Utility of Diffusion and Magnetization Transfer MRI in Cervical Spondylotic Myelopathy: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. MRI Acquisition
2.1.1. Conventional Imaging
2.1.2. DTI
2.1.3. MT Imaging
2.2. Data Processing
2.3. Statistical Analysis
3. Results
3.1. Group Comparison
3.2. Correlations between the MR Parameters and Clinical Evaluation Items
4. Discussion
4.1. Group Comparison
4.2. Correlations between the MR Parameters and Clinical Items
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theodore, N. Degenerative cervical spondylosis. N. Engl. J. Med. 2020, 383, 159–168. [Google Scholar] [CrossRef] [PubMed]
- McCormick, J.R.; Sama, A.J.; Schiller, N.C.; Butler, A.J.; Donnally, C.J., 3rd. Cervical spondylotic myelopathy: A guideguide to diagnosis and management. J. Am. Board Fam. Med. 2020, 33, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, Y.; Iijima, S.; Kishimoto, H.; Yanagi, T. Pathology of spinal cord lesions caused by ossification of the posterior longitudinal ligament. Acta Neuropathol. 1984, 63, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Kerkovský, M.; Bednarík, J.; Dušek, L.; Sprláková-Puková, A.; Urbánek, I.; Mechl, M.; Válek, V.; Kadanka, Z. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: Correlations between clinical and electrophysiological findings. Spine 2012, 37, 48–56. [Google Scholar] [CrossRef]
- Gohmann, R.F.; Blume, C.; Zvyagintsev, M.; Mainz, V.; Clusmann, H.; Wiesmann, M.; Brockmann, M.A.; Mueller, C.A. Cervical spondylotic myelopathy: Changes of fractional anisotropy in the spinal cord and magnetic resonance spectroscopy of the primary motor cortex in relation to clinical symptoms and their duration. Eur. J. Radiol. 2019, 116, 55–60. [Google Scholar] [CrossRef]
- Costanzo, R.; Brunasso, L.; Paolini, F.; Benigno, U.E.; Porzio, M.; Giammalva, G.R.; Gerardi, R.M.; Umana, G.E.; di Bonaventura, R.; Sturiale, C.L.; et al. Spinal tractography as a potential prognostic tool in spinal cord injury. A systematic review. World Neurosurg. 2022, 29, 25–32. [Google Scholar] [CrossRef]
- Della Della Nave, R.D.; Ginestroni, A.; Diciotti, S.; Salvatore, E.; Soricelli, A.; Mascalchi, M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology 2011, 53, 367–372. [Google Scholar] [CrossRef]
- Aung, W.Y.; Mar, S.; Benzinger, T.L. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 2013, 5, 427–440. [Google Scholar] [CrossRef]
- Cercignani, M.; Wheeler-Kingshott, C.A.M. About “axial” and “radial” diffusivities. Magn. Reason. Med. 2009, 61, 1255–1260. [Google Scholar] [CrossRef]
- Murgoci, A.N.; Baciak, L.; Cubinkova, V.; Smolek, T.; Tvrdik, T.; Juranek, I.; Kafka, J.; Cizkova, D. Diffusion tensor imaging: Tool for tracking injured spinal cord fibres in rat. Neurochem. Res. 2020, 45, 180–187. [Google Scholar] [CrossRef]
- Seif, M.; GandiniGandini Wheeler-Kingshott, C.A.G.; Cohen-Adad, J.; Flanders, A.E.; Freund, P. Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers. Spinal Cord 2019, 57, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Grabher, P.; Callaghan, M.F.; Ashburner, J.; Weiskopf, N.; Thompson, A.J.; Curt, A.; Freund, P. Tracking sensory system atrophy and outcome prediction in spinal cord injury. Ann. Neurol. 2015, 78, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.; Martin, A.R.; Mikulis, D.; Fehlings, M.G. Magnetic resonance imaging assessment of degenerative cervical myelopathy: A review of structural changes and measurement techniques. Neurosurg. Focus 2016, 40, E5. [Google Scholar] [CrossRef]
