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Abstract: In recent times, coronary artery disease (CAD) has become one of the leading causes
of morbidity and mortality across the globe. Diagnosing the presence and severity of CAD in
individuals is essential for choosing the best course of treatment. Presently, computed tomography
(CT) provides high spatial resolution images of the heart and coronary arteries in a short period. On
the other hand, there are many challenges in analyzing cardiac CT scans for signs of CAD. Research
studies apply machine learning (ML) for high accuracy and consistent performance to overcome
the limitations. It allows excellent visualization of the coronary arteries with high spatial resolution.
Convolutional neural networks (CNN) are widely applied in medical image processing to identify
diseases. However, there is a demand for efficient feature extraction to enhance the performance
of ML techniques. The feature extraction process is one of the factors in improving ML techniques’
efficiency. Thus, the study intends to develop a method to detect CAD from CT angiography images.
It proposes a feature extraction method and a CNN model for detecting the CAD in minimum time
with optimal accuracy. Two datasets are utilized to evaluate the performance of the proposed model.
The present work is unique in applying a feature extraction model with CNN for CAD detection.
The experimental analysis shows that the proposed method achieves 99.2% and 98.73% prediction
accuracy, with F1 scores of 98.95 and 98.82 for benchmark datasets. In addition, the outcome suggests
that the proposed CNN model achieves the area under the receiver operating characteristic and
precision-recall curve of 0.92 and 0.96, 0.91 and 0.90 for datasets 1 and 2, respectively. The findings
highlight that the performance of the proposed feature extraction and CNN model is superior to the
existing models.

Keywords: coronary artery disease; deep learning; machine learning; cardiopulmonary disease;
faster CNN

1. Introduction

Coronary artery disease (CAD) has recently become regarded as one of the most dan-
gerous and life-threatening chronic diseases [1]. Blockage and narrowing of the coronary
arteries is the primary cause of heart failure. The coronary arteries must be open to provide
the heart with adequate blood [2–4]. According to a recent survey, the United States has
the highest heart disease prevalence and the highest ratio of heart disease patients [5].
Shortness of breath, swelling feet, fatigue, and other symptoms of heart disease are among
the most frequent. CAD is the most common type of heart disease, which can cause chest
discomfort, stroke, and heart attack. Besides heart disease, there are heart rhythm issues,
congestive heart failure, congenital heart disease, and cardiovascular disease [6].

Traditional methods of investigating cardiac disease are complex [7–10]. The lack of
medical diagnostic instruments and automated systems makes pulmonary heart disease
detection and treatment challenging in developing nations. However, to reduce the impact
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of CAD, an accurate and appropriate diagnosis of cardiac disease is necessary. Devel-
oping countries experience an alarming rise in the number of people dying from heart
disease [11–16]. According to WHO, CAD is the most frequent type of heart disease, claim-
ing the lives of 360,900 individuals globally in 2019 [17]. The sum accounts for nearly
30% of all deaths worldwide. The number of persons who are victimized is increasing
exponentially. Multiple risk factors are involved in the CAD prediction. Thus, health-
care centers require a tool to detect CAD at earlier stages. The recent developments in
CNN models enable researchers to develop a prediction model for CAD. However, CNN’s
structure is complex and needs an excellent graphical processing unit (GPU) to process
complex images.

Among conventional approaches, analytical angiography is considered one of the most
accurate procedures for detecting heart abnormalities. The disadvantages of angiography
include the expensive cost, various side effects, and the need for a high level of technolog-
ical competence [18]. Due to human error, conventional methods often yield inaccurate
diagnoses and take longer to complete. In addition, it is a costly and time-consuming
method for diagnosing disease and requires considerable processing.

Artificial intelligence (AI) applications have been increasingly included in clinical
diagnostic systems during the last three decades to improve their accuracy. Data-driven
decision-making using AI algorithms has been increasingly common in the CAD field in re-
cent years [19]. The diagnostic accuracy can be improved by automating and standardizing
the interpretation and inference processes. AI-based systems can help speed up decision-
making. Healthcare centers can obtain, evaluate, and interpret data from these emerging
technologies and facilitate better patient service [20]. The raw data can significantly affect
the quality and performance of AI approaches. As a result, extensive collaboration between
AI engineers and clinical professionals is required to improve the quality of diagnosis [21].
The recent CAD detection technique is based on images. Faster predictions can be made
for clinicians and computer scientists by deleting irrelevant features. The key features
representing the crucial part of CAD decide the performance of the AI techniques [22].
Many studies use deep learning (DL) to determine the existence of CAD.

