Reproducibility and Repeatability of Coronary Computed Tomography Angiography (CCTA) Image Segmentation in Detecting Atherosclerosis: A Radiomics Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manual Segmentation (Pencil 2D Technique) Protocol
2.2. Semiautomatic Segmentation (Circle 3D Technique) Protocol
2.3. Feature Extraction
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. ICC for Manual and Semiautomatic Segmentation for First (1st)-Order and Shape Order Features
3.3. ICC for Manual and Semiautomatic Segmentation for Second-Order Features
3.4. ICC Level on Reproducibility and Repeatability for Manual and Semiautomatic Segmentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 2 June 2022).
- Kolossváry, M.; Szilveszter, B.; Merkely, B.; Maurovich-Horvat, P. Plaque Imaging with CT-A Comprehensive Review on Coronary CT Angiography Based Risk Assessment. Cardiovasc. Diagn. Ther. 2017, 7, 489–506. [Google Scholar] [CrossRef]
- Munnur, R.K.; Cameron, J.D.; Ko, B.S.; Meredith, I.T.; Wong, D.T.L. Cardiac CT: Atherosclerosis to Acute Coronary Syndrome. Cardiovasc. Diagn. Ther. 2014, 4, 430–448. [Google Scholar] [CrossRef] [PubMed]
- Cury, R.C.; Abbara, S.; Achenbach, S.; Agatston, A.; Berman, D.S.; Budoff, M.J.; Dill, K.E.; Jacobs, J.E.; Maroules, C.D.; Rubin, G.D.; et al. CAD-RADSTM Coronary Artery Disease—Reporting and Data System. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J. Cardiovasc. Comput. Tomogr. 2016, 10, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Newby, D.; Williams, M.; Hunter, A.; Pawade, T.; Shah, A.; Flapan, A.; Forbes, J.; Hargreaves, A.; Leslie, S.; Lewis, S.; et al. CT Coronary Angiography in Patients with Suspected Angina Due to Coronary Heart Disease (SCOT-HEART): An Open-Label, Parallel-Group, Multicentre Trial. Lancet 2015, 385, 2383–2391. [Google Scholar] [CrossRef]
- Cury, R.C.; Budoff, M.; Taylor, A.J. Coronary CT Angiography versus Standard of Care for Assessment of Chest Pain in the Emergency Department. J. Cardiovasc. Comput. Tomogr. 2013, 7, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Douglas, C.; Hoffmann, U.; Patel, M.R.; Mark, D.B.; Al-Khalidi, H.R.; Cavanaugh, B.; Cole, J.; Douglas, P.S.; Dolor, R.J.; Fordyce, C.B.; et al. Outcomes of Anatomical Versus Functional Testing for Coronary Artery Disease. N. Engl. J. Med. 2015, 372, 1291–1300. [Google Scholar] [CrossRef]
- Karim, M.K.A.; Sabarudin, A.; Muhammad, N.A.; Ng, K.H. A Comparative Study of Radiation Doses between Phantom and Patients via CT Angiography of the Intra-/Extra-Cranial, Pulmonary, and Abdominal/Pelvic Arteries. Radiol. Phys. Technol. 2019, 12, 1–8. [Google Scholar] [CrossRef]
- Harun, H.H.; Abdul Karim, M.K.; Abd Rahman, M.A.; Abdul Razak, H.R.; Che Isa, I.N.; Harun, F. Establishment of CTPA Local Diagnostic Reference Levels with Noise Magnitude as a Quality Indicator in a Tertiary Care Hospital. Diagnostics 2020, 10, 680. [Google Scholar] [CrossRef]