- Tomiak, M.M.; Rosenblum, J.D.; Prager, J.M.; Metz, C.E. Magnetization transfer: A potential method to determine the age of multiple sclerosis lesions. AJNR Am. J. Neuroradiol. 1994, 15, 1569–1574. [Google Scholar]
- Cohen-Adad, J.; El Mendili, M.M.; Lehéricy, S.; Pradat, P.F.; Blancho, S.; Rossignol, S.; Benali, H. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 2011, 55, 1024–1033. [Google Scholar] [CrossRef]
- Suleiman, L.I.; Weber, K.A.; Rosenthal, B.D.; Bhatt, S.A.; Savage, J.W.; Hsu, W.K.; Patel, A.A.; Parrish, T.B. High-resolution magnetization transfer MRI in patients with cervical spondylotic myelopathy. J. Clin. Neurosci. 2018, 51, 57–61. [Google Scholar] [CrossRef]
- Cohen-Adad, J.; Leblond, H.; Delivet-Mongrain, H.; Martinez, M.; Benali, H.; Rossignol, S. Wallerian degeneration after spinal cord lesions in cats detected with diffusion tensor imaging. Neuroimage 2011, 57, 1068–1076. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, J.; Moon, W.J.; Nahm, S.S.; Zhao, J.; Kim, H.M.; Eom, K. Characterization of chronic axonal degeneration using diffusion tensor imaging in canine spinal cord injury: A quantitative analysis of Diffusion Tensor Imaging parameters according to histopathological differences. J. Neurotrauma 2017, 34, 3041–3050. [Google Scholar] [CrossRef]
- Dauleac, C.; Frindel, C.; Mertens, P.; Jacquesson, T.; Cotton, F. Overcoming challenges of the human spinal cord tractography for routine clinical use: A review. Neuroradiology 2020, 62, 1079–1094. [Google Scholar] [CrossRef]
- Dauleac, C.; Bannier, E.; Cotton, F.; Frindel, C. Effect of distortion corrections on the tractography quality in spinal cord diffusion-weighted imaging. Magn. Reason. Med. 2021, 85, 3241–3255. [Google Scholar] [CrossRef]
- Cohen-Adad, J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage 2018, 182, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.M.; Yoo, W.K.; Bashir, S.; Oh, J.K.; Kwak, Y.H.; Kim, S.W. Spinal cord changes after laminoplasty in cervical compressive myelopathy: A diffusion tensor imaging study. Front. Neurol. 2018, 9, 696. [Google Scholar] [CrossRef] [PubMed]
- VanDenKerkhof, E.G.; Stitt, L.; Clark, A.J.; Gordon, A.; Lynch, M.; Morley-Forster, P.K.; Nathan, H.J.; Smyth, C.; Toth, C.; Ware, M.A.; et al. Sensitivity of the DN4 in screening for neuropathic pain syndromes. Clin. J. Pain 2018, 34, 30–36. [Google Scholar] [CrossRef]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A.; et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Oshima, Y.; Oka, H.; Chikuda, H.; Takeshita, Y.; Miyoshi, K.; Kawamura, N.; Masuda, K.; Kunogi, J.; Okazaki, R.; et al. Comparison of the Japanese orthopaedic association (JOA) score and modified JOA (mJOA) score for the assessment of cervical myelopathy: A multicenter observational study. PLoS ONE 2015, 10, e0123022. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Skaf, G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine 1998, 23, 2730–2737. [Google Scholar] [CrossRef]