Convolutional neural networks (CNN) are becoming increasingly popular in medical
image processing. CNN was initially demonstrated in medical image analysis in the work
of [23] for lung nodule diagnosis. Numerous medical imaging techniques are based on
this concept [24–27]. Using a pre-trained network as a feature generator and fine-tuning
a pre-trained network to categorize medical pictures are two strategies to transmit the
information stored in the pre-trained CNNs. Standard networks can be divided into
multiple classes as pre-trained medical image analysis models. Kernels with large receptive
fields are used in the higher layers near the input, while smaller kernels are used in the
deeper levels. Among the networks in this group, AlexNet is the most widely used and has
many applications in medical image processing [28–31].

Deep learning networks are advanced AI techniques and have gained popularity in
the medical field. The first network in this category was GoogleNet [32–36]. However, there
is a shortcoming in the existing methods, such as more computation time and high-end
systems. In addition, the performance of the current CNN architectures is limited in terms
of accuracy and F-Measure. In addition, literature is scarce related to integrating feature
minimization and CAD techniques. Therefore, this study intends to develop a CNN-based
classifier to predict CAD with high accuracy. The objective of the study is as follows:

• To build a CNN model to predict CAD from CT images.
• To improve the performance of CNN by reducing the number of features.

The research questions of the proposed study are:
Research Question-1 (RQ1): How to improve the performance of a CAD detection technique?
Research Question-2 (RQ2): How to evaluate the performance of a CAD detection technique?
The structure of the study is organized as follows: Section 2 presents the recent

literature related to CNN and CAD. Section 3 outlines the methodology of the proposed
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research. Results and discussion are highlighted in Section 4. Finally, Section 5 concludes
the study with its future improvement.

2. Literature Review

High-accuracy data-mining techniques can identify risk factors for heart disease.
Studies on the diagnosis of CAD can be found in existing studies [1–5]. Artificial immune
recognition system (AIRS), K nearest neighbor (KNN), and clinical data were used to
develop a system for diagnosing CAD and achieved an accuracy rate of 87%.

The authors [1] developed and evaluated a deep-learning algorithm for diagnosing
CAD based on facial photographs. Patients who underwent coronary angiography or CT
angiography at nine Chinese locations participated in a multicenter cross-sectional study
to train and evaluate a deep CNN to detect CAD using patient facial images. More than
5796 patients were included in the study and were randomly assigned to training and
validation groups for algorithm development. According to the findings, a deep-learning
algorithm based on facial photographs can help predict CAD.

According to a study [2], the combination of semi-upright and supine stress myocardial
perfusion imaging with deep learning can be used to predict the presence of obstructive
disease. The total perfusion deficit was calculated using standard gender and camera
type limits. A study [3] employed interferometric OCT in cardiology to describe coronary
artery tissues, yielding a resolution of between 10 and 20 µm. Using OCT, the authors [3]
investigated the various deep learning models for robust tissue characterization to learn
the various intracoronary pathological formations induced by Kawasaki disease. A total of
33 historical cases of intracoronary cross-sectional pictures from different pediatric patients
with KD are used in the experimentation. The authors analyzed in-depth features generated
from three pre-trained convolutional networks, which were then compared. Moreover,
voting was conducted to determine the final classification.

The authors [6] used deep-learning analysis of the myocardium of the left ventricle
to identify individuals with functionally significant coronary stenosis in rest coronary CT
angiography (CCTA). There were 166 participants in the study who had invasive FFR tests
and CCTA scans taken sequentially throughout time. Analyses were carried out in stages
to identify patients with functionally significant stenosis of the coronary arteries.

Using deep learning, the researchers [7] investigated the accuracy of the automatic
prediction of obstructive disease from myocardial perfusion imaging compared to the
overall perfusion deficit. Single-photon emission computed tomography may be used to
build deep convolutional neural networks that can better predict coronary artery disease in
individual patients and individual vessels. Obstructive disease was found in 1018 patients
(62%) and 1797 of 4914 (37%) arteries in this study. A larger area under the receiver-
operating characteristic curve for illness prediction using deep learning than for total
perfusion deficits. Myocardial perfusion imaging can be improved using deep learning
compared to existing clinical techniques.

In the study [8], several deep-learning algorithms were used to classify electrocardio-
gram (ECG) data into CAD, myocardial infarction, and congestive heart failure. In terms
of classification, CNNs and LSTMs tend to be the most effective architectures to use. This
study built and verified a 16-layer LSTM model using a 10-fold cross-validation procedure.
The accuracy of the classification was 98.5%. They claimed their algorithm might be used
in hospitals to identify and classify aberrant ECG patterns.

Author [9] proposed an enhanced DenseNet algorithm based on transfer learning
techniques for fundus medical imaging. Medical imaging data from the fundus has been
the subject of two separate experiments. A DenseNet model can be trained from scratch
or fine-tuned using transfer learning. Pre-trained models from a realistic image dataset to
fundus medical images are used to improve the model’s performance. Fundus medical
image categorization accuracy can be improved with this method, which is critical for
determining a patient’s medical condition.
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The study [10] developed and implemented a heterogeneous low-light image-enhancing
approach based on DenseNet generative adversarial network. Initially, a generative adver-
sarial network is implemented using the DenseNet framework. The generative adversarial
network is employed to learn the feature map from low-light to normal-light images.