- Haniff, N.S.M.; Karim, M.K.B.A.; Ali, N.S.; Rahman, M.A.A.; Osman, N.H.; Saripan, M.I. Magnetic Resonance Imaging Radiomics Analysis for Predicting Hepatocellular Carcinoma. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen, 4–5 July 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Kolossváry, M.; De Cecco, C.N.; Feuchtner, G.; Maurovich-Horvat, P. Advanced Atherosclerosis Imaging by CT: Radiomics, Machine Learning and Deep Learning. J. Cardiovasc. Comput. Tomogr. 2019, 13, 274–280. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; Van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The Facts and the Challenges of Image Analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Xue, Y.; Schoepf, U.J.; Varga-Szemes, A.; Griffith, J.; Yacoub, B.; Zhou, F.; Zhou, C.; Yang, Y.; Xing, W.; et al. Radiomics: The Next Frontier of Cardiac Computed Tomography. Circ. Cardiovasc. Imaging 2021, 14, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Yunus, M.M.; Khairuddin, A.; Yusof, M.; Zaidi, M.; Rahman, A.; Koh, X.J.; Sabarudin, A.; Nohuddin, P.N.E.; Ng, K.H.; Mustafa, M.; et al. Automated Classification of Atherosclerotic Radiomics Features in Coronary Computed Tomography Angiography (CCTA). Diagnostics 2022, 12, 1660. [Google Scholar] [CrossRef]
- Yunus, M.M.; Sabarudin, A.; Hamid, N.I.; Yusof, A.K.M.; Nohuddin, P.N.E.; Karim, M.K.A. Automated Classification of Atherosclerosis in Coronary Computed Tomography Angiography Images Based on Radiomics Study Using Automatic Machine Learning. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 1895–1903. [Google Scholar] [CrossRef]
- Kolossváry, M.; Karády, J.; Kikuchi, Y.; Ivanov, A.; Schlett, C.L.; Lu, M.T.; Foldyna, B.; Merkely, B.; Aerts, H.J.; Hoffmann, U.; et al. Radiomics versus Visual and Histogram-Based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An Ex Vivo Study. Radiology 2019, 293, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Rajendra Acharya, U.; Meiburger, K.M.; Wei Koh, J.E.; Vicnesh, J.; Ciaccio, E.J.; Shu Lih, O.; Tan, S.K.; Aman, R.R.A.R.; Molinari, F.; Ng, K.H. Automated Plaque Classification Using Computed Tomography Angiography and Gabor Transformations. Artif. Intell. Med. 2019, 100, 101724. [Google Scholar] [CrossRef]
- Candemir, S.; White, R.D.; Demirer, M.; Gupta, V.; Bigelow, M.T.; Prevedello, L.M.; Erdal, B.S. Automated Coronary Artery Atherosclerosis Detection and Weakly Supervised Localization on Coronary CT Angiography with a Deep 3-Dimensional Convolutional Neural Network. Comput. Med. Imaging Graph. 2020, 83, 101721. [Google Scholar] [CrossRef]
- Çinarer, G.; Gürsel, B.; Haşim, A. Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features. Appl. Sci. 2020, 10, 6296. [Google Scholar] [CrossRef]
- Fairuz, S.; Radzi, M.; Khalis, M.; Karim, A.; Saripan, M.I.; Amiruddin, M.; Rahman, A.; Nurzawani, I.; Isa, C.; Ibahim, M.J.; et al. Hyperparameter Tuning and Pipeline Optimization via Grid Search Method and Tree-Based AutoML in Breast Cancer Prediction. J. Pers. Med. 2021, 11, 978. [Google Scholar] [CrossRef]
- Cao, X.H.; Stojkovic, I.; Obradovic, Z. A Robust Data Scaling Algorithm to Improve Classification Accuracies in Biomedical Data. BMC Bioinform. 2016, 17, 1–10. [Google Scholar] [CrossRef]
- El-Dahshan, E.A.S.; Mohsen, H.M.; Revett, K.; Salem, A.B.M. Computer-Aided Diagnosis of Human Brain Tumor through MRI: A Survey and a New Algorithm. Expert Syst. Appl. 2014, 41, 5526–5545. [Google Scholar] [CrossRef]
- Zhou, T.; Ruan, S.; Canu, S. A Review: Deep Learning for Medical Image Segmentation Using Multi-Modality Fusion. Array 2019, 3–4, 100004. [Google Scholar] [CrossRef]
- Simi, V.R.; Joseph, J. Segmentation of Glioblastoma Multiforme from MR Images—A Comprehensive Review. Egypt. J. Radiol. Nucl. Med. 2015, 46, 1105–1110. [Google Scholar] [CrossRef]