- De De Leener, B.D.; Fonov, V.S.; Collins, D.L.; Callot, V.; Stikov, N.; Cohen-Adad, J. PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage 2018, 165, 170–179. [Google Scholar] [CrossRef]
- Fujiwara, K.; Yonenobu, K.; Ebara, S.; Yamashita, K.; Ono, K. The prognosis of surgery for cervical compression myelopathy. An analysis of the factors involved. J. Bone Jt. Surg. Br. 1989, 71-B, 393–398. [Google Scholar] [CrossRef]
- Lévy, S.; Benhamou, M.; Naaman, C.; Rainville, P.; Callot, V.; Cohen-Adad, J. White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage 2015, 119, 262–271. [Google Scholar] [CrossRef]
- Valošek, J.; Labounek, R.; Horák, T.; Horáková, M.; Bednařík, P.; Keřkovský, M.; Kočica, J.; Rohan, T.; Lenglet, C.; Cohen-Adad, J.; et al. Diffusion magnetic resonance imaging reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression. Eur. J. Neurol. 2021, 28, 3784–3797. [Google Scholar] [CrossRef]
- Ichihara, K.; Taguchi, T.; Sakuramoto, I.; Kawano, S.; Kawai, S. Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: New approach based on the mechanical features of the spinal cord white and gray matter. J. Neurosurg. 2003, 99, 278–285. [Google Scholar] [CrossRef]
- Dupont, S.M.; De Leener, B.D.; Taso, M.; Le Troter, A.; Nadeau, S.; Stikov, N.; Callot, V.; Cohen-Adad, J. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter. Neuroimage 2017, 150, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Craciunas, S.C.; Gorgan, M.R.; Ianosi, B.; Lee, P.; Burris, J.; Cirstea, C.M. Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy. J. Neurosurg. Spine 2017, 26, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Beattie, M.S.; Harrington, A.W.; Lee, R.; Kim, J.Y.; Boyce, S.L.; Longo, F.M.; Bresnahan, J.C.; Hempstead, B.L.; Yoon, S.O. ProNGF induced p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 2002, 36, 375–386. [Google Scholar] [CrossRef]
- Beattie, M.S.; Manley, G.T. Tight squeeze, slow burn: Inflammation and the aetiology of cervical myelopathy. Brain 2011, 134, 1259–1261. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.R.; Liu, T.; Kiehl, T.R.; Fehlings, M.G. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 2011, 134, 1277–1292. [Google Scholar] [CrossRef]
- Erschbamer, M.; Öberg, J.; Westman, E.; Sitnikov, R.; Olson, L.; Spenger, C. 1H-MRS in spinal cord injury: Acute and chronic metabolite alterations in rat brain and lumbar spinal cord. Eur. J. Neurosci. 2011, 33, 678–688. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Wilson, J.R.; Kopjar, B.; Yoon, S.T.; Arnold, P.M.; Massicotte, E.M.; Vaccaro, A.R.; Brodke, D.S.; Shaffrey, C.I.; Smith, J.S.; et al. Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: Results of the AOSpine North America prospective multi-center study. J. Bone Jt. Surg. Am. 2013, 95, 1651–1658. [Google Scholar] [CrossRef]
- Isa, T.; Kinoshita, M.; Nishimura, Y. Role of Direct vs. indirect Pathways from the Motor Cortex to Spinal Motoneurons in the Control of Hand Dexterity. Front. Neurol. 2013, 4, 191. [Google Scholar] [CrossRef]
- Isa, T.; Mitsuhashi, M.; Yamaguchi, R. Alternative routes for recovery of hand functions after corticospinal tract injury in primates and rodents. Curr. Opin. Neurol. 2019, 32, 836–843. [Google Scholar] [CrossRef]