To overcome the gradient vanishing problem in deep networks, the DenseNet con-
volutional neural network with dense connections combines ResNet and Highway’s
strengths [11,12]. As a result, all network layers can be directly connected through the
DenseNet. Each layer of the network is directly related to the next layer. It is important to
remember that each subsequent layer’s input is derived from the output of all preceding
layers. The weak information transmitted in the deep network is the primary cause of
the loss of gradients [13]. A more efficient way to reduce gradient disappearance and
improve network convergence is to use the dense block design, in which each layer is
directly coupled to input and loss [14].

The authors [15] employed a bright-pass filter and logarithmic transformation to
improve the quality of an image. Simultaneous reflectance and illumination estimation
(SRIE) was given a weighted variational model by the authors [16] to deal with the issue
of overly enhanced dark areas. Authors [17] developed low light image enhancement by
illumination map estimation (LIME), which simply estimates the illumination component.
The reflection component of the image was calculated using local consistency and structural
perception restrictions, and the output result was based on this calculation.

The study [18] used the Doppler signal and a neural network to gain the best possible
CAD diagnosis. By combining the exercise test data with a support vector machine (SVM),
the authors [19] achieved an accuracy of 81.46% in the diagnosis of coronary artery disease
(CAD). By employing multiple neural networks, authors [20] achieved an accuracy of
89.01% for CAD diagnosis using the Cleveland dataset [21]. It is possible to forecast artery
stenosis disease using various feature selection approaches, including CBA, filter, genetic
algorithm, wrapper, and numerical and nominal attribute selection. Also, Ref. [22] uses a
new feature creation method to diagnose CAD.

Inception-v3 [24] is an enhanced version of GoogleNet and is applied in medical
image analysis. It categorizes knee images by training support vector machines using deep
feature extraction from CaffeNets. Adults’ retinal fundus pictures were analyzed using a
fine-tuned network to detect diabetic retinopathy [24]. Classification results utilizing fine-
tuned networks compete with human expert performance [25]. Recent research has focused
on applying deep learning techniques to segment retinal optical coherence tomography
(OCT) images [26–28]. Combining CNN and graph search methods, OCT retinal images are
segmented. Layer border classification probabilities are used in the Cifar-CNN architecture
to partition the graph search layer [29,30].

Authors [31] proposed a deep learning technique to quantify and segment intrare-
gional cystoid fluid using fuzzy CNN. Geographic atrophy (GA) segmentation using a
deep network is the subject of another study [33]. An automated CAD detector was devel-
oped using a CNN with encoder–decoder architecture [34]. In another study, researchers
employed GoogleNet to identify retinal diseases in OCT pictures [35].

Several grayscale features collected from echocardiogram pictures of regular and CAD
participants were proposed in [36] as a computer-aided diagnosis approach. In [24], ECG
data from routine and CAD participants was evaluated for HR signals. Various methods
were used to examine the heart rate data, including non-linear analysis, frequency, and
time-domain. They found that CAD participants’ heart rate signals were less erratic than
normal subjects. The recent CNN models are widely applied in CAD diagnostics [36].
In [37], the authors proposed a model for identifying cardiovascular diseases and obtained
a prediction accuracy of 96.75%. Ali Md Mamun et al. [38] argued that a simple supervised
ML algorithm can predict heart disease with high accuracy. The authors [39] developed a
biomedical electrocardiogram (ECG)-based ML technique for detecting heart disease. Jiely
Yan et al. [40], proposed a model to predict ion channel peptide from the images. Table 1
outlines the features and limitations of the existing CNN models.
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Table 1. Features of the existing literature.

Authors Methodology Features Limitations

Lin. S et al. [1]
Conducted a cross-sectional
study of CAD patients for

validating CNN-based CAD.

The findings showed that the
deep learning algorithm could
support physicians in detecting

cardiovascular diseases.

The findings are based on the
specific location and lack of a

benchmark dataset for
evaluating the CNN model.

Jingsi Z et al. [10] Proposed a low-light image
enhancement method.

The DenseNet framework has
reduced the noise in the images.

Lack of discussion of the
application of bright images.

Abdar M et al. [13]
Integrated genetic algorithm
and support vector machine

for feature extraction.

The outcome showed that
N2Genetic-nuSVM showed a

better accuracy.

Lack of comparison with the
recent techniques.

Wolterink J.M. et al. [20]

A 3D-dilated CNN is
developed to predict the
radius of an artery from

CCTA images.

Results show that the method
extracted 92% of clinically

relevant coronary
artery segments.

Trained with a small dataset.
The outcome may be with the

size of the dataset.

Papandrianos N. and
Papageorgiou E. [21]

Applied CNN model for CAD
detection from images.