- Wang, L.; Tan, J.; Ge, Y.; Tao, X.; Cui, Z.; Fei, Z.; Lu, J.; Zhang, H.; Pan, Z. Assessment of Liver Metastases Radiomic Feature Reproducibility with Deep-Learning-Based Semi-Automatic Segmentation Software. Acta Radiol. 2021, 62, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Kolossváry, M.; Jávorszky, N.; Karády, J.; Vecsey-Nagy, M.; Dávid, T.Z.; Simon, J.; Szilveszter, B.; Merkely, B.; Maurovich-Horvat, P. Effect of Vessel Wall Segmentation on Volumetric and Radiomic Parameters of Coronary Plaques with Adverse Characteristics. J. Cardiovasc. Comput. Tomogr. 2020, 15, 137–145. [Google Scholar] [CrossRef] [PubMed]
- McGraw, K.O.; Wong, S.P. “Forming Inferences about Some Intraclass Correlations Coefficients”: Correction. Psychol. Methods 1996, 1, 390. [Google Scholar] [CrossRef]
- Zhao, S.; Ren, W.; Zhuang, Y.; Wang, Z. The Influence of Different Segmentation Methods on the Extraction of Imaging Histological Features of Hepatocellular Carcinoma CT. J. Med. Syst. 2019, 43, 101. [Google Scholar] [CrossRef]
- Mat Radzi, S.F.; Abdul Karim, M.K.; Saripan, M.I.; Abd Rahman, M.A.; Osman, N.H.; Dalah, E.Z.; Mohd Noor, N. Impact of Image Contrast Enhancement on Stability of Radiomics Feature Quantification on a 2D Mammogram Radiograph. IEEE Access 2020, 8, 127720–127731. [Google Scholar] [CrossRef]
- Podgornova, Y.A.; Sadykov, S.S. Comparative Analysis of Segmentation Algorithms for the Allocation of Microcalcifications on Mammograms. In Proceedings of the CEUR Workshop Proceedings, Pescaia, Italy, 16–19 June 2019; Volume 2391, pp. 122–127. [Google Scholar]
- Qiu, Q.; Duan, J.; Gong, G.; Lu, Y.; Li, D.; Lu, J.; Yin, Y. Reproducibility of Radiomic Features with GrowCut and GraphCut Semiautomatic Tumor Segmentation in Hepatocellular Carcinoma. Transl. Cancer Res. 2017, 6, 940–948. [Google Scholar] [CrossRef]
- Kumar, G.; Bhatia, P.K. A Detailed Review of Feature Extraction in Image Processing Systems. In Proceedings of the 2014 Fourth International Conference on Advanced Computing & Communication Technologies, Rohtak, India, 8–9 February 2014; pp. 5–12. [Google Scholar] [CrossRef]
- Haniff, N.S.M.; Abdul Karim, M.K.; Osman, N.H.; Saripan, M.I.; Che Isa, I.N.; Ibahim, M.J. Stability and Reproducibility of Radiomic Features Based Various Segmentation Technique on MR Images of Hepatocellular Carcinoma (HCC). Diagnostics 2021, 11, 1573. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuze, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef]
- Sabarudin, A.; Siong, T.W.; Chin, A.W.; Hoong, N.K.; Karim, M.K.A. A Comparison Study of Radiation Effective Dose in ECG-Gated Coronary CT Angiography and Calcium Scoring Examinations Performed with a Dual-Source CT Scanner. Sci. Rep. 2019, 9, 4374. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Gao, Q.; Yousefi, N. Brain Tumor Diagnosis Based on Discrete Wavelet Transform, Gray-Level Co-Occurrence Matrix, and Optimal Deep Belief Network. Simulation 2020, 96, 867–879. [Google Scholar] [CrossRef]
- Dias, R.D.; Shah, J.A.; Zenati, M.A. Artificial Intelligence in Cardiothoracic Surgery. Minerva Cardioangiol. 2020, 68, 532–538. [Google Scholar] [CrossRef]
- Das, M.J.; Mahanta, L.B. Lung Segmentation from CT Images: Impact of Different Window Settings on the Accuracy of Segmentation. J. Emerg. Technol. Innov. Res. 2019, 5, 189–195. [Google Scholar]