- Baker, S.N.; Perez, M.A. Reticulospinal contributions to gross hand function after human spinal cord injury. J. Neurosci. 2017, 37, 9778–9784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowley, K.C.; Lane, M.A.; Meehan, C.F.; Rank, M.M.; Stecina, K. Editorial: Propriospinal neurons: Essential elements in locomotion, autonomic function and plasticity after spinal cord injury and disease. Front. Cell Neurosci. 2021, 15, 695424. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Almeida, Y.; Felix, E.R.; Martinez-Arizala, A.; Widerström-Noga, E.G. Decreased spinothalamic and dorsal column medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury. J. Neurotrauma 2012, 29, 2706–2715. [Google Scholar] [CrossRef]
- Fischer, T.; Stern, C.; Freund, P.; Schubert, M.; Sutter, R. Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study. Eur. Radiol. 2021, 31, 2923–2932. [Google Scholar] [CrossRef] [PubMed]
- Hatem, S.M.; Attal, N.; Ducreux, D.; Gautron, M.; Parker, F.; Plaghki, L.; Bouhassira, D. Assessment of spinal somatosensory systems with diffusion tensor imaging in syringomyelia. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Perlson, E.; Maday, S.; Fu, M.M.; Moughamian, A.J.; Holzbaur, E.L. Retrograde axonal transport: Pathways to cell death? Trends Neurosci. 2010, 33, 335–344. [Google Scholar] [CrossRef]
- Akutagawa, T.; Tani, T.; Kida, K.; Tadokoro, N.; Enoki, H.; Nagano, Y.; Ikeuchi, M. A new method for characterizing hand dysfunction in cervical spondylotic myelopathy: A preliminary study. Spinal Cord 2016, 54, 221–225. [Google Scholar] [CrossRef]
- Lee, J.K.; Liu, D.; Jiang, D.; Kulikowicz, E.; Tekes, A.; Liu, P.; Qin, Q.; Koehler, R.C.; Aggarwal, M.; Zhang, J.; et al. Fractional anisotropy from diffusion tensor imaging correlates with acute astrocyte and myelin swelling in neonatal swine models of excitotoxic and hypoxic-ischemic brain injury. J. Comp. Neurol. 2021, 529, 2750–2770. [Google Scholar] [CrossRef]
- Yano, R.; Hata, J.; Abe, Y.; Seki, F.; Yoshida, K.; Komaki, Y.; Okano, H.; Tanaka, K.F. Quantitative temporal changes in DTI values coupled with histological properties in cuprizone-induced demyelination and remyelination. Neurochem. Int. 2018, 119, 151–158. [Google Scholar] [CrossRef]
- Cloney, M.B.; Smith, Z.A.; Weber, K.A.; Parrish, T.B. Quantitative magnetization transfer MRI measurements of the anterior spinal cord region are associated with clinical outcomes in cervical spondylotic myelopathy. Spine 2018, 43, 675–680. [Google Scholar] [CrossRef]
- Mottershead, J.P.; Schmierer, K.; Clemence, M.; Thornton, J.S.; Scaravilli, F.; Barker, G.J.; Tofts, P.S.; Newcombe, J.; Cuzner, M.L.; Ordidge, R.J.; et al. High field MRI correlates of myelin content and axonal density in multiple sclerosis—A post-mortem study of the spinal cord. J. Neurol. 2003, 250, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.T.; Collins, D.L.; Atkins, H.L.; Freedman, M.S.; Arnold, D.L.; Canadian MS/BMT Study Group. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann. Neurol. 2008, 63, 254–262. [Google Scholar] [CrossRef]