The method can differentiate the
infarction from healthy patients.

The classification accuracy is
better. However, there is a

lack of benchmark
evaluation techniques.

Nishi et al. [27]
Developed an image

segmentation technique for
predicting CAD.

The outcome highlighted that
the method could produce

effective results.

The performance is based on a
single dataset.

Cho et al. [30]

Proposed an intravascular
ultrasound-based algorithm

for classifying attenuation and
calcified plaques.

The results outlined that the
model achieved 98% accuracy.

The model performance is
based on the dataset of

598 patients.

Morris S.A. and
Lopez K.N. [31]

Developed a detection model
for congenital heart disease in

the fetus.

The outcome showed that the
model’s performance is better

than the recent models.

The authors evaluated the
model using 1326 fetal

echocardiograms.

Cheung et al. [36]
Proposed an image

segmentation approach using
Unet model.

The model achieved 91,320% of
dice similarity coefficient.

The lack of discussion of the
image quality used in

the study.

Bhanu Prakash Doppala
et al. [37]

Developed an ensemble
model for cardiovascular

disease detection.

The model achieves an accuracy
of 96.75%.

The model is based on the
voting mechanisms, which

may lead to a larger
computation time.

Ali Md Mamun et al. [38] Proposed an ML algorithm for
heart disease detection.

The outcome shows that the
model has achieved a 100% of

accuracy with the
Kaggle dataset.

There is a lack of
experimentation with the

model with different datasets.

Khanna, Ashish et al. [39]
Developed an ML technique
for heart disease detection

from ECG.

Employed regression model to
predict heart disease from ECG.

Limited discussion on the
model uncertainty.

Yan, Jielu et al. [40] Proposed an ML technique for
predicting ion channel peptides.

The outcome shows that the
model achieves high

accurate results.
The dataset is relatively small.

3. Research Methodology

According to the research questions, the researchers developed a CNN architecture
to predict positive CAD patients from CT images. Figure 1 presents the proposed archi-
tecture. Initially, the images are processed to extract the features. The CNN model treats
the extracted features, generating output through an activation function. The following
part of this section provides the information related to datasets, feature extraction, CNN
construction, and evaluation metrics.
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Figure 1. Proposed CNN network for CAD.

In this study, researchers employed two datasets of CT angiography images. The
details of the datasets are as follows:

Dataset 1 [4] contains coronary artery image sets of 500 patients. A number of 18 views
of the same straightened coronary artery are shown in each mosaic projection view (MPV).
The Training–Validation–Test picture sets have a 3/1/1 ratio (300/100/100) with 50%
normal and 50% sick cases for each patient in the subset. To improve modeling and dataset
balance, 2364 (i.e., 394 × 6) artery pictures were obtained from the 300 training instances.
Only 2304 images of the training dataset were augmented: 1. the standard component;
2. all the validation images; and 3. all the testing images. The balance was maintained
in the validation dataset by randomly selecting one artery per normal case (50 images)
and sick patient (50 images). Figure 2a,b outlines the CT images of positive and negative
CAD patients.
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Dataset 2 [5] consists of CT angiography images of 200 patients. This dataset used
images from a multicenter registry of patients who had undergone clinically indicated coro-
nary computed tomography angiography (CCTA). The annotated ground truth included
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the ascending and descending aortas (PAA, DA), superior and inferior vena cavae (SVC,
IVC), pulmonary artery (PA), coronary sinus (CS), right ventricular wall (RVW), and left
atrial wall (LAW). Figure 3 shows the CT images of dataset_2. Table 2 outlines the de-
scription of the datasets. Both datasets contain CT images of CAD and Non-CAD patients.
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Table 2. Description of datasets.

Dataset Number of Patients Number of Images Classification

1 500 2637 2

2 200 716 2

The study applies the following steps for identifying CAD using CNN architecture
from datasets:

Step 1: Preprocess images
The CCTA images are processed to fit the feature extraction phase. All images are

converted into 600 × 600 pixels. The image size suits the feature extraction process to
generate a reduced set of features without losing any valuable data.

Step 2: Feature extraction
The proposed study applies an enhanced features from accelerated segment test

(FAST) [6] algorithm for extracting features to support the pooling layer of CNN to produce
effective feature maps to answer RQ1. To reduce the processing time of the FAST algorithm,
researchers employed the enhanced FAST [5]. Figure 4 showcases the feature extracted
from a 4 × 4 image into a 2 × 2 image. In addition, it highlights that the actual image can
be reconstructed from a 2 × 2 image to a 4 × 4 image.
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Let image I of M1 × M2 pixels be divided into segments S1 × Sn. The number of
segments is N1 × N2, where N1 = M1/S1 and N2 = M2/Sn. The segments are represented
in Equation (1).

I =

 Sd1,1 Sd1,2 . . . Sd1,Nn
...