- Bendtsen, C.; Kietzmann, M.; Korn, R.; Mozley, P.D.; Schmidt, G.; Binnig, G. X-ray Computed Tomography: Semiautomated Volumetric Analysis of Late-Stage Lung Tumors as a Basis for Response Assessments. Int. J. Biomed. Imaging 2011, 2011, 11. [Google Scholar] [CrossRef]
- Velazquez, E.R.; Parmar, C.; Jermoumi, M.; Mak, R.H.; Van Baardwijk, A.; Fennessy, F.M.; Lewis, J.H.; De Ruysscher, D.; Kikinis, R.; Lambin, P.; et al. Volumetric CT-Based Segmentation of NSCLC Using 3D-Slicer. Sci. Rep. 2013, 3, 3529. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, R.; Gan, Y.; Yang, L.; Li, W. Development and Clinical Application of Radiomics in Lung Cancer. Radiat. Oncol. 2017, 12, 1–8. [Google Scholar] [CrossRef]
- Owens, C.A.; Peterson, C.B.; Tang, C.; Koay, E.J.; Yu, W.; Mackin, D.S.; Li, J.; Salehpour, M.R.; Fuentes, D.T.; Court, L.E.; et al. Lung Tumor Segmentation Methods: Impact on the Uncertainty of Radiomics Features for Non-Small Cell Lung Cancer. PLoS ONE 2018, 13, e0205003. [Google Scholar] [CrossRef]
- Kalpathy-Cramer, J.; Zhao, B.; Goldgof, D.; Gu, Y.; Wang, X.; Yang, H.; Tan, Y.; Gillies, R.; Napel, S. A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-Institutional Study. J. Digit. Imaging 2016, 29, 476–487. [Google Scholar] [CrossRef]
- Kim, G.Y.; Lee, J.H.; Hwang, Y.N.; Kim, S.M. A Novel Intensity-Based Multi-Level Classification Approach for Coronary Plaque Characterization in Intravascular Ultrasound Images. BioMed. Eng. Online 2018, 17, 151. [Google Scholar] [CrossRef] [PubMed]
- Mohd Yunus, M.; Hui Sin, N.; Sabarudin, A.; Abdul Karim, M.K.; Ar, R.; Mohd Shamsul, M.S. Comparative Study of the Manual and Semi- Automated Segmentation Technique in Computed Tomography (CT) Lung Cancer: A Radiomics Study. J. Med. Heal. 2021, 16, 1–62. [Google Scholar]
Features (n = 180) | Radiomics Features |
---|---|
Lesion intensity (1st-order features) | 29 × 180 |
Shape order features | 5 × 180 |
Texture (2nd-order features) | 31 × 180 |
First-Order Features (n = 29) | Second-Order Features (n = 31) | Shape Order Features (n = 5) |
---|---|---|
Conventional: CONVENTIONAL_min CONVENTIONAL_mean CONVENTIONAL_std CONVENTIONAL_max CONVENTIONAL_Q1 CONVENTIONAL_Q2 CONVENTIONAL_Q3 CONVENTIONAL_Skewness CONVENTIONAL_Kurtosis CONVENTIONAL_Excess_Kurtosis CONVENTIONAL_peak_Sphere_0.5mL CONVENTIONAL_peak_Sphere_1mL CONVENTIONAL_calcium_AgatstonScore Discretized: DISCRETIZED_min DISCRETIZED_mean DISCRETIZED_std DISCRETIZED_max DISCRETIZED_Q1 DISCRETIZED_Q2 DISCRETIZED_Q3 DISCRETIZED_Skewness DISCRETIZED_Kurtosis DISCRETIZED_ExcessKurtosis DISCRETIZED_peakSphere0.5 mL DISCRETIZED_peakSphere1 mL DISCRETIZED_HISTO_Entropy_log10 DISCRETIZED_HISTO_Entropy_log2 DISCRETIZED_HISTO_Energy DISCRETIZED_AUC_CSH | Gray-Level Co-Occurrence Matrix (GLCM): GLCM_Homogeneity GLCM_Energy GLCM_Contrast GLCM_Correlation GLCM_Entropy_log10 GLCM_Entropy_log2 GLCM_Dissimilarity Gray-Level Run Length Matrix (GLRLM): GLRLM_Short Run Emphasis (SRE) GLRLM_Long Run Emphasis (LRE) GLRLM_Low Gray Run Emphasis (LGRE) GLRLM_High Gray Run Emphasis (HGRE) GLRLM_hort Run Low Gray-Level Emphasis (SRLGE) GLRLM_Short Run High Gray-Level Emphasis (SRHGE) GLRLM_Long Run Low Gray-Level Emphasis (LRLGE) GLRLM_Long Run High Gray-Level Emphasis (LRHGE) GLRLM_GLNU (Gray-Level