- McCreary, C.R.; Bjarnason, T.A.; Skihar, V.; Mitchell, J.R.; Yong, V.W.; Dunn, J.F. Multiexponential T2 and magnetization transfer MRI of demyelination and remyelination in murine spinal cord. Neuroimage 2009, 45, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Barkhof, F.; Brück, W.; De Groot, C.J.; Bergers, E.; Hulshof, S.; Geurts, J.; Polman, C.H.; van der Valk, P. Remyelinated lesions in multiple sclerosis: MagneticMagnetic resonance image appearance. Arch. Neurol. 2003, 60, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.L.; Hurley, S.A.; Samsonov, A.A.; Adluru, N.; Hosseinbor, A.P.; Mossahebi, P.; Tromp Do, P.M.; Zakszewski, E.; Field, A.S. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 2011, 1, 423–446. [Google Scholar] [CrossRef]
- Taso, M.; Girard, O.M.; Duhamel, G.; Le Troter, A.; Feiweier, T.; Guye, M.; Ranjeva, J.P.; Callot, V. Tract-specific and age-related variations of the spinal cord microstructure: A multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR Biomed. 2016, 29, 817–832. [Google Scholar] [CrossRef]
- Sullivan, E.V.; Rohlfing, T.; Pfefferbaum, A. Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: Relations to timed performance. Neurobiol. Aging 2010, 31, 464–481. [Google Scholar] [CrossRef]
- Van Hecke, W.V.; Leemans, A.; Sijbers, J.; Vandervliet, E.; Goethem, J.V.; Parizel, P.M. A tracking-based diffusion tensor imaging segmentation method for the detection of diffusion-related changes of the cervical spinal cord with aging. J. Magn. Reason. Imaging 2008, 27, 978–991. [Google Scholar] [CrossRef]
- Beaulieu, C. The basis of anisotropic water diffusion in the nervous system—A technical review. NMR Biomed. 2002, 15, 435–455. [Google Scholar] [CrossRef]
- Sen, P.N.; Basser, P.J. A model for diffusion in white matter in the brain. Biophys. J. 2005, 89, 2927–2938. [Google Scholar] [CrossRef]
- Field, A.S.; Alexander, A.L.; Wu, Y.C.; Hasan, K.M.; Witwer, B.; Badie, B. Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor. J. Magn. Reason. Imaging 2004, 20, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Reich, D.S.; Smith, S.A.; Zackowski, K.M.; Gordon-Lipkin, E.M.; Jones, C.K.; Farrell, J.A.; Mori, S.; van Zijl, P.C.; Calabresi, P.A. Multiparametric magnetic resonance imaging analysis of the corticospinal tract in multiple sclerosis. Neuroimage 2007, 38, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Jones, C.K.; Gifford, A.; Belegu, V.; Chodkowski, B.; Farrell, J.A.; Landman, B.A.; Reich, D.S.; Calabresi, P.A.; McDonald, J.W.; et al. Reproducibility of tract-specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 tesla. NMR Biomed. 2010, 23, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Song, S.K.; Yoshino, J.; Le, T.Q.; Lin, S.J.; Sun, S.W.; Cross, A.H.; Armstrong, R.C. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 2005, 26, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, K.; Krzyżak, A.T. The generalized Stejskal-Tanner equation for non-uniform magnetic field gradients. J. Magn. Reson. Reson. 2018, 296, 23–28. [Google Scholar] [CrossRef]
- Stroman, P.W.; Wheeler-Kingshott, C.; Bacon, M.; Schwab, J.M.; Bosma, R.; Brooks, J.; Cadotte, D.; Carlstedt, T.; Ciccarelli, O.; Cohen-Adad, J.; et al. The current state-of-the-art of spinal cord imaging: Methods. Neuroimage 2014, 84, 1070–1081. [Google Scholar] [CrossRef]
- Leener, B.D.; Lévy, S.; Dupont, S.M.; Fonov, V.S.; Stikov, N.; Collins, D.L.; Callot, V.; Cohen-Adad, J. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2017, 145, 24–43. [Google Scholar] [CrossRef]
- Borkowski, K.; Krzyżak, A.T. Assessment of the systematic errors caused by diffusion gradient inhomogeneity in DTI-computer simulations. NMR Biomed. 2019, 32, e4130. [Google Scholar] [CrossRef]