...
...

SdN1,1 SdN1,2 . . . SdN1,Nn

 (1)

where Sdx,y referred to the image segment in the x and y direction and is described in
Equation (2).

Sdx,y = I(i,j) (2)

where i and j represent the size of the image segment, Sdx,y.
Both Equations (3) and (4) describe the pixel values of image segments.

i = (y− 1)M2, (y− 1)M2 − 1, . . . , yM2 − 1 (3)

j = (x− 1)M1, (x− 1)M1 − 1, . . . , yM1 − 1 (4)

The transformation function ensures that the image or segment can be reconstructed
to its original form. It supports the proposed method to backtrack the CNN network to
fine-tune its performance. The transformation function for each segment is mentioned in
Equation (5) as follows:

ϕMdx,y = ZS1 Mdx,yZT
M2

(5)

where ϕMdx,y represents a part of an extracted feature from the image segment,
x = 1, . . . . . . , N1, y = 1, . . . . . . , Nn and T represents the transform matrix, ZM1 ∈ ZO

M1
,

O represents the order of the transformation. The segment can be reconstructed as in
Equation (6).

Sdx,y = ZT
S1

ϕSdx,yZSn (6)

Sequentially, the process must be repeated N1 × Nn times to extract a set of features
from the image. Thus, the transform co-efficient of all image segments can be integrated
using Equations (7)–(11).

ϕ =

 ZS1 Sd1,1ZT
Sn

. . . ZS1 Sd1,Nn ZT
S2

... . . .
...

ZS1 SdN1,1ZT
Sn

. . . ZS1 SdN1,Nn ZT
S2

 (7)

Equations (8) and (9) denote the features FS1 and FSn , which represent the features that
can be constructed using Zs1 & Zsn, as follows:

FS1 =


ZS1 O . . . O

O ZS1 . . .
...

. . .
...

... O
O . . . O ZS1

 order of N1 (8)

FSn =


ZSn O . . . O

O ZSn . . .
...

. . .
... ZSn O

O . . . O ZSn

 order of Nn (9)

Equation (10) shows a sample set of features, ∂nm.

∑
x∈X

(
FS(n,x) ∗ FS(m,x)

)
= ∂nm (10)
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Equation (11) defines the reconstruction of the image using the extracted features.

I = FT
S1

ϕ FSn (11)

Step 3: Processing features
The extracted features FS1 . . . . . . FSn are treated as an input for the proposed CNN.

DenseNet ensures the transmission of information between the layers. One of the features
of the DenseNet is the direct link between each layer. Thus, a back propagation method can
be implemented in DenseNet. The feature extraction process reduces the number of blocks
in DenseNet and improves its performance. Therefore, the modified DenseNet contains
a smaller number of blocks and parameters. Research studies highlight that the complex
network requires a greater number of samples. This study applies DenseNet-161 (K = 48),
which includes three block modules. Figure 5 illustrates the proposed DenseNet model.
Most CNN models depend on the features to make a decision. Thus, the feature extraction
process is crucial in disease detection techniques. The minimal set of features reduces the
training time of the CNN model. In addition, the features should support CNN to generate
effective results. Researchers applied an edge-detection technique.
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Step 3.1: Pooling layer
Two-dimensional filters are used to integrate the features in the area covered by the

two-dimensional filter as it slides over each feature map channel. The dimension of the
pooling layer output is in Equation (12):

(Ih − f + 1)/l ∗ (Iw − f + 1)/s ∗ Ic (12)

where Ih—the height of the feature map, Iw—width of the feature map, Ic—number of
channels in the map, f —filter size, l—stride length

Step 3.2: Generating output
Transfer learning is adopted to alter the architecture of DenseNet. Leaky ReLu is

used as the activation function. The existing CNN includes are employed. GITHUB
portal (https://github.com/titu1994/DenseNet accessed on 7 December 2021) is utilized to
implement the existing CNN architecture. The studies [10,18,21] are employed to evaluate
the performance of the proposed CNN (PCNN) model. In addition, CNN models, including
GoogleNet and Inception V3, are used for performance evaluation. The following form
of the sigmoid function is applied for implementing the modified DenseNet. Figure 6
represents the proposed feature extraction for pre-processing the CT images and extracting
the valuable features. Furthermore, Figure 7 highlights the proposed CNN technique for
predicting CAD from the CT images.

https://github.com/titu1994/DenseNet
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The study constructs a feed-forward back propagation network. Thus, Leaky ReLu is
employed in the study as an activation function in Equation (13) to produce an outcome.

f (x) = max(0, x) (13)

Leaky ReLu considers negative value as a minimal linear component of X. The defini-
tion of Leaky ReLu is defined as:

Def Leaky_function(I)
If feature(I) < 0:

return 0.01 * f(I)
Else:

return f(I)
Step 4: Evaluation metrics
The study applies the benchmark evaluation metrics, including accuracy, recall, preci-

sion, and F-measure, to provide a solution for RQ2. The metrics are computed as shown in
Equations (14)–(18):

True positive (TPCI) = predicting a valid positive CAD patient from CT images (CI).
True negative (TNCI) = predicting a valid negative CAD patient from CI.
False positive (FPCI) = predicting a negative CAD patient as positive from CI.
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False negative (FNCI) = predicting a positive CAD patient as negative from CI.

