiple novel loci associated with disease progression in subjects with mild cognitive impairment. Transl. Psychiatry 2011, 1, e54. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Li, L.; Wang, Y.; Zhao, C.; Yang, J.; Ma, D.; Guan, Y.; Zhao, D.; Bao, Y.; Wang, Y. The association between genetic polymorphism rs703842 in CYP27B1 and multiple sclerosis: A meta-analysis. Medicine 2016, 95, e3612. [Google Scholar] [CrossRef]
- Ridolfi, E.; Fenoglio, C.; Cantoni, C.; Calvi, A.; De Riz, M.; Pietroboni, A.; Villa, C.; Serpente, M.; Bonsi, R.; Vercellino, M. Expression and genetic analysis of microRNAs involved in multiple sclerosis. Int. J. Mol. Sci. 2013, 14, 4375–4384. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Dobson, R.; Pakpoor, J.; Elangovan, R.I.; Adiutori, R.; Kuhle, J.; Giovannoni, G. The refinement of genetic predictors of multiple sclerosis. PLoS ONE 2014, 9, e96578. [Google Scholar] [CrossRef] [PubMed]
GO ID | Description | Count | p-Value | Genes |
---|---|---|---|---|
GO:0031644 | Regulation of neurological system process | 6 | 4.75 × 10−7 | BDNF, TNF, NTF4, NTF3, IL10, NGF |
GO:0006952 | Defense response | 8 | 1.81 × 10−6 | IL17A, IFNA1, TNF, STAB1, IFNB1, IL17F, IL10, NGF |
GO:0043523 | Regulation of neuron apoptosis | 5 | 2.36 × 10−6 | BDNF, TNF, NTF3, NEFL, NGF |
GO:0050804 | Regulation of synaptic transmission | 5 | 1.22 × 10−5 | BDNF, TNF, NTF4, NTF3, NGF |
GO:0009611 | Response to wounding | 7 | 1.30 × 10−5 | IL17A, TNF, STAB1, IL17F, NEFL, IL10, NGF |
GO:0044057 | Regulation of system process | 6 | 1.50 × 10−5 | BDNF, TNF, NTF4, NTF3, IL10, NGF |
GO:0051969 | Regulation of transmission of nerve impulse | 5 | 1.66 × 10−5 | BDNF, TNF, NTF4, NTF3, NGF |
GO:0006954 | Inflammatory response | 6 | 1.91 × 10−5 | IL17A, TNF, STAB1, IL17F, IL10, NGF |
GO:0009617 | Response to bacterium | 5 | 4.85 × 10−5 | TNF, STAB1, IFNB1, IL10, NGF |
GO:0051384 | Response to glucocorticoid stimulus | 4 | 7.98 × 10−5 | TNF, NEFL, IL10, NGF |
GO:0031960 | Response to corticosteroid stimulus | 4 | 1.03 × 10−4 | TNF, NEFL, IL10, NGF |
GO:0042981 | Regulation of apoptosis | 7 | 1.36 × 10−4 | BDNF, TNF, NTF3, IFNB1, NEFL, IL10, NGF |
GO:0043067 | Regulation of programmed cell death | 7 | 1.44 × 10−4 | BDNF, TNF, NTF3, IFNB1, NEFL, IL10, NGF |
GO:0031175 | Neuron projection development | 5 | 1.45 × 10−4 | BDNF, NTF3, NTNG2, NEFL, NGF |
GO:0010941 | Regulation of cell death | 7 | 1.47 × 10−4 | BDNF, TNF, NTF3, IFNB1, NEFL, IL10, NGF |
GO:0051094 | Positive regulation of developmental process | 5 | 1.99 × 10−4 | BDNF, TNF, NTF3, NEFL, NGF |
GO:0042742 | Defense response to bacterium | 4 | 2.34 × 10−4 | TNF, STAB1, IFNB1, IL10 |
GO:0048666 | neuron development | 5 | 4.25 × 10−4 | BDNF, NTF3, NTNG2, NEFL, NGF |
GO:0043066 | Negative regulation of apoptosis | 5 | 5.01 × 10−4 | BDNF, TNF, NEFL, IL10, NGF |
GO:0043069 | Negative regulation of programmed cell death | 5 | 5.28 × 10−4 | BDNF, TNF, NEFL, IL10, NGF |
GO:0060548 | Negative regulation of cell death | 5 | 5.33 × 10−4 | BDNF, TNF, NEFL, IL10, NGF |
GO:0030030 | Cell projection organization | 5 | 5.80 × 10−4 | BDNF, NTF3, NTNG2, NEFL, NGF |
GO ID | Description | Count | p Value | Genes |
---|---|---|---|---|
GO:0005125 | Cytokine activity | 6 | 1.30 × 10−6 | IL17A, IFNA1, TNF, IFNB1, IL17F, IL10 |
GO:0008083 | Growth factor activity | 5 | 2.07 × 10−5 | BDNF, NTF4, NTF3, IL10, NGF |
GO:0005165 | Neurotrophin receptor binding | 2 | 0.002156 | NTF3, NGF |
GO:0005132 | Interferon-alpha/beta receptor binding | 2 | 0.009666 | IFNA1, IFNB1 |
GO:0032813 | Tumor necrosis factor receptor superfamily binding | 2 | 0.032931 | TNF, NGF |
GO:0005200 | Structural constituent of cytoskeleton | 2 | 0.076944 | NEFL, SPTB |
GO ID | Description | Count | p Value | Genes |
---|---|---|---|---|
GO:0005576 | Extracellular region | 12 | 1.04 × 10−6 | IL17A, IFNA1, BDNF, TNF, NTF4, NTF3, IFNB1, IL17F, CHI3L1, NTNG2, IL10, NGF |
GO:0044421 | Extracellular region part | 9 | 3.93 × 10−6 | IL17A, IFNA1, TNF, IFNB1, IL17F, CHI3L1, NTNG2, IL10, NGF |
GO:0005615 | Extracellular space | 8 | 5.43 × 10−6 | IL17A, IFNA1, TNF, IFNB1, IL17F, CHI3L1, IL10, NGF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabahar, A.; Raja, K. Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS. Diagnostics 2022, 12, 1914. https://doi.org/10.3390/diagnostics12081914
Prabahar A, Raja K. Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS. Diagnostics. 2022; 12(8):1914. https://doi.org/10.3390/diagnostics12081914
Chicago/Turabian StylePrabahar, Archana, and Kalpana Raja. 2022. "Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS" Diagnostics 12, no. 8: 1914. https://doi.org/10.3390/diagnostics12081914
APA StylePrabahar, A., & Raja, K. (2022). Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS. Diagnostics, 12(8), 1914. https://doi.org/10.3390/diagnostics12081914