Patient No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Level of maximal compression | C3/4 | C5/6 | C4/5 | C4/5 | C6/7 | C5/6 | C5/6 | C6/7 |
Compression ratio at level of maximal compression | 0.30 | 0.33 | 0.39 | 0.40 | 0.49 | 0.44 | 0.61 | 0.44 |
T2 high signal intensity | + | + | + | - | - | - | - | - |
DN4 score | 2 | 2 | 8 | 4 | 4 | 3 | 5 | 4 |
JOA score | 16 | 15 | 13 | 15 | 16 | 16 | 16 | 16 |
Hyperreflexia | - | + | - | - | + | + | - | - |
Lateral pinch (Rt./Lt.) | 19.0/19.6 | 19.0/19.6 | 9.0/7.3 | 20.3/11.6 | 16.6/16.8 | 18.3/17.3 | 19.6/17.0 | 20.3/19.6 |
Power grasp (Rt./Lt.) | 68.3/61.6 | 68.3/61.1 | 46.0/33.3 | 75.0/46.6 | 73.3/67.3 | 68.3/80.0 | 65.0/66.6 | 80.0/73.3 |
ASIA motor (Rt./Lt.) | 50/50 | 50/50 | 38/37 | 45/44 | 50/50 | 50/50 | 49/49 | 49/49 |
ASIA sensory (Rt./Lt.) | 111/112 | 112/112 | 117/117 | 112/112 | 111/110 | 112/112 | 108/108 | 110/110 |
ASIA light touch (Rt./Lt.) | 55/56 | 56/56 | 58/58 | 56/56 | 55/55 | 56/56 | 54/54 | 55/55 |
ASIA pinprick (Rt./Lt.) | 56/56 | 56/56 | 59/59 | 56/56 | 56/55 | 56/56 | 54/54 | 55/55 |
Patient (n = 8) | Control (n = 12) | p-Value | |
---|---|---|---|
Sex (male:female) | 8:0 | 8:4 | 0.238 |
Age (age ± SD) | 73.00 ± 5.78 | 37.08 ± 5.38 | 0.000 * |
Above the Lesion Level | At the Lesion Level | Below the Lesion Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | Patient | Control | Patient | Control | Patient | |||||
Mean ± SD | Mean ± SD | p | Mean ± SD | Mean ± SD | p | Mean ± SD | Mean ± SD | p | ||
Lat CS | FA | 0.689 ± 0.083 | 0.663 ± 0.071 | 0.464 | 0.648 ± 0.077 | 0.597 ± 0.114 | 0.217 | 0.602 ± 0.073 | 0.631 ± 0.081 | 0.411 |
MD | 1101 × 10−6 ± 0.000 | 972 × 10−6 ± 0.000 | 0.199 | 1074 × 10−6 ± 0.000 | 1125 × 10−6 ± 0.000 | 0.746 | 1240 × 10−6 ± 0.001 | 0.001 ± 1061 × 10−6 | 0.232 | |
AD | 1955 × 10−6 ± 0.000 | 1788 × 10−6 ± 0.000 | 0.256 | 1849 × 10−6 ± 0.000 | 1950 × 10−6 ± 0.000 | 0.533 | 2039 × 10−6 ± 0.001 | 0.002 ± 1917 × 10−6 | 0.434 | |
RD | 641 × 10−6 ± 0.000 | 564 × 10−6 ± 0.000 | 0.367 | 626 × 10−6 ± 0.000 | 712 × 10−6 ± 0.000 | 0.382 | 756 × 10−6 ± 0.000 | 0.001 ± 633 × 10−6 | 0.146 | |
MTR | 44.707 ± 3.955 | 46.966 ± 3.196 | 0.156 | 43.300 ± 3.893 | 46.393 ± 4.033 | 0.060 | 42.424 ± 4.481 | 47.884 ± 5.504 | 0.006 * | |
RuS | FA | 0.748 ± 0.089 | 0.718 ± 0.088 | 0.454 | 0.745 ± 0.100 | 0.614 ± 0.109 | 0.002 * | 0.655 ± 0.093 | 0.688 ± 0.088 | 0.436 |
MD | 859 × 10−6 ± 0.000 | 905 × 10−6 ± 0.000 | 0.635 | 787 × 10−6 ± 0.000 | 114 × 10−6 ± 0.000 | 0.002 * | 979 × 10−6 ± 0.000 | 912 × 10−6 ± 0.000 | 0.492 | |
AD | 1763 × 10−6 ± 0.000 | 1796 × 10−6 ± 0.000 | 0.866 | 1670 × 10−6 ± 0.000 | 1957 × 10−6 ± 0.000 | 0.300 | 1945 × 10−6 ± 0.000 | 1795 × 10−6 ± 0.000 | 0.419 | |
RD | 425 × 10−6 ± 0.000 | 459 × 10−6 ± 0.000 | 0.638 | 416 × 10−6 ± 0.000 | 687 × 10−6 ± 0.000 | 0.005 * | 653 × 10−6 ± 0.000 | 467 × 10−6 ± 0.000 | 0.082 | |
MTR | 47.318 ± 4.182 | 48.942 ± 3.389 | 0.367 | 45.676 ± 5.033 | 45.877 ± 4.156 | 0.959 | 44.450 ± 3.608 | 50.966 ± 5.324 | 0.004 * | |
Lat RS | FA | 0.796 ± 0.137 | 0.646 ± 0.082 | 0.001 * | 0.733 ± 0.124 | 0.564 ± 0.072 | 0.001 * | 0.781 ± 0.086 | 0.614 ± 0.057 | 0.001 * |
MD | 646 × 10−6 ± 0.000 | 928 × 10−6 ± 0.000 | 0.000 * | 652 × 10−6 ± 0.000 | 1138 × 10−6 ± 0.000 | 0.000 * | 779 × 10−6 ± 0.000 | 1030 × 10−6 ± 0.000 | 0.015 * | |