Recall=
TPCI

TPCI + FNCI
(14)

Precision =
TPCI

TPCI + FPCI
(15)

F−measure =
2∗Recall ∗ Precision
Recall + Precision

(16)

Accuracy =
TPCI + TNCI

TPCI + TNCI + FPCI + FNCI
(17)

Specificity =
TNCI

TNCI + FPCI
(18)

In addition, Matthews correlation coefficient (MCC) (Equation (19)) and Cohen’s
Kappa (K) (Equation (20)) are employed to ensure the performance of the proposed method.

MCC =
(TPCI∗TNCI)− (FPCI∗FNCI)√

(TPCI + FPCI) ∗ (TPCI + FNCI) ∗ (TNCI + FPCI) ∗ (TNCI + FNCI)
(19)

The minimum MCC is−1, which indicates a wrong prediction, whereas the maximum
MCC is +1, which denotes a perfect prediction.

K =
2 ∗ ((TPCI∗TNCI)− (FPCI∗FNCI))

(TPCI + FPCI) ∗ (FPCI + TNCI) ∗ (TPCI + FNCI) ∗ (FNCI + TNCI)
(20)

MCC and K are class symmetric, reflecting the ML technologies’ classification accu-
racy. Finally, CNN technique computational complexity is presented to find the time and
space complexities.

In order to ensure the predictive uncertainty of the proposed CNN (PCNN), the
researchers applied standard deviation (SD) and entropy (E). The mathematical expression
of the confidence interval (CI) is defined in Equation (21).

CI = a± z
σ√
N

(21)

where a represents the mean of the predictive distribution of an image a(i), N is the total
number of predictions, and z is the critical value of the distribution. The researchers
computed CI at 95% confidence. Thus, the value of Z is 1.96.

Finally, the researchers followed E of the prediction to evaluate the uncertainty of the
proposed model. It is calculated over the mean predictive distribution. The mathematical
expression of E is defined in Equation (22).

E(P(y∗|a∗)= −
C

∑
i=1

P(y∗|a∗) log(P(y∗|a∗) (22)

4. Experiment and Results

The PCNN is implemented in Python with Windows 10 Professional platform. The
existing algorithms are developed using the GITHUB portal. Both datasets are divided into
training and testing sets. Accordingly, the CNN architectures are trained with a relevant
training set of dataset_1 and dataset_2.

To evaluate the performance of PCNN, the dataset is utilized using 5-fold cross-
validation. Statistical tests, including SD, CI using binary class classification, and E are
applied accordingly on the dataset_1 and dataset_2. Table 3 presents the implementation
of PCNN during the cross-validation using daaset_1. It highlights that PCNN achieves
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more than 98% accuracy, precision, recall, F-measure, and specificity, respectively. Likewise,
Table 4 denotes the cross-validation outcome for dataset_2.

Table 3. Performance analysis of PCNN model for dataset_1.

Fold(s) Accuracy Precision Recall F-Measure Specificity

1 98.6 97.4 98.4 97.9 98.5
2 98.2 98.2 97.9 98.05 97.8
3 99.1 97.7 98.3 98 98.8
4 99.3 98.6 98.7 98.65 98.8
5 99.6 99.1 99.3 99.2 99.6

Average 98.96 98.2 98.52 98.36 98.7

Table 4. Performance analysis of PCNN model for dataset_2.

Fold(s) Accuracy Precision Recall F-Measure Specificity

1 98.4 97.8 98.2 98 98.1
2 97.8 99.3 99.1 99.2 99.3
3 99.1 98.7 98.7 98.7 98.6
4 98.9 98.2 98.6 98.4 98.2
5 99.1 99.3 98.7 99 98.9

Average 98.66 98.66 98.66 98.66 98.62

4.1. Uncertainty Estimation

In this study, the researchers apply Monte Carlo dropout (MC dropout) to compute the
model uncertainty. The dropout value ensures that the predictive distribution is not diverse,
and CI is insignificant. The researchers experimentally found that the MC dropout value
of 0.379 is optimal for this model. The predictive distribution is obtained by evaluating
PCNN 200 times for each image. Furthermore, model uncertainty is computed using CI,
SD, and E.

Tables 5 and 6 highlight the model uncertainty for dataset_1 and dataset_2, respectively.
The proposed model achieved a low entropy and SD for both datasets. It can be observed
in Tables 5 and 6 that the average CI of [98.55–98.61] and [98.45–98.51] for dataset_1 and
dataset_2 indicate the proposed model has high confidence and minimum variance in
its outcome.