Non-Uniformity) GLRLM_Run-Length Non-Uniformity (RLNU) GLRLM_Run Percentage (RP) Neighborhood Gray-Level Differences Matrix (NGLDM): NGLDM_Coarseness NGLDM_Contrast NGLDM_Busyness Gray-Level Zone Length Matrix (GLZLM): GLZLM_Short Zone Emphasis (SZE) GLZLM_Long Zone Emphasis (LZE) GLZLM_Low Gray-level Zone Emphasis (LGZE) GLZLM_High Gray-level Zone Emphasis (HGZE) GLZLM_Short Zone High Gray-Level Emphasize (SZHGE) GLZLM_Long Zone Low Gray-Level Emphasize (LZLGE) GLZLM_Long Zone High Gray-Level Emphasize (LZHGE) GLZLM_Gray-Level Non-Uniformity (GLNU) GLZLM_Zone-Length Non-Uniformity (ZLNU) GLZLM_Zone Percentage (ZP) | Shape Features: SHAPE Volume (mL) SHAPE_Volume (vx) SHAPE_Sphericity SHAPE_Surface (mm2) SHAPE_Compacity |
Radiomics Features | ICC Level | Type of ICC | Manual | Semi-Automatic |
---|---|---|---|---|
First-order and shape order | Excellent (ICC > 0.9) | Reproducibility (inter-CC) | 19 (56%) | 20 (59%) * |
Repeatability (intra-CC) | 25 (74%) * | 18 (53%) | ||
Good (0.75 < ICC < 0.9) | Reproducibility (inter-CC) | 4 (12%) | 7 (21%) | |
Repeatability (intra-CC) | 5 (15%) | 5 (15%) | ||
Moderate (0.5 < ICC < 0.75) | Reproducibility (inter-CC) | 5 (15%) | 4 (12%) | |
Repeatability (intra-CC) | 4 (12%) | 9 (26%) | ||
Low (ICC < 0.5) | Reproducibility (inter-CC) | 6 (18%) | 3 (9%) | |
Repeatability (intra-CC) | 0 (0%) | 2 (6%) | ||
Second order | Excellent (ICC > 0.9) | Reproducibility (inter-CC) | 11 (35%) * | 10 (32%) |
Repeatability (intra-CC) | 21 (68%) * | 13 (42%) | ||
Good (0.75 < ICC < 0.9) | Reproducibility (inter-CC) | 10 (32%) | 9 (29%) | |
Repeatability (intra-CC) | 10 (32%) | 12 (39%) | ||
Moderate (0.5 < ICC < 0.75) | Reproducibility (inter-CC) | 6 (19%) | 8 (26%) | |
Repeatability (intra-CC) | 0 (0%) | 6 (19%) | ||
Low (ICC < 0.5) | Reproducibility (inter-CC) | 4 (13%) | 4 (13%) | |
Repeatability (intra-CC) | 0 (0%) | 0 (0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yunus, M.M.; Sabarudin, A.; Karim, M.K.A.; Nohuddin, P.N.E.; Zainal, I.A.; Shamsul, M.S.M.; Yusof, A.K.M. Reproducibility and Repeatability of Coronary Computed Tomography Angiography (CCTA) Image Segmentation in Detecting Atherosclerosis: A Radiomics Study. Diagnostics 2022, 12, 2007. https://doi.org/10.3390/diagnostics12082007
Yunus MM, Sabarudin A, Karim MKA, Nohuddin PNE, Zainal IA, Shamsul MSM, Yusof AKM. Reproducibility and Repeatability of Coronary Computed Tomography Angiography (CCTA) Image Segmentation in Detecting Atherosclerosis: A Radiomics Study. Diagnostics. 2022; 12(8):2007. https://doi.org/10.3390/diagnostics12082007
Chicago/Turabian StyleYunus, Mardhiyati Mohd, Akmal Sabarudin, Muhammad Khalis Abdul Karim, Puteri N. E. Nohuddin, Isa Azzaki Zainal, Mohd Shahril Mohd Shamsul, and Ahmad Khairuddin Mohamed Yusof. 2022. "Reproducibility and Repeatability of Coronary Computed Tomography Angiography (CCTA) Image Segmentation in Detecting Atherosclerosis: A Radiomics Study" Diagnostics 12, no. 8: 2007. https://doi.org/10.3390/diagnostics12082007
APA StyleYunus, M. M., Sabarudin, A., Karim, M. K. A., Nohuddin, P. N. E., Zainal, I. A., Shamsul, M. S. M., & Yusof, A. K. M. (2022). Reproducibility and Repeatability of Coronary Computed Tomography Angiography (CCTA) Image Segmentation in Detecting Atherosclerosis: A Radiomics Study. Diagnostics, 12(8), 2007. https://doi.org/10.3390/diagnostics12082007