AD | 1327 × 10−6 ± 0.000 | 1704 × 10−6 ± 0.000 | 0.002 * | 1297 × 10−6 ± 0.000 | 1919 × 10−6 ± 0.000 | 0.002 * | 1550 × 10−6 ± 0.000 | 1844 × 10−6 ± 0.000 | 0.006 * | |
RD | 254 × 10−6 ± 0.000 | 540 × 10−6 ± 0.000 | 0.000 * | 311 × 10−6 ± 0.000 | 746 × 10−6 ± 0.000 | 0.000 * | 295 × 10−6 ± 0.000 | 623 × 10−6 ± 0.000 | 0.000 * | |
MTR | 46.813 ± 3.449 | 47.413 ± 3.810 | 0.724 | 46.309 ± 2.927 | 46.376 ± 3.712 | 0.989 | 44.370 ± 4.274 | 48.131 ± 5.034 | 0.048 * | |
FC | FA | 0.675 ± 0.070 | 0.676 ± 0.079 | 0.989 | 0.597 ± 0.068 | 0.616 ± 0.101 | 0.635 | 0.603 ± 0.060 | 0.602 ± 0.069 | 0.989 |
MD | 1166 × 10−6 ± 0.000 | 920 × 10−6 ± 0.000 | 0.006 * | 1124 × 10−6 ± 0.000 | 1079 × 10−6 ± 0.000 | 0.635 | 1164 × 10−6 ± 0.000 | 1101 × 10−6 ± 0.000 | 0.532 | |
AD | 2189 × 10−6 ± 0.000 | 1753 × 10−6 ± 0.000 | 0.014 * | 2033 × 10−6 ± 0.000 | 1934 × 10−6 ± 0.000 | 0.569 | 2022 × 10−6 ± 0.000 | 1937 × 10−6 ± 0.000 | 0.618 | |
RD | 680 × 10−6 ± 0.000 | 503 × 10−6 ± 0.000 | 0.006 * | 759 × 10−6 ± 0.000 | 651 × 10−6 ± 0.000 | 0.111 | 767 × 10−6 ± 0.000 | 683 × 10−6 ± 0.000 | 0.256 | |
MTR | 44.733 ± 2.768 | 46.912 ± 4.392 | 0.207 | 43.319 ± 2.851 | 45.640 ± 3.774 | 0.088 | 43.272 ± 4.441 | 45.287 ± 3.231 | 0.256 | |
SpLm | FA | 0.692 ± 0.100 | 0.654 ± 0.076 | 0.367 | 0.695 ± 0.109 | 0.595 ± 0.067 | 0.009 * | 0.642 ± 0.086 | 0.658 ± 0.075 | 0.644 |
MD | 995 × 10−6 ± 0.000 | 959 × 10−6 ± 0.000 | 0.746 | 1043 × 10−6 ± 0.001 | 1120 × 10−6 ± 0.000 | 0.638 | 1070 × 10−6 ± 0.000 | 1047 × 10−6 ± 0.000 | 0.927 | |
AD | 1718 × 10−6 ± 0.000 | 1722 × 10−6 ± 0.000 | 0.989 | 1853 × 10−6 ± 0.001 | 1860 × 10−6 ± 0.000 | 0.942 | 1862 × 10−6 ± 0.000 | 1892 × 10−6 ± 0.000 | 0.910 | |
RD | 533 × 10−6 ± 0.000 | 577 × 10−6 ± 0.000 | 0.638 | 559 × 10−6 ± 0.000 | 728 × 10−6 ± 0.000 | 0.232 | 627 × 10−6 ± 0.000 | 625 × 10−6 ± 0.000 | 0.989 | |
MTR | 44.048 ± 5.532 | 47.904 ± 4.500 | 0.074 | 43.300 ± 3.528 | 44.623 ± 3.545 | 0.429 | 43.168 ± 4.527 | 49.285 ± 3.990 | 0.001 * |
Lat CS | RuS | Lat RS | FC | Spinal Lemni | ||
---|---|---|---|---|---|---|
Power grasp | above | AD | ||||
at | FA, MD, AD, RD | AD | MD, AD | |||
below | ||||||
Lateral pinch | above | MTR | ||||
at | ||||||
below | FA, MTR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-E.; Kim, W.-T.; Kim, D.-H.; Kim, S.-W.; Yoo, W.-K. Utility of Diffusion and Magnetization Transfer MRI in Cervical Spondylotic Myelopathy: A Pilot Study. Diagnostics 2022, 12, 2090. https://doi.org/10.3390/diagnostics12092090
Yang H-E, Kim W-T, Kim D-H, Kim S-W, Yoo W-K. Utility of Diffusion and Magnetization Transfer MRI in Cervical Spondylotic Myelopathy: A Pilot Study. Diagnostics. 2022; 12(9):2090. https://doi.org/10.3390/diagnostics12092090
Chicago/Turabian StyleYang, Hea-Eun, Wan-Tae Kim, Dae-Hyun Kim, Seok-Woo Kim, and Woo-Kyoung Yoo. 2022. "Utility of Diffusion and Magnetization Transfer MRI in Cervical Spondylotic Myelopathy: A Pilot Study" Diagnostics 12, no. 9: 2090. https://doi.org/10.3390/diagnostics12092090
APA StyleYang, H. -E., Kim, W. -T., Kim, D. -H., Kim, S. -W., & Yoo, W. -K. (2022). Utility of Diffusion and Magnetization Transfer MRI in Cervical Spondylotic Myelopathy: A Pilot Study. Diagnostics, 12(9), 2090. https://doi.org/10.3390/diagnostics12092090