Table 5. Model uncertainty analysis outcome for dataset_1.

Fold(s) CI (%) @95% SD Entropy

1 [97.92–97.99] 0.0012 0.0049
2 [98.12–98.19] 0.0019 0.0329
3 [98.79–98.87] 0.0021 0.0319
4 [98.84–98.91] 0.0020 0.0281
5 [99.08–99.11] 0.0017 0.0091

Average [98.55–98.61] 0.0017 0.0213

Table 6. Model uncertainty analysis outcome for dataset_1.

Fold(s) CI (%) @95% SD Entropy

1 [98.11–98.18] 0.0021 0.0041
2 [97.41–97.49] 0.0018 0.0312
3 [98.42–98.46] 0.0014 0.0187
4 [99.12–99.17] 0.0011 0.0093
5 [99.21–99.26] 0.0009 0.0089

Average [98.45–98.51] 0.0014 0.0144
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Table 7 highlights the performance measures of dataset_1. Among the CNN architec-
tures, PCNN scored a superior accuracy, precision, recall, and specificity of 98.96, 98.2, 98.52,
98.36, and 98.7, respectively. The performance of the Banerjee model [18] is lower than the
other CNN architectures. PCNN performs better than the existing CNN models for CAD
prediction. Dataset_1 contains a greater number of images. The mapping of features made
the CNN architectures generate more features. However, the feature extraction process of
the proposed method enabled PCNN to produce a smaller number of features and maintain
a better performance than the existing architectures. Figure 8 represents the comparative
analysis outcome of CNN. It is evident from Figure 8 that the performance of PCNN is
higher than the current architectures.

Table 7. Comparative analysis outcome of CNN model for dataset_1.

Methods/
Measures Accuracy Precision Recall F-Measure Specificity

Jingsi model [10] 96.7 96.2 96.7 96.45 97.65
GoogleNet 96.9 97.1 97.4 97.25 96.5

Inception V3 97.8 96.7 96.1 96.4 96.2
Banerjee model [18] 98.1 97.3 97.5 97.4 97.57

Papandrianos model [21] 98.3 97.6 97.1 97.35 97.69
PCNN 98.96 98.2 98.52 98.36 98.7
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Likewise, Table 8 outlines the performance of CNN architectures with Dataset_2. The
value of accuracy, precision, recall, F-measure, and specificity is 98.96, 98.2, 98.52, 98.36,
and 98.7, accordingly. However, GoogleNet has scored low accuracy, precision, recall,
F-measure, and specificity of 97.1, 96.7, 97.1, 96.9, and 96.4, respectively. The absence of
temporary memory is one of the limitations of the Banerjee model that reduces its predicting
performance. In addition, the outcome of Tables 5 and 6 suggest that the performance of
PCNN is higher than the existing CNN architectures. Figure 9 shows the relevant graph
of Table 6.
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Table 8. Comparative analysis outcome of CNN model for dataset_2.

Methods/
Measures Accuracy Precision Recall F-Measure Specificity

Jingsi model 96.3 95.8 96.7 96.25 97.2
GoogleNet 97.1 96.7 97.1 96.9 96.4

Inception V3 97.6 97.2 96.8 97 97.3
Banerjee model 98.1 97.6 97.5 97.55 97.1

Papandrianos model 98.3 98.2 97.9 98.05 97.8
PCNN 98.96 98.2 98.52 98.36 98.7
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In addition to the initial comparative analysis, the researcher applied MCC and Kappa
to evaluate the performance of PCNN. Figures 10 and 11 reveal that PCNN achieved a
superior MCC and K score compared to the existing models.
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Table 9 outlines the memory size and computing time during the training phase.
PCNN consumes 121.45 MB and 118.45 MB for Dataset_1 and Dataset_2, accordingly. The
computing time of PCNN is 99.32 min and 99.21 min, respectively. The computing time
of PCNN is superior to the existing CNN with less memory. Figure 12 highlights CNN’s
space and computation time for both Dataset_1 and Dataset_2.

Table 9. Memory sizes of CNN for Dataset_1 and Dataset_2.

Methods/Datasets Dataset_1 (MB) Dataset_2
(MB)

Dataset_1
Time (Minutes)

Dataset_2
Time (Minutes)

Jingsi model 279.21 189.32 105.26 101.25
GoogleNet 175.69 159.27 102.26 101.36

Inception V3 138.14 142.58 134.56 129.71
Banerjee model 128.54 143.96 116.32 107.25

Papandrianos model 129.65 137.89 101.45 103.59
PCNN 119.25 124.26 100.56 98.89
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Table 10 outlines the error rate of the CNN architectures during the testing phase. The
error rate of PCNN is 15.1 and 13.9 for Dataset_1 and Dataset_2, respectively. Nevertheless,
Jingsi model scores 20.5 and 19.6, which is higher than other CNN models. The outcome
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emphasizes the efficiency of the feature extraction process of PCNN. Figure 13 illustrates
the error rate of CNN models.

Table 10. Error rates of CNN for Dataset_1 and Dataset_2.

Methods/Measures Dataset_1
(%)

Dataset_2
(%)

Jingsi model 20.5 19.6
GoogleNet 19.4 17.3

Inception V3 18.94 17.1
Banerjee model 17.3 16.4

Papandrianos model 16.9 15.7
PCNN 15.1 13.9
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Figure 14 represents the receiver operating characteristic (ROC) and precision–recall
(PR) curve for dataset_1 during the testing phase. It shows that PCNN achieves a better
Area under the ROC curve (AUC) for CAD and No CAD classification, respectively.
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Similarly, Figure 15 reflects the ROC and PR curve for dataset_2. It outlines that PCNN
achieves a better ROC AUC score of 0.93. Furthermore, the AUC score of the PR curve
(0.91) indicates that PCNN predicts CAD better than the existing models.
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Table 11 highlights the computational complexities of CNN models for Dataset_1. It
is evident from the outcome that PCNN requires a smaller number of parameters (4.3 M),
learning rate (1 × 10−4), number of flops (563 M), and computation time (1.92 s).

Table 11. Computational complexities of CNN for Dataset_1.

Methods/Measures Number of
Parameters

Learning
Rate

Number of
Flops

Testing Time
(s)

Jingsi model 5.1 M 1 × 10−3 565 M 2.5
GoogleNet 6.7 M 1 × 10−3 624 M 2.36

Inception V3 7.4 M 1 × 10−4 594 M 2.7
Banerjee model 14.6 M 1 × 10−3 1421 M 2.3

Papandrianos model 11.2 M 1 × 10−2 1530 M 2.1
PCNN 4.3 M 1 × 10−4 563 M 1.92

Likewise, Table 12 reflects the outcome for Dataset_2. It shows that PCNN generates
an output with fewer parameters, flops, and learning rates than the existing CNN models.

Table 12. Computational complexities of CNN for Dataset_2.

Methods/Measures Number of
Parameters

Learning
Rate

Number of
Flops

Computation Time
(s)

Jingsi model 4.3 M 1 × 10−3 436 M 1.91
GoogleNet 5.6 M 1 × 10−3 512 M 1.72

Inception V3 6.3 M 1 × 10−5 402 M 1.86
Banerjee model 9.4 M 1 × 10−4 921 M 1.98

Papandrianos model 10.3 M 1 × 10−3 430 M 1.36
PCNN 3.7 M 1 × 10−5 403 M 1.15

4.2. Clinical Insights and Limitations

PCNN generates outcomes that are superior to the existing CNN models. It can be
employed in real-time applications to support physicians in diagnosing CAD. In addition,
it can be integrated with Internet of Things devices to support healthcare centers in identi-
fying CAD at an earlier stage. The feature extraction and the pooling layer of PCNN can
detect CAD from complex CT images. The dropout layer reduces the neurons to avoid
limitations such as overfitting and underfitting. PCNN applies loss function to compute
the kernels and weights of the model. It optimizes the model’s performance and generates
a meaningful outcome.

PCNN produces an effective result and supports CAD diagnosing process. However,
a few limitations need to be addressed in future studies. The multiple layers of CNN
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increase the training time and require a better graphical processing unit. The imbalanced
dataset may reduce the performance of the proposed method. The researcher introduced
the concept of temporary storage to hold the intermediate results.

Nonetheless, there is a possibility of losing information due to multiple features. The
lack of co-ordinate frames may lead to the adversarial visualization of images. The feature
selection process can improve the images’ internal representation. Finally, the structure of
PCNN requires a considerable amount of data to produce an exciting result. To maintain
the better performance, data pre-processing is necessary to handle image rotation and
scaling tasks.

5. Conclusions

This study developed a CNN model for predicting CAD from CT images. The existing
CNN architectures require a high-end hardware configuration for processing complex
images. A feature extraction technique is employed to support the proposed CNN model.
The proposed method modifies the existing DenseNet architecture in order to implement
a feed-forward back-propagation network. Two benchmark datasets are used for the
performance evaluation. The experiment analysis’s outcome highlights the superior per-
formance of the proposed CNN model in terms of accuracy, precision, recall, F-measure,
and specificity. Moreover, the proposed CNN’s memory consumption and computation
time during the training phase are lower than the existing CNNs. In addition, ROC and
PR curve analysis suggest that the proposed method can predict CAD with a lower false
positive rate with higher prediction accuracy. Thus, the proposed method can support the
physician in detecting and preventing CAD patients. In the future, the proposed model can
be implemented to predict CAD from electronic health